연구본부소개
-
57
늘리고 바르고..형태의 틀을 깬 리튬이온 이차전지 개발
- 신축성과 접착성, 이온 전달까지 잘 되는 늘어나고 변형되는 배터리 구현 - 모든 부품을 늘어나게 만들어 인쇄하여 옷에 바를수도... 웨어러블 기기 응용 가능 <span class="se-fs- se-ff- " id="SE-74c10938-0cc3-4bd1-a80a-ca0c1ba76d99" \\b098눔고딕",="" nanumgothic,="" sans-serif,="" meiryo;="" white-space:="" pre-wrap;="" margin:="" 0px;="" padding:="" border:="" font-style:="" inherit;="" font-variant:="" font-weight:="" font-stretch:="" font-size:="" 13px;="" line-height:="" vertical-align:="" baseline;="" color:="" rgb(85,="" 85,="" 85);"="">[그림 1] 완전히 신축성 있는 자유형상형 리튬이온배터리의 전극 구조 개략도와 신축성 직물에 인쇄된 팔토시 개략도 국내 연구진이 신체 착용형 기기의 발전에 발맞춰 사용할 수 있도록 말랑말랑하게 변형되고 늘어나는 리튬 배터리를 개발, 옷 표면에 인쇄하여 그 가능성을 시험했다. 한국과학기술연구원(KIST, 원장 윤석진) 소프트융합소재연구센터 손정곤 박사 연구팀은 양극과 음극, 집전체, 전해질, 패키징까지 모두 소재 자체가 신축성을 가지면서도 인쇄가 가능한 리튬 배터리를 개발했다고 밝혔다. 개발한 리튬 배터리는 높은 용량과 함께 자유로운 형태를 가져 변형이 가능하다. 최근 스마트 밴드와 같은 고성능 웨어러블 기기나 몸속에 삽입하는 페이스메이커와 같은 이식형 전자기기, 그리고 실감 메타버스를 위한 말랑말랑한 착용형 디바이스로의 관심이 폭발적으로 커짐에 따라 배터리도 몸의 피부나 장기와 비슷하게 말랑말랑하고 늘어나는 형태로 만들어질 필요성이 크게 높아지고 있다. 기존의 배터리는 단단한 무기물 형태의 전극 소재가 부피 대부분을 차지하고 있어 늘어나게 하기 어려웠다. 또한, 전하를 뽑아 전달하는 집전체와 분리막 등 다른 구성 요소들도 늘어나야 하는 데다 액체 형태의 전해질이 새는 문제도 해결해야 했다. <span class="se-fs- se-ff- " id="SE-5eb54a34-320e-4ede-93be-947c6c2746db" \\b098눔고딕",="" nanumgothic,="" sans-serif,="" meiryo;="" vertical-align:="" baseline;="" color:="" rgb(85,="" 85,="" 85);="" text-indent:="" 0px;="" white-space:="" pre-wrap;="" background-color:="" rgb(255,="" 255,="" 255);"="" style="margin: 0px; padding: 0px; border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 13px; line-height: inherit;">[그림 2] 신축성 유기젤(PCOG)/활물질 양/음극, 신축성 집전체(SCC), 신축성 유기젤 분리막 및 신축성 직물에 인쇄된 완전히 신축성 있는 리튬이온배터리의 조립된 셀의 개략도. 유기젤/활물질 복합 전극은 물리적으로 가교된 결정 영역, 팽창된 비정질 연질 영역 및 활물질을 잘 잡아주는 기능화된 부분을 포함하여 안정적인 신축성과 높은 접착력, 높은 이온전도도를 제공함. 1D 탄소나노튜브와 다중 크기 금속 미세입자 나노복합 집전체는 구조적으로 늘어난 상태에서도 전자 전달 경로를 유지함. <span class="se-fs- se-ff- " \\b098눔고딕",="" nanumgothic,="" sans-serif,="" meiryo;="" vertical-align:="" baseline;="" color:="" rgb(85,="" 85,="" 85);="" text-indent:="" 0px;="" white-space:="" pre-wrap;="" background-color:="" rgb(255,="" 255,="" 255);"="" style="margin: 0px; padding: 0px; border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 13px; line-height: inherit;"> 연구진은 배터리에 신축성을 부여하기 위해 타 연구처럼 고무와 같은 에너지 저장에 불필요한 소재를 첨가하지 않았다. 기존의 바인더를 기반으로 말랑말랑하고 늘어날 수 있는 유기젤 소재를 새롭게 개발하여 적용하였는데, 이 소재는 전극 활물질을 강하게 잡아주고 이온 전달이 용이하다. 또한, 신축성과 기체 차단성이 모두 뛰어난 소재를 패키징 소재와 전자를 전달하는 집전체 소재로 사용하여 전도성 잉크 형태로 제작, 전해질을 흡수하여 부푸는 일 없이 고전압과 다양한 변형 상태에서도 안정적으로 작동하도록 했다. <span class="se-fs- se-ff- " id="SE-abfd298c-ca66-4ab4-8a3e-096d77320869" \\b098눔고딕",="" nanumgothic,="" sans-serif,="" meiryo;="" white-space:="" pre-wrap;="" margin:="" 0px;="" padding:="" border:="" font-style:="" inherit;="" font-variant:="" font-weight:="" font-stretch:="" font-size:="" 13px;="" line-height:="" vertical-align:="" baseline;="" color:="" rgb(85,="" 85,="" 85);"="">[그림 3] (a) 제작된 신축성 배터리의 개략도. (b) 늘이기 전(검은색), 50% 늘인(빨간색), 다시 돌아온 (파란색) 상태에서의 스트레처블 배터리 충방전 곡선. <p class="se-text-paragraph se-text-paragraph-align- " id="SE-3a7caa61-8999-416e-b609-62c8d18907e5" \\b098눔고딕",="" nanumgothic,="" sans-serif,="" meiryo;="" vertical-align:="" baseline;="" word-break:="" break-word;="" overflow-wrap:="" white-space:="" pre-wrap;="" text-align:="" center;="" color:="" rgb(60,="" 63,="" 69);="" background-color:="" rgb(255,="" 255,="" 255);"="" style="border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 0px; line-height: 1.5;">(c) 0% ~ 50% 범위의 변형률에서 스트레처블 배터리 방전 용량 변화. (d) 0%에서 50% 변형률의 반복적인 스트레칭/해제에서 용량 변화. (e) 발광 다이오드 전구를 켜는 다양한 변형 상태의 신축성 배터리 사진. 또한, 이 배터리는 기존의 리튬이온 배터리 소재를 그대로 쓸 수 있어 3.3 V 이상의 구동 전압하에서 판매중인 단단한 리튬이온 배터리와 유사한 수준의 우수한 에너지 저장 밀도 (~2.8 mWh/cm2)을 보였다. 