보도자료
KIST, 항암제 내성과 부작용 동시에 잡는 신규 약물 개발
- 등록일 : 20-09-22
- 테라그노시스연구센터 김광명 박사팀
- 조회수 : 13763
- 암세포에서 활성화되어 항암제 내성 억제제 및 항암제를 동시에 방출
- 부작용이 발생하지 않는 새로운 무독성 항암제 나노약물 개발 기대
암을 효과적으로 치료할 수 있는 다양한 방법이 개발되어 왔지만, 항암제를 이용한 화학요법은 암세포를 효과적으로 사멸할 수 있어 임상에서 우수한 항암 효과를 보이고 있다. 무엇보다 다른 항암 치료법보다 상대적으로 치료비용이 저렴하고, 대부분의 암에서 우수한 효과를 보이기 때문에 항암제를 이용한 화학요법은 가장 많이 사용되고 있는 치료법이다.
그러나 암세포에서 발생하는 항암제에 대한 내성은 화학요법의 효과와 민감성을 크게 감소시켜 암의 재발 및 치료 실패를 초래한다. 본래 암세포는 항암제에 대해 내성을 가지고 있으며, 화학요법에 높은 반응성을 나타내는 암세포일지라도 치료 과정 중에 항암제 내성이 발생할 수 있다.
최근 국내 연구진이 이러한 암세포의 항암제 내성을 극복할 수 있는 약물을 개발하여 주목받고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 테라그노시스연구센터 김광명 박사 연구팀이 항암제 내성을 극복할 수 있는 암세포 특이적 항암제 전구체 약물 개발에 성공했다고 밝혔다.
KIST 연구진은 항암제 내성을 억제하는 약물(스맥, SMAC : Streptomyces peucetius 세균에서 유래 하며, 백혈병, 림프종, 신경모세포종, 육종 등 많은 종류의 암을 치료하는 데 사용되는 항암제이다.
- 부작용이 발생하지 않는 새로운 무독성 항암제 나노약물 개발 기대
암을 효과적으로 치료할 수 있는 다양한 방법이 개발되어 왔지만, 항암제를 이용한 화학요법은 암세포를 효과적으로 사멸할 수 있어 임상에서 우수한 항암 효과를 보이고 있다. 무엇보다 다른 항암 치료법보다 상대적으로 치료비용이 저렴하고, 대부분의 암에서 우수한 효과를 보이기 때문에 항암제를 이용한 화학요법은 가장 많이 사용되고 있는 치료법이다.
그러나 암세포에서 발생하는 항암제에 대한 내성은 화학요법의 효과와 민감성을 크게 감소시켜 암의 재발 및 치료 실패를 초래한다. 본래 암세포는 항암제에 대해 내성을 가지고 있으며, 화학요법에 높은 반응성을 나타내는 암세포일지라도 치료 과정 중에 항암제 내성이 발생할 수 있다.
최근 국내 연구진이 이러한 암세포의 항암제 내성을 극복할 수 있는 약물을 개발하여 주목받고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 테라그노시스연구센터 김광명 박사 연구팀이 항암제 내성을 극복할 수 있는 암세포 특이적 항암제 전구체 약물 개발에 성공했다고 밝혔다.
KIST 연구진은 항암제 내성을 억제하는 약물(스맥, SMAC : Streptomyces peucetius 세균에서 유래 하며, 백혈병, 림프종, 신경모세포종, 육종 등 많은 종류의 암을 치료하는 데 사용되는 항암제이다.
SMAC)과 항암제(독소루비신, Doxorubicin : 세포 내 미토콘드리아(Mitochondria) 유래의 단백질로서, 세포 자멸사를 유도하는 신호 경로에 관여한다.
Doxorubicin)를 결합시켜 새로운 약물을 만들었다. 이 약물은 생체 내에서는 활성화되지 않고 있다가, 암세포를 만나게 되면 암세포에서 과발현되는 효소( 카텝신B : 리소솜(Lysosome)에 존재하는 산성의 단백질가수분해효소중 하나. 암세포에서는 정상 세포에 비해 카텝신 B의 발현이 상대적으로 매우 높은 것으로 알려져 있다.
카텝신B)와 반응한다. 암세포와 반응한 약물은 항암제와 함께 내성억제제를 방출하게 되어 효과적으로 항암제 내성을 극복하는 동시에 암세포를 공격할 수 있다.
그 결과 암세포가 갖고 있는 기본적인 항암제 내성뿐만 아니라, 치료 과정 중 발생하는 후천적 항암제 내성 또한 억제할 수 있어 암의 재발 및 치료 실패가 발생하지 않는 효과적인 화학요법이 가능할 것으로 보인다.
또한, 약물이 암세포와 반응하도록 하는 효소인 카텝신 B는 암세포가 아닌 정상 세포에서는 상대적으로 매우 적은 양이 발현되기 때문에, 정상 세포에서는 나노약물이 비활성 상태로 존재하여 독성이 나타나지 않아 기존 화학요법의 문제점인 부작용을 감소시킬 수 있을 것으로 기대된다.