또한 배터리를 구성하는 모든 부분이 50% 이상의 높은 신축성 및 1,000번 이상의 반복적인 잡아당김에서도 성능을 유지하는 기계적 안정성을 확보하면서도, 공기 중에서의 장기 안정성까지 확보한 신축성 리튬 이온 배터리를 개발하였다. <span class="se-fs- se-ff- " id="SE-fe94e9af-2d24-4753-9642-1001f5614d14" \\b098눔고딕",="" nanumgothic,="" sans-serif,="" meiryo;="" white-space:="" pre-wrap;="" margin:="" 0px;="" padding:="" border:="" font-style:="" inherit;="" font-variant:="" font-weight:="" font-stretch:="" font-size:="" 13px;="" line-height:="" vertical-align:="" baseline;="" color:="" rgb(85,="" 85,="" 85);"="">[그림 4] 제작한 전극 소재와 집전체 소재를 스판덱스 재질의 팔토시의 양면에 직접 인쇄하고 그 위에 신축 패키징을 진행하여, 신축성 고전압 유기계 배터리를 옷 위에 직접 인쇄했다. 또한, 연구진은 제작한 전극 소재와 집전체 소재를 스판덱스 재질의 팔토시의 양면에 직접 인쇄하고 그 위에 신축 패키징을 진행하여, 신축성 고전압 유기계 배터리를 옷 위에 직접 인쇄하였다. 해당 배터리를 사용하여 입고 벗고 잡아당길 때에도 스마트 워치를 계속 구동할 수 있었다. <span class="se-fs- se-ff- " id="SE-5293cd06-5ac4-4e82-8f92-f4a71ae858db" \\b098눔고딕",="" nanumgothic,="" sans-serif,="" meiryo;="" white-space:="" pre-wrap;="" margin:="" 0px;="" padding:="" border:="" font-style:="" inherit;="" font-variant:="" font-weight:="" font-stretch:="" font-size:="" 13px;="" line-height:="" vertical-align:="" baseline;="" color:="" rgb(85,="" 85,="" 85);"="">[그림 5] (a) 인쇄 가능한 신축성 전극, 신축성 집전체(SCC), 신축성 패키징, 신축성 직물를 신축성 분리막으로 사용한, 신축성 직물에 인쇄된 신축성 배터리의 개략도. (b) 신축성 옷에 인쇄된 스트레처블 배터리의 주사형 전자현미경 단면 이미지. (c) 변형률에 따른 용량 변화. <p class="se-text-paragraph se-text-paragraph-align- " id="SE-655e1444-d4b2-4f6b-9258-1eef6d8293fd" \\b098눔고딕",="" nanumgothic,="" sans-serif,="" meiryo;="" vertical-align:="" baseline;="" word-break:="" break-word;="" overflow-wrap:="" white-space:="" pre-wrap;="" text-align:="" center;="" color:="" rgb(60,="" 63,="" 69);="" background-color:="" rgb(255,="" 255,="" 255);"="" style="border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 0px; line-height: 1.5;">(d) 팔꿈치의 다양한 각도 변형에 따른 스트레치 팔토시에 인쇄된 신축성 배터리의 전압 및 전류 변화. (e) 신축성 팔토시 위에 인쇄된 신축성 리튬 이온 배터리와, 이와 연결되어 팔토시의 착용 및 스트레칭 전후에도 지속적으로 작동하는 스마트 시계의 사진 이미지. KIST 손정곤 박사는 “높은 에너지 밀도 및 기계적 변형에 대한 신축 안정성 이외에도, 구조적 자유도와 기존의 리튬 이온 배터리의 소재를 사용할 수 있는 재료적 자유도를 동시에 확보한 신축성 리튬 이온 배터리 기술을 개발했다.”라며, “이번에 개발한 신축성을 가지는 에너지 저장 시스템은 웨어러블이나 신체 부착형 소자 개발에 다양하게 응용될 수 있을 것으로 기대한다.”고 연구의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙)지원으로 KIST 주요사업과 K-lab 프로그램, 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구내용은 나노기술 분야 국제적 과학 전문지인 ‘ACS Nano’ (IF:15.881)에 1월 21일(금)자로 온라인 게재되었다. 1) 집전체 : 활물질에서 전기화학 반응이 일어나도록 전자를 외부에서 전달하거나 또는 활물질에서 전자를 받아 외부로 흘려 보내는 통로 역할을 한다. 2) 바인더 : 바인더는 전극 소재를 복합체 형태로 제작할 때 같이 넣어주는 고분자 소재로, 전극을 코팅하여 제작하였을 때 전극을 기계적으로 안정화하는 역할을 한다. * (논문명) Intrinsically Stretchable and Printable Lithium-Ion Battery for Free-Form Configuration - (제 1저자) 한국과학기술연구원 홍수영 박사후연구원 (現, 삼성디스플레이) - (교신저자) 한국과학기술연구원 손정곤 책임연구원
- 56
- 작성자소프트융합소재연구센터 손정곤 박사팀
- 작성일2022.02.10
- 조회수9655
-
55
유리 대신 유연한 자가치유 소재로 납 유출 방지
- 자가치유 고분자 활용 레고처럼 쌓는 유연한 페로브스카이트 태양전지 실마리 (그림1) 자가치유 고분자 이용 페로브스카이트 광전소자 봉지(encapsulation) 공정 □ 차세대 태양전지 소재로 페로브스카이트가 주목받는 가운데 페로브스카이트를 구성하는 납 성분이 물에 녹아 외부로 유출될 우려를 막기 위한 소재 기술이 소개되었다. ○ 기존 딱딱한 유리 대신 가볍고 유연한 자가치유 소재로 열과 수분에 취약한 페로브스카이트에서 납 성분이 유출되는 것을 방지하려는 전략이다. 구부리거나 늘이는 것은 물론 외부 충격으로 소재가 찢어져도 자가치유를 통해 납 유출을 차단할 수 있도록 했다. (그림2) 자가치유 고분자로 감싼 페로브스카이트 소자의 납 유출 차단 효과 □ 한국연구재단(이사장 이광복)은 김인수 박사 연구팀(한국과학기술연구원)과 손동희 교수(성균관대학교) 등이 납 유출을 방지하기 위한 신축/유연 페로브스카이트 태양전지 제작기술을 개발했다고 밝혔다. ○ 과학기술정보통신부와 한국연구재단이 추진하는 우수신진연구사업 및 세종펠로우쉽사업 등의 지원으로 수행된 이번 연구의 성과는 나노소재 분야 국제학술지 ‘에이씨에스 나노(ACS Nano)’에 11월 29일 게재되었다. □ 페로브스카이트 소재는 열과 수분에 취약하여 외부환경과의 차단을 위해 유리 기반의 봉지(encapsulation) 공정을 거치고 있다. ○ 하지만 봉지용 유리는 얇아 외부 충격에 의해 손상될 우려가 높을 뿐만 아니라 딱딱한 유리를 활용하기에 신축성이 필요한 웨어러블 디바이스 등에 응용되기에 한계가 있었다. □ 이에 연구팀은 찢어지는 등의 손상시 수소결합을 통해 손상된 부분을 회복하는 PDMS 기반의 자가치유 고분자를 봉지막과 전극소재로 적용하여 별도 추가 공정 없이 납 화합물 유출 방지효과와 신축성을 모두 얻는데 성공했다. ○ 페로브스카이트 기반 광전소자의 상용화를 앞당기는 데 기여하는 한편 응용분야 확대를 위한 디딤돌이 될 것으로 기대된다. □ 실제 자가치유 고분자 소재로 봉지된 페로브스카이트 기반 태양전지를 우박으로 인한 충격을 모사하여 인위적으로 손상시킨 뒤 물에 넣고 흘러나온 납 화합물의 양을 확인하였다. ○ 납 화합물의 유출량은 0.6 ppb 수준으로 나타나 5.6 ppm 수준의 기존 유리 방식 봉지기술 대비 ~5,000배 가량 높은 납 유출 차단 효과를 확인하였다. □ 한편 스스로 접합이 가능한 자가치유 고분자 소재의 특성을 이용,납땜 공정 없이 사용자가 원하는 소자를 마치 블록을 쌓듯 포개는 방식으로 원하는 광전소자 모듈을 구현할 수 있어 개인용 휴대기기, 신체 부착형 기기 등의 응용 측면에서 더욱 의미가 있다. □ 연구팀은 물을 잘 투과시키고 열에 취약한 자가치유 고분자의 내구성을 개선, 고온 다습한 환경에서도 페로브스카이트 기반 광전소자의 내구성을 확보하기 위한 후속연구를 진행하고 있다.
- 54
- 작성자첨단소재연구본부 김인수 박사팀
- 작성일2021.12.27
- 조회수12573
-
53
내구성을 획기적으로 향상시킨 초미세먼지 배출저감용 저온탈질촉매기술
- 기존 상용촉매 대비 내구성 7배↑ - 상용화를 위한 산업계 현장 실증연구 수행(금호석유화학-열병합발전소) <span class="se-fs- se-ff- " id="SE-92ee7dde-9a46-457a-8aba-8ab49a00cecd" style="margin: 0px; padding: 0px; border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; line-height: inherit;" \\b098눔고딕",="" nanumgothic,="" sans-serif,="" meiryo;="" vertical-align:="" baseline;="" color:="" rgb(85,="" 85,="" 85);="" white-space:="" pre-wrap;="" background-color:="" rgb(255,="" 255,="" 255);"=""> 최근 산업계 연소시설에서 배연가스 처리 시 에너지효율을 높이기 위해 저온에서 질소산화물을 처리 가능한 탈질촉매의 수요가 커지고 있다. 질소산화물은 화석연료 연소과정에서 배출되며 대기 중 화학반응에 의해 입자로 변환되어 초미세먼지 발생의 주 원인물질로 알려져 있다. 그러나 기존 촉매는 약 250℃ 이하 저온에서 배연가스에 포함된 황 성분이 환원제로 사용되는 암모니아와 반응하여 황산암모늄염을 형성, 촉매 상 활성물질의 기능을 피독시키므로 내구성이 저하되는 문제가 있다. 이를 개선하기 위해 촉매 표면에 흡착된 황산화물의 산화력을 약화시키거나 황 화합물을 일시적으로 저장하여 피독현상을 지연하는 연구가 있었으나, 궁극적으로 황에 대한 내구성을 증대시키는 원천적인 해결방안은 아니었다. 한국과학기술연구원(KIST, 원장 윤석진) 극한소재연구센터 권동욱·하헌필 박사 연구팀은 질소산화물을 인체에 무해한 물 및 질소로 전환하는 선택적 촉매환원법(SCR)에 적용되는 신개념 고내구성 저온용 촉매 소재를 개발했다고 밝혔다. 연구팀은 바나듐계 촉매에 몰리브덴 및 안티모니 산화물을 첨가하여 촉매계면 엔지니어링 기법으로 활성성분과 이산화황 사이의 흡착반응을 억제시켜 피독물질인 황산암모늄염의 생성을 현저히 줄이는 복합바나듐산화물계 촉매소재 개발에 성공했다. 개발된 복합바나듐산화물계 촉매소재는 220℃의 저온에서 이산화황에 노출되었을 때 초기성능 대비 85%에 도달하는 시간이 기존촉매 대비 약 7배 이상 지연되어 촉매 수명이 월등히 길다. 또한 저온 활성이 높아 연소 시스템 전단에서의 질소산화물 처리 부담을 대폭 낮추어 에너지효율 면에서도 유리하다. 향후 산업현장에 적용할 경우 대기오염물질 처리비용 절감이 가능할 것으로 보인다. 본 연구는 실험실 규모의 반응기 실험을 끝내고, 지난 8월 금호석유화학 여수제2에너지 열병합발전소에 파일럿 실증 설비를 설치, 현장 배연가스를 적용하여 실증 테스트 중이다. KIST-금호석유화학 팀은 약 10개월간의 실증 설비 구동변수를 평가·검증하여 최적 운영방안을 도출한 후 2022년까지 플랜트 설비 구축을 목표로 하고 있다. 금호석유화학 고영훈 중앙연구소장(부사장)은 “금호석유화학 ESG경영에 있어 당사의 열병합발전소 배출가스 유해물질 중 대부분을 차지하는 질소산화물 저감은 매우 중요한 이슈”라며, “선진국 수준 이상의 선제적 저감기술 확보를 위한 발전소 pilot 장비를 설치하여 실증연구를 성공적으로 수행 중에 있으며, 향후 본 기술에 대한 scale-up test를 거쳐 고내구성 저온용 SCR 촉매 상업기술로 발전시키고자 한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 동북아-지역 연계 초미세먼지 대응 기술개발사업, KIST 주요사업으로 수행되었으며, 연구결과는 환경 및 에너지 분야 국제저널인 ‘Chemical Engineering Journal’(IF: 13.273, JCR 분야 상위 2.448%)에 게재됐다. * (논문명) New insight into the role of Mo-Sb addition towards VMoSbTi catalysts with enhanced activity for selective catalytic reduction with NH3 - (제 1저자, 교신저자) 한국과학기술연구원 권동욱 선임연구원 - (교신저자) 한국과학기술연구원 하헌필 책임연구원 그림 설명 고내황특성 저온 탈질촉매의 상승작용 촉매 반응 특성 저온 VMoSbTi 촉매의 향상된 내황피독 특성 현장 배기가스 주입을 통한 SCR pilot 탈질 반응기 금호석유화학 여수제2에너지 열병합발전소 전경(좌) 현장 실증연구를 위한 pilot 설비 외부(우)
- 52
- 작성자극한소재연구센터 권동욱·하헌필 박사팀
- 작성일2021.11.17
- 조회수9600
-
51
투명하고 휘어지는 초박막 메모리 소자 개발
- 육방정 질화붕소(h-BN) 사이에 0차원 양자점을 단일층으로 형성 - 80% 이상 투명성을 유지하면서 휘어졌을 때도 메모리 기능 유지 이차원 나노소재 기반 플렉서블 메모리 소자는 데이터 저장, 처리, 통신에 중요한 역할을 하기 때문에 차세대 웨어러블 시장에서 필수적인 요소 중 하나이다. 수 나노미터(nm)의 2차원 나노소재로 초박막 메모리 소자를 구현할 경우, 기존에 비해 메모리 집적도를 크게 높일 수 있어 2차원 나노소재를 기반으로 플렉서블한 저항변화형 메모리 등이 개발되어왔다. 그러나 기존의 2차원 나노소재를 활용한 메모리들은 캐리어를 가두어 두는 특성이 약하여 메모리로서의 한계를 가지고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 기능성복합소재연구센터 손동익 박사 연구팀이 절연 특성을 가지는 2차원 나노소재인 육방정 질화붕소(hexagonal Boron Nitride, h-BN) 초박막 구조 사이에 0차원 양자점을 단일층으로 형성시킴으로써 이종 저차원 초박막 나노구조체 기반 투명하고 휘어짐이 가능한 메모리 소자를 개발했다고 밝혔다. 연구팀은 양자 제한 특성이 우수한 0차원 양자점을 활성층으로 도입, 2차원 나노소재에서 캐리어를 제어함으로써 차세대 메모리 후보가 될 수 있는 소자를 구현하였다. 이를 기반으로 샌드위치 구조를 가지는 2차원 육방정 질화붕소(hBN) 나노소재 사이에 0차원 양자점을 수직 적층 복합구조체로 형성하여 투명하고 휘어짐이 가능한 소자로 제작하였다. 개발된 소자는 80% 이상 투명성을 유지하면서, 휘어졌을 때도 메모리 기능을 유지하였다. 손동익 박사는 “전도성을 가지는 그래핀에 비해, 절연성 특성을 가지는 육방정 질화붕소(hBN) 위에 양자점 적층 제어기술을 제시함으로써 초박막 나노복합 구조체 연구에 기초를 확립하였고, 차세대 메모리 소자의 제작 및 구동 원리를 밝혔다는 데 의의가 있다.”라고 말하며 “향후 이종 저차원 나노물질 복합화의 적층 제어기술을 체계화하고 응용범위를 확대할 예정이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원으로 KIST 주요사업, 한국연구재단 중견연구사업 및 나노원천기술개발사업으로 수행되었으며, 연구결과는 재료과학 및 복합소재 분야 국제저널인 ‘Composite Part B: Engineering’(IF: 9.078, JCR 분야 상위 0.549%) 최신 호에 게재되었다. * (논문명) Memory effect of vertically stacked hBN/QDs/hBN structures based on quantum-dot monolayers sandwiched between hexagonal boron nitride layer - (제 1저자) 한국과학기술연구원 심재호 박사후연구원 - (교신저자) 한국과학기술연구원 손동익 책임연구원 그림 설명 이종 저차원 나노복합구조체 기반 휘어지고 투명한 초박막 메모리 소자 제조방법 이종 저차원 나노복합구조체 기반 초박막 구조체 형성 이미지 이종 저차원 나노복합구조체 기반 초박막 메모리 소자 특성 자료
- 50
- 작성자기능성복합소재연구센터 심재호·손동익 박사팀
- 작성일2021.10.28
- 조회수9127
-
49
그래핀 양자점 제조 단일공정 플랫폼 개발
- 간편한 화학 공정을 통해 그래핀 양자점의 헤테로 원자 결합구조를 정밀하게 제어 - 非금속계 촉매소재를 포함한 다양한 응용 분야에 적용 및 상업화의 촉진제 역할 기대 탄소 원자가 서로 육각형 형태로 연결된 벌집 모양의 평면 구조의 소재인 그래핀을 수 나노미터(nm) 크기로 줄일 경우, 형광 및 반도체 특성을 보이는 그래핀 양자점을 구현할 수 있다. 그래핀 양자점은 단일 소재만으로도 디스플레이, 태양전지, 이차전지, 바이오 이미징, 조명, 광촉매, 센서 등 다양한 분야에서 활용할 수 있으며, 최근 탄소 구조체 내에 질소, 황, 인 등 헤테로 원자의 함량을 조절함으로써 소재의 광·전기적 특성 및 촉매 특성을 향상시킬 수 있다는 연구 결과가 잇달아 발표됨으로써 관심이 증가하고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 기능성복합소재연구센터 문병준 박사, 배수강 박사 연구팀이 간단한 화학 반응 제어를 통해 0차원 탄소나노소재인 그래핀 양자점의 단일 헤테로 원자의 결합구조를 정밀하게 제어할 수 있는 기술을 개발하였고, 이와 관련한 화학반응 메커니즘을 규명하였다고 밝혔다. 기존 연구에서는 그래핀 양자점에 포함된 헤테로 원자를 조절하기 위해 양자점을 합성한 후, 헤테로 원자가 포함된 첨가제를 추가하여 후처리 공정을 진행하거나, 그래핀 양자점 합성 시 주재료인 저분자 유기 전구체와 헤테로 원자가 함께 포함된 첨가제를 추가하여 합성을 진행하였다. 그러나 이러한 방식들은 합성된 그래핀 양자점의 결정성이 저하되거나 추가적인 정제 공정을 거치면서 반응 수율이 떨어진다는 단점을 가지고 있다. 또한 생산자가 원하는 화학 조성을 가지는 양자점을 얻기 위해서는 첨가제의 함량을 포함한 다양한 합성 조건들의 최적화 작업을 진행해야 하므로 공정시간 및 제조단가의 상승이 불가피하다. 그래핀 양자점을 합성하기 위해 산성용액이나 산성을 띠는 전구체를 사용하기 때문에 중화와 정제 과정을 거쳐야 했던 기존 공정과 달리, 이번에 개발한 공정은 전구체가 약알칼리성을 띠고 있으며 합성 이후에는 중성을 띠므로 후처리 공정 없이 바로 활용할 수 있는 장점이 있다. 연구팀은 또한 계산화학 기반 컴퓨터 모델링을 통해 그래핀 양자점 합성 공정에 사용되는 용매가 헤테로 원자(질소)를 함유하고 있는 유기 전구체인 푸말로니트릴(fumaronitrile) 소재의 산화 정도에 영향을 미치고, 이는 궁극적으로 용매의 종류에 따라 최종 산물인 그래핀 양자점의 화학 조성비가 달라지는 결과로 이어지게 됨을 밝혔다. 또한, 합성 공정에 사용되는 용매의 종류에 따른 유기 전구체의 이론적 산화 에너지값을 통해 그래핀 양자점의 대략적인 화학조성 성분비를 예측할 수 있음을 실험적으로 교차 증명하였다. KIST 배수강 박사는 “이번 성과는 유기 전구체인 푸말로니트릴 이외에 다른 첨가제를 활용하지 않는 단일 합성 공정으로도 이종원소의 화학 조성을 선택적으로 조절하여 그래핀 양자점을 합성할 수 있는 새로운 형태의 플랫폼 기술”이며, “그래핀 양자점 소재를 추가적인 후처리 및 정제 공정 없이 간편하게 대량 제조할 수 있어 공정시간이 단축되고 경제성을 크게 높일 수 있다”고 의의를 밝혔다. 이와 더불어, 전라북도 지역전략사업인 탄소산업의 육성과 연계하여 나노탄소소재 개발과 더불어 중소/중견 기업 지원과 인력육성의 견인차 역할을 할 것이라 기대하고 있다. 