KIST 김광명 박사는 “본 암세포 특이적 항암제 전구체 나노약물 기술은 기존 화학요법의 치료 실패를 초래하는 항암제 내성을 효과적으로 억제함과 동시에 정상 세포에 대한 독성을 감소시켜 항암제 내성 및 부작용이 발생하지 않는 새로운 항암제로 활용이 가능할 것으로 기대한다.”라고 밝혔다.
본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 재료과학, 바이오소재 분야의 국제학술지 ‘Biomaterials’ (IF:10.317, JCR 분야 상위 2.6%) 최신호에 게재되었다.
* (논문명) Cancer-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant cancer therapy
- (제 1저자) 한국과학기술연구원 심만규 위촉연구원(現, 녹스팜)
- (제 1저자) 한국과학기술연구원 문유정 학생연구원
- (교신저자) 한국과학기술연구원 김광명 책임연구원
<그림설명>
Doxorubicin)를 결합시켜 새로운 약물을 만들었다. 이 약물은 생체 내에서는 활성화되지 않고 있다가, 암세포를 만나게 되면 암세포에서 과발현되는 효소( 카텝신B : 리소솜(Lysosome)에 존재하는 산성의 단백질가수분해효소중 하나. 암세포에서는 정상 세포에 비해 카텝신 B의 발현이 상대적으로 매우 높은 것으로 알려져 있다.
카텝신B)와 반응한다. 암세포와 반응한 약물은 항암제와 함께 내성억제제를 방출하게 되어 효과적으로 항암제 내성을 극복하는 동시에 암세포를 공격할 수 있다.
그 결과 암세포가 갖고 있는 기본적인 항암제 내성뿐만 아니라, 치료 과정 중 발생하는 후천적 항암제 내성 또한 억제할 수 있어 암의 재발 및 치료 실패가 발생하지 않는 효과적인 화학요법이 가능할 것으로 보인다.
또한, 약물이 암세포와 반응하도록 하는 효소인 카텝신 B는 암세포가 아닌 정상 세포에서는 상대적으로 매우 적은 양이 발현되기 때문에, 정상 세포에서는 나노약물이 비활성 상태로 존재하여 독성이 나타나지 않아 기존 화학요법의 문제점인 부작용을 감소시킬 수 있을 것으로 기대된다.
KIST 김광명 박사는 “본 암세포 특이적 항암제 전구체 나노약물 기술은 기존 화학요법의 치료 실패를 초래하는 항암제 내성을 효과적으로 억제함과 동시에 정상 세포에 대한 독성을 감소시켜 항암제 내성 및 부작용이 발생하지 않는 새로운 항암제로 활용이 가능할 것으로 기대한다.”라고 밝혔다.
본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 재료과학, 바이오소재 분야의 국제학술지 ‘Biomaterials’ (IF:10.317, JCR 분야 상위 2.6%) 최신호에 게재되었다.
* (논문명) Cancer-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant cancer therapy
- (제 1저자) 한국과학기술연구원 심만규 위촉연구원(現, 녹스팜)
- (제 1저자) 한국과학기술연구원 문유정 학생연구원
- (교신저자) 한국과학기술연구원 김광명 책임연구원
<그림설명>

[그림 1] 암세포 특이적 항암제 전구체 나노약물 기술의 모식도
암세포 특이적 항암제 전구체 나노약물은 기존의 항암제인 “Doxorubicin”을 항암제 내성 억제가 가능한 펩타이드인 “SMAC”와 카텝신 B 특이적 절단이 가능한 펩타이드인 “FRRG”를 통해 결합하였다. 이 암세포 특이적 항암제 전구체 (SMAC-FRRG-DOX)는 추가적인 고분자 및 약물 담체를 사용하지 않아도 분자 내의 소수성 상호작용에 의해 자체적으로 나노입자를 형성하였으며, 암세포 내에 과발현되는 효소인 카텝신 B에 의해 선택적으로 활성화되어 SMAC과 Doxorubicin을 동시에 방출한다.
암세포 특이적 항암제 전구체 나노약물은 기존의 항암제인 “Doxorubicin”을 항암제 내성 억제가 가능한 펩타이드인 “SMAC”와 카텝신 B 특이적 절단이 가능한 펩타이드인 “FRRG”를 통해 결합하였다. 이 암세포 특이적 항암제 전구체 (SMAC-FRRG-DOX)는 추가적인 고분자 및 약물 담체를 사용하지 않아도 분자 내의 소수성 상호작용에 의해 자체적으로 나노입자를 형성하였으며, 암세포 내에 과발현되는 효소인 카텝신 B에 의해 선택적으로 활성화되어 SMAC과 Doxorubicin을 동시에 방출한다.

[그림 2] 생체발광 영상을 이용한 폐 전이암 동물 모델 내 치료 효능평가 결과
생체발광(Bioluminescence)이 가능한 유방암 세포를 이용하여 폐 전이암 동물 모델을 확보한 뒤, Doxorubicin 투여군, Doxorubicin과 SMAC 병용 투여군 및 암세포 특이적 항암제 전구체 나노약물 투여군의 폐 전이암 성장 속도를 생체발광 영상을 이용하여 추적하였다. 암세포 특이적 항암제 전구체를 이용한 폐 전이암 동물 모델 내 치료 효능이 다른 치료법과 비교하여 암의 성장을 매우 효과적으로 억제하였다.