본 연구는 과학기술정보통신부(장관 임혜숙) KIST 주요사업, 국가과학기술연구회(NST) 미래선도형 융합연구단 사업 및 산업통상자원부(장관 문승욱) 소재부품기술개발사업의 지원으로 수행되었으며, 연구결과는 국제학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ (IF:14.919, JCR(%): 4.795%)에 10월 7일자로 온라인 게재되었다. * (논문명) : Structure-controllable growth of nitrogenated graphene quantum dots via solvent catalysis for selective C-N bond activation - (제 1저자) 한국과학기술연구원 문병준 연구원 - (교신저자) 한국과학기술연구원 배수강 선임연구원 그림 설명 그래핀 양자점의 화학적 조성 차이를 보여주는 XPS 측정 결과이다. 제조할 때 사용되는 용매의 종류에 따라 유기전구체의 니트릴 그룹의 산화 정도에 차이를 보이게 되고, 이는 궁극적으로 최종 산물인 그래핀 양자점의 화학 조성비에 영향을 끼치게 되었음을 확인할 수 있다. 그래핀 양자점의 광학적 특성을 보여주는 결과이다. 두 종류 양자점의 화학적 조성 차이로 인하여 에너지 구조가 달라지고, 그로 인한 소재의 발광 특성 및 전자수명의 변화를 확인할 수 있다. 합성된 그래핀 양자점의 표면을 관찰한 TEM 및 SAED 패턴 이미지이다. 평균 나노소재 크기는 4 nm 정도이며, 내부 격자 (1120) 간격은 0.24 nm로 확인된다.
- 48
- 작성자기능성복합소재연구센터 문병준·배수강 박사팀
- 작성일2021.10.14
- 조회수10059
-
47
5,000년 역사의 전통 도료 옻칠, 과학과 만나 새로운 활용 모색
- 'CROSS: 과학자와 예술가의 옻칠탐험기' 전사 9.29.(수)부터 인사동 KCDF에서 열려 - 옻칠의 기준이 될 성능지표와 옻칠 신소재 발표 2019년 밀양 신안 유적에서 발굴된 5,000년 전 신석기 시대 토기에서 옻의 주성분인 우루시올이 발견되었다. 최근 옻칠은 아름다운 색깔과 내구성으로 고급 자동차 마감재, 우주선 부품의 코팅제로 사용되는 등 친환경 재료로 주목받고 있다. 옻칠의 개발은 첨단산업 기술로의 확장 가능성이 크고 우리 전통문화를 활성화할 수 있다는 장점이 있지만, 작업 조건이 까다롭고 색채가 다양하지 못하여 응용이 한정적이었다. 또한 옻칠 특성에 대한 과학적 지식이 부족하고 특성 평가 기준이 없어 제품 신뢰성을 확보하기 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진)은 광주과학기술원(GIST), 숙명여자대학교, 지천옻칠아트센터와 공동으로 2021년 9월 29일(수)~10월 4일(월) 6일간 인사동 KCDF 갤러리에서 ‘CROSS : 과학자와 예술가의 옻칠탐험기’ 전시회를 개최한다고 밝혔다. 이번 전시회는 옻칠의 역사를 소개하거나 작품을 선보이는 것을 넘어 과학적 평가 방법에 기반한 옻칠 소재 특성을 소개하고, 과학자와 예술가가 협업하여 개발한 기능성 옻칠 소재를 처음으로 공개하는 자리다. 연구진은 산지, 우루시올의 양, 정제, 경화, 도장, 발색에 따른 옻칠의 성능을 과학적으로 규명하였다. 일반적으로 옻칠을 구성하는 주요 성분인 우루시올의 함량이 높을수록 좋은 옻칠이라고 알고 있지만, 우루시올 함량과 실제 옻칠 막 특성의 상관관계에 대해서는 알려지지 않았다. 연구진은 옻칠을 구성하는 주요 성분인 카테콜 지방 분자의 종류와 함량에 따라 건조시간, 투과도, 접착력, 경도 등 옻칠 막의 물리적 특성이 달라지는 것을 밝혔다. 이러한 성과는 생산 수종 및 소재별로 옻칠이 다양한 물리적 특성을 보일 수 있으며, 사용자들이 필요에 따라 용도에 맞는 옻칠을 선택하여 사용할 수 있다는 새로운 가능성을 제시한다. 전시의 또 다른 하이라이트는 기능성 옻칠 소재를 사용한 공예 회화 작품이다. 일반적으로 옻칠이라고 하면 암갈색 빛이 도는 나무 공예품을 떠올린다. 이번 전시에서는 선을 그으면 전선이 되는 옻칠, 점토처럼 주물러 기물을 만드는 옻칠, 빛을 받으면 빠르게 굳고, 굳어도 유연하게 구부러지는 옻칠, 특정 색의 빛 파장을 반사하는 옻칠 등 새로 개발된 기능성 옻칠 소재가 소개된다. 지천 김은경 작가(지천옻칠아트센터 대표)가 기능성 옻칠을 사용한 공예와 회화 40여 점으로 다양한 활용 사례를 보여준다. 기능성 옻칠 소재는 온도와 습도에 민감한 옻칠을 편리하게 사용하고 다양한 색과 모양으로 만드는 등 예술적 표현을 확장하기 위해 개발되었으나, 이 외에도 친환경 방수제, 방부제, 방충제, 방염 및 절연제 등 각종 산업 분야에서도 폭넓은 활용이 기대된다. KIST는 조상들의 삶의 지혜와 얼이 서린 전통 기술의 과학적 원리를 새롭게 규명해 그 가치를 재발견하고 고부가가치 전통문화사업의 발전은 물론 현대과학기술이 접목된 새로운 문화적 전통의 창조를 위해 전통문화 과학기술연구에 힘쓰고 있다. 연구팀(KIST 이상수 박사·임정아 박사, 숙명여자대학교 임호선 교수, GIST 이은지 교수, 지천옻칠아트센터 김은경 대표)을 이끈 이상수 박사는 "옻칠에 대한 탐구는 이제 시작"이라며 "이번 전시에서 옻칠이 지닌 전통적 문화콘텐츠로서의 위상을 다시 확인하고 옻칠의 공예/회화로의 다양한 활용을 제안할 수 있다”며, “옻칠은 친환경 고분자 소재의 관점에서 다양한 소재 기술과의 융합을 통해 옻칠 소재의 첨단 과학기술 분야로 확장 또한 기대할 수 있다”고 밝혔다. ‘CROSS, 과학자와 예술가의 옻칠탐험기’는 인사동 KCDF 갤러리에서 9.29일(수)부터 6일간 전시를 마친 후, 경북 상주의 지천옻칠아트센터 갤러리에서 10월 6일(수)부터 연말까지 전시를 이어갈 예정이다. 코로나19의 사회적 거리두기 방역 지침에 따라 별도의 오프닝 행사 없이, 시간당 한정된 관람객 수만 입장이 가능하다. 이번 연구는 문화체육관광부(장관 황희)와 한국콘텐츠진흥원(원장 김영준)의 문화기술 연구개발사업으로 수행되었다.
- 46
- 작성자소프트융합소재연구센터 이상수·광전소재연구단 임정아 박사팀
- 작성일2021.09.27
- 조회수16329
-
45
소각되는 폐 난방용 파이프, 업사이클링 제품으로 재탄생
- 연속식 이축 압출 공정에 친환경 초(아)임계 기술을 접목 - 폐플라스틱 재활용 및 이산화탄소 저감으로 2050 탄소중립에 기여 난방용 파이프(가교 폴리에틸렌 파이프)는 내열성 및 내구성이 높아 꾸준히 수요가 증가하고 있다. 이에 따라 난방용 파이프를 제조할 때 발생하는 약 10%의 불량품, 스크랩(부산물)과 사용 후 폐기물도 매년 증가하는 추세에 있으나, 열경화성 수지이기 때문에 재가공이 어려워 대부분을 매립 혹은 소각 한다. 한국과학기술연구원(KIST, 원장 윤석진) 물질구조제어연구센터 홍순만 박사팀은 산·학·연 협력 연구를 통해 친환경 초(아)임계 유체 공정을 적용한 폐 난방용 파이프의 재활용 기술 개발에 성공하였다고 밝혔다. 연구팀은 연속식 이축 압출 공정에 친환경 초(아)임계 기술을 접목, 선택적 탈 가교 반응을 통해 재생 폴리에틸렌 생산에 성공하였다. 초(아)임계 유체는 기체의 확산성과 액체의 용해성을 동시에 가지므로 난방용 파이프 소재인 가교 폴리에틸렌 사이의 결합에 침투하여 빠른 탈 가교 반응을 유도하고, 높은 열과 압력을 동시에 적용하여 가교 폴리에틸렌의 분자 사슬을 선택적으로 절단할 수 있기 때문에 폴리에틸렌 고유의 물리·화학적 특성은 보전한다. 이렇게 생산한 재생 폴리에틸렌은 신재 폴리에틸렌과 유사한 분자량과 물성(분자량 Mw 180,000 이상)을 가져 건물 경량화 및 층간소음 방지용 슬라브 볼과 전선 보호용 CD(Combine Duct)관 제품으로 업사이클링할 수 있다. 또한, 폐 난방용 파이프를 수거해 활용함으로써 원가 절감이 가능하다. 이번 연구성과로 소각처리되던 폐 난방용 파이프를 재활용함으로써 이산화탄소 저감이 가능할 것으로 기대되며, 이를 통해 2050년 탄소중립 달성에 이바지할 수 있을 것으로 전망된다. 또한 초(아)임계 유체를 이용한 공정은 인체 및 대기에 해로운 VOC를 유발하는 유기용매 대신 물이나 알코올과 같은 저독성 용매를 사용하며, 사용 후 추가적인 분리 공정이 없이 용매를 회수할 수 있어 친환경적이기도 하다. KIST 홍순만 박사는 “본 기술은 원천기술로서 전량 폐기되고 있는 열경화성 플라스틱의 재활용은 물론, 재생 플라스틱의 급격한 물성 저하를 극복할 수 있는 원료(단량체) 재생기술로 확장 적용이 가능하다”라고 전망했다. 또한 “전지구적 극복과제인 플라스틱 쓰레기 처리 및 미세플라스틱 오염 문제를 해결하는 방안을 제공할 수 있기를 바란다”라고 이번 개발의 의의를 밝혔다. 기술개발에 참여한 ㈜동명 배성규 품질개발실장은 “향후 스케일업 및 제품 양산화 공정을 거쳐 사업화를 추진할 예정”이라고 밝혔다. 본 연구는 환경부(장관 한정애)의 지원을 받아 ㈜동명(대표 김창완), 세명대학교 조항규 교수, ㈜그린폴(대표:김명기)과의 산·학·연 협력 연구를 통해 한국환경산업기술원 생활폐기물 재활용 기술개발 사업으로 수행되었다. 그림 설명 [그림 1] 초(아)임계 유체를 사용한 탈 가교 PEX(가교 폴리에틸렌) 생산 공정 및 펠렛, 성형품 [그림 2] 가교 구조(왼쪽)와 탈 가교 구조(오른쪽) [그림 3] 초임계 유체의 임계점(왼쪽)과 특성(오른쪽) [그림 4] 수거된 폐 PEX(가교 폴리에틸렌) 파이프
- 44
- 작성자물질구조제어연구센터 홍순만 박사팀
- 작성일2021.08.12
- 조회수34870
-
43
수소전기차의 심장, 연료전지 부식 문제 극복한다
- 도장 찍듯이 간단한 초미세 인쇄 기술 이용, 3차원 나노구조 전극 개발 - 촉매 내구성 증대 및 백금 사용량 저감을 통한 수소연료전지 경제성 확보 수소를 연료로 이용해 전기에너지를 생성하는 친환경 발전장치인 수소연료전지는 수소전기차에서는 엔진과 같은 역할을 한다. 그러나 연료전지의 핵심 구성요소인 백금 촉매를 지지하기 위해 사용되는 탄소 입자가 쉽게 부식되어 연료전지의 수명이 길지 않다는 문제가 있다. 부식된 연료전지는 새로이 교체가 필요한데, 수백~수천만 원을 호가하는 연료전지 교체 비용은 차주로서는 부담스러울 수 밖에 없다. 국내 연구진이 이러한 문제를 해결해 수소연료전지의 수명을 획기적으로 늘릴 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구센터 김진영 박사와 물질구조제어연구센터 김종민 박사가 한국과학기술원(KAIST, 총장 이광형) 정연식 교수와의 공동연구를 통해 도장 찍듯이 간단한 20nm급 초미세 인쇄 기술을 활용하여 연료전지 부식 문제의 원인인 탄소를 사용하지 않는 새로운 형태의 백금 나노구조 전극을 개발했다고 밝혔다. 수소연료전지의 촉매로 사용되는 백금은 나노미터 크기일 때 서로 달라붙는 성질이 있어 안정적이지 못해 백금만으로는 촉매 소재로 활용될 수 없다. 이 때문에 현재 상용화된 촉매는 2~5 nm 크기의 백금 나노입자를 탄소 입자 위에 붙여 안정화 시켜 놓은 것이다. 하지만 탄소 입자는 연료전지의 반복 구동 과정에서 부식으로 인해 소실되어 백금을 지탱하지 못하며, 결과적으로 연료전지의 성능이 지속적으로 감소하는 문제를 일으킨다. 또한 전극 두께가 수 마이크로미터로 두껍고 구조가 복잡해 연료전지의 효율 또한 좋지 못했다. 연구진은 수소연료전지 수명에 치명적인 탄소 입자를 사용하지 않고도 안정적인 백금 촉매를 만들기 위해 도장을 찍듯이 간단한 인쇄공정을 여러 번 반복하여 20 nm급의 안정적인 형태의 백금 구조물을 적층하는 초미세 공정을 개발하였다. 이 공정을 통해 개발한 전극은 철골 건축물과 닮아 구조물 사이에 넓은 통로가 있어 연료전지 내부에서의 산소, 수소, 물의 이동이 원활해졌고, 기존의 1/10 이하로 두께가 얇아질 수 있다. 이로 인해 탄소 입자 없이 백금만으로 전극을 제작할 수 있게 됐으며, 해당 전극을 사용할 경우 기존 상용 촉매전극보다 내구성이 3배 이상 향상 됐을 뿐만 아니라 연료전지 출력 또한 27%가량 향상되는 결과를 얻었다. KIST 김진영 박사는 “초미세 인쇄 기술을 통해 개발한 촉매는 전극의 내구성 및 성능을 획기적으로 향상시켜 수소연료전지의 경제성을 확보할 수 있다.”라고 말했다. 공동연구를 수행한 KAIST 정연식 교수는 “연료전지뿐만 아니라 촉매, 센서, 배터리 등 다양한 전기화학 응용 분야에서의 활용을 기대한다.”고 밝혔다. 한편, 본 연구에는 연료전지 계산전문가인 인하대학교 주현철 교수도 참여해 연료전지 전극 내 유체의 거동에 대한 시뮬레이션 분석 역할을 담당했다. 본 연구는 과학기술정보통신부(장관 임혜숙)의 지원을 받아 KIST 주요 사업, 기후변화대응사업, 글로벌프론티어사업을 통해 수행되었으며, 이번 연구 결과는 국제 과학 저널인 ‘Science Advances’ (IF: 14.136, JCR 분야 상위 6.164%) 최신 호에 게재되었다. * (논문명) Conformation-Modulated Three Dimensional Electrocatalysts for High Performance Fuel Cell Electrodes - (제 1저자) 한국과학기술연구원 김종민 선임연구원 - (교신저자) 한국과학기술연구원 김진영 책임연구원 - (교신저자) 한국과학기술원 정연식 교수 그림 설명 [그림 1] 철골구조와 비슷한 형태의 멀티스케일 백금 나노 아키텍처 전극 모식도 [그림 2] 멀티스케일 백금 나노아키텍처 기반 박막형 막전극접합체(MEA) 모식도 [그림 3] PET 유연기판위에 롤투롤 대면적 나노인쇄공정 구현 및 전사된 백금 나노선 SEM 이미지 [그림 4] 20 nm 급 고해상도 나노인쇄공정과정 및 마스터몰드에 따른 백금 나노아키텍처 SEM 이미지 [그림 5] 기존 상용 Pt/C 전극 및 다양한 나노아키텍처 백금 전극 성능 비교 및 탄소담지체 열화테스트 이후 최대전력밀도 유지율
- 42
- 작성자수소·연료전지연구센터 김진영 박사·물질구조제어연구센터 김종민 박사팀
- 작성일2021.08.08
- 조회수33264
-
41
인체 세포막 특성 모사해 바이오센서 민감도 획기적 개선
- 세포막의 이온농도 조절 특성을 통해 바이오센서 검지능력 향상 - 의료·방역·환경 감시까지 폭 넓은 확장성 국내 연구진이 세포막을 이용해 민감도를 획기적으로 개선한 바이오센서 원천기술을 개발하는 데 성공했다. 한국과학기술연구원(KIST, 원장 윤석진)은 뇌과학연구소 유용상 박사, 센서시스템연구센터 김철기 박사팀이 고려대학교(고려대, 총장 정진택) 화공생명공학과 안동준 교수팀과의 공동연구를 통해 ‘전기신호를 이용하는 분자 검출기술(FET, 전계효과 트랜지스터)’의 민감도를 획기적으로 끌어 올리는 기술을 개발했다고 밝혔다. 전기신호를 이용하는 센서 기술인 FET 기반 분자검출 기술은 그간 바이러스, 단백질, DNA 등 다양한 분자를 검출할 수 있다는 장점에도 불구하고 상용화가 쉽지 않았다. 검출물의 용액 내에 존재하는 이온 및 전하의 농도가 높을수록 분자 검출 가능 영역이 얇아지기 때문이다. 예를 들어 혈액 한 방울의 경우 분자 검출 가능 영역은 검출하려는 분자보다도 얇은 1나노미터(nm) 수준에 불과해 분자가 검출부에 부착되었더라도 전기신호 관측이 어려웠다. 이에 따라 학계에서는 혈액 등의 검사 대상 용액을 최대 10만 배까지 희석하는 등 다양한 전략을 통해 분자검출 능력을 높이기 위해 애썼지만 별다른 성과를 거두지 못하고 있었다. 연구팀은 이 같은 걸림돌을 제거할 아이디어를 사람의 세포막에서 얻었다. 인체의 세포막은 세포 안팎의 이온 농도를 조절할 뿐만 아니라 고농도 이온이 세포 내부로 침투하는 것을 억제한다. 연구팀은 세포막의 이 같은 특성에 주목했다. 기존의 FET 기반 분자검출 칩 표면에 세포막을 도포하는 실험을 거듭한 끝에 고농도 이온 용액에서도 별도의 전처리 없이 분자검출이 가능하다는 것을 확인했다. ‘세포막-FET(Lipid-FET)’로 명명된 새로운 기술은 기존처럼 검사 대상 용액을 10만 배 이상 희석하지 않고 혈액 원액 그대로도 기존 센서보다 민감하게 원하는 분자를 검출할 수 있다. 이는 현재까지 전 세계적으로 보고된 전계효과 기반 분자검출기술 중 가장 뛰어난 성능을 나타내고 있는 것으로 확인됐다. 이번 연구성과와 관련해 더욱 주목할 만한 부분은 해당 기술이 치매 단백질 등 다양한 질환을 진단할 수 있을 뿐만 아니라 바이러스성 감염병과 미세 플라스틱 등 의료, 보건, 환경 등 바이오센서 전반에서 광범위하게 응용이 가능한 플랫폼 기술이란 점이다. KIST 유용상 박사는 “IT, NT, BT 등 여러 분야의 공동연구진이 융합연구를 통해 개발한 세포막-FET 분자검출 기술은 현재 전기적 신호를 이용해 분자를 검출하는 모든 시스템에 바로 적용할 수 있는 기술”이라고 말했으며, KIST 김철기 박사는 “세포막에 흡착돼 단백질 변성을 일으킨다고 알려진 치매, 파킨슨병, 당뇨병 등과 같은 질병뿐만 아니라 코로나19, 조류독감 등 극미량의 감염병 바이러스를 더욱 신속하고 정밀하게 진단하는 기술 등 다양한 연구분야에 폭넓게 적용될 수 있게 하는 연구를 병행하고 있다.”라고 밝혔다. 고려대 안동준 교수는 “본 기술을 확장하여 다양한 사회 문제 해결과 인류의 삶의 질 향상에 전반적으로 기여할 수 있게 되기를 바란다.”라고 말했다. 이번 연구는 과학기술정보통신부(장관 임혜숙)의 지원을 받아 KIST 주요사업, KU-KIST 사업 및 한국연구재단 중견연구자지원사업 및 미래소재디스커버리사업으로 수행되었으며, 연구 결과는 융합기술 분야 권위지인 ‘Nature Communications’ (IF: 14.919, JCR 분야 상위 4.795%) 최신 호에 게재되었다. * (논문명) Ionic contrast across a lipid membrane for Debye length extension: towards an ultimate bioelectronic transducer - (제 1저자) 한국과학기술연구원 이동근 학생연구원 - (제 1저자) 고려대학교 화공생명공학과 정우혁 - (교신저자) 고려대학교 화공생명공학과, KU-KIST융합대학원 안동준 교수 - (교신저자) 한국과학기술연구원 유용상 선임연구원 - (교신저자) 한국과학기술연구원 김철기 책임연구원 <그림 설명> [그림 1] KIST, 고려대 공동연구진이 개발한 세포막-전계효과트랜지스터의 분자 검출에 대한 모식도 [그림 2] KIST, 고려대 공동연구진이 개발한 세포막-전계효과트랜지스터 바이오센서
- 40
- 작성자뇌과학연구소 유용상 박사·센서시스템연구센터 김철기 박사팀
- 작성일2021.07.29
- 조회수43590
-
39
만능 산화제 과산화수소, 단순 공정으로 고효율 생산!
- 컴퓨터 시뮬레이션을 통해 과산화수소 생산 촉매 개발, 선택성 95%↑ - 백금-금 합금 촉매 개발, 수소와 산소만으로 상온/상압에서 과산화수소 생산 <span style="color: rgb(0, 0, 0); font-family: " 나눔고딕코딩",nanumgothiccoding,sans-serif;="" font-size:="" 14pt;"=""><span style="font-family: " 나눔고딕코딩",nanumgothiccoding,sans-serif;="" font-size:="" 14pt;"="">과산화수소는 물에 희석하여 상처를 치료하는 소독제로 사용되기도 하고, 반도체의 불순물 제거, 폐수 처리제 등 친환경 산화제로 산업 전반에서 폭넓게 사용되고 있다. 하지만, 생산 공정에서 독성 물질(안트라퀴논계)이 사용되고, 대규모의 설비가 필요해 제한된 장소에서만 생산할 수 있다는 문제가 있었다. 이를 해결하고자 팔라듐(Pd) 촉매를 이용하여 수소(H2)와 산소(O2)를 반응시켜 과산화수소를 생산하는 기술이 개발됐지만, 팔라듐 촉매의 경우 최대 40%의 과산화수소와 60%의 물이 생성된다. 이 과정에 과산화수소(H2O2)보다 물(H2O)이 더 많이 형성되어 상용화에 걸림돌이 되어왔다. <span style="font-family: " 나눔고딕코딩",nanumgothiccoding,sans-serif;="" font-size:="" 14pt;"="">한국과학기술연구원(KIST, 원장 윤석진)은 계산과학연구센터 한상수, 김동훈 박사, 물질구조제어연구센터 이승용 박사, 고려대학교(고려대, 총장 정진택) 이관영 교수 공동연구팀이 컴퓨터 시뮬레이션을 통해 과산화수소 생산용 백금-금 합금 촉매를 개발했다고 밝혔다. 이 촉매를 사용하면 팔라듐 촉매를 사용할 경우 30~40%에 불과했던 과산화수소 선택성을 95%까지 올려 물은 소량만 생산하고 대부분 과산화수소를 생산할 수 있다. <span style="font-family: " 나눔고딕코딩",nanumgothiccoding,sans-serif;="" font-size:="" 14pt;"="">KIST-고려대학교 공동연구팀은 원소 조합에 의해 발현되는 물성을 컴퓨터 시뮬레이션을 통해 이론적으로 예측하는 방법을 통해 연구한 결과, 기존의 팔라듐을 사용하지 않는 새로운 형태의 백금(Pt)-금(Au) 합금계 나노입자 촉매를 개발했다. 본래 백금과 금은 서로 잘 섞이지 않기 때문에 둘을 합쳐 촉매를 제작하기 어려웠는데 연구진은 합금을 형성하지 않는 백금과 금을 각각 원소의 전구체를 섞은 후 환원시켜 강제로 합금 형태의 나노입자를 성공적으로 합성했다. 이 방식을 활용하면 백금과 금의 전구체 양을 조절하여 입자의 함량을 제어할 수도 있었다. <span style="font-family: " 나눔고딕코딩",nanumgothiccoding,sans-serif;="" font-size:="" 14pt;"="">연구진이 개발한 촉매를 활용하면 수소 가스와 산소 가스를 수용액에 주입하기만 하면 어디에서나 대형설비 없이도 과산화수소를 생산할 수 있다. 특히, 팔라듐 촉매와 달리 공동연구진이 개발한 촉매는 상온(10˚C), 상압(1기압) 조건에서도 최대 95%까지 과산화수소를 생성할 수 있다. 또한, 8시간 이상의 촉매 반응에도 백금-금 합금 형태가 잘 유지되면서 생산 능력에 저하도 없는 구조적 안정성을 확보했다. <span style="font-family: " 나눔고딕코딩",nanumgothiccoding,sans-serif;="" font-size:="" 14pt;"="">연구진은 추가적인 컴퓨터 시뮬레이션을 통해 일반적인 소재 분석 기술로는 알기 힘든 백금-금 합금계 나노입자의 결정 구조를 명확하게 제시하였다. 더 나아가 금의 함량이 증가함에 따른 과산화수소 생산 능력의 변화를 원자 수준에서 예측할 수 있는 메커니즘을 함께 제시하였다. <span style="font-family: " 나눔고딕코딩",nanumgothiccoding,sans-serif;="" font-size:="" 14pt;"="">KIST 한상수 센터장은 “개발된 기술은 장소의 제약 없는 친환경 과산화수소 생산 기술로, 팔라듐 촉매의 한계인 낮은 선택성을 극복하여 상용화를 대폭 앞당겼다는 데에 의의가 있다.”라며, “시행착오를 통해 연구해 나가는 분야인 촉매 소재 개발을 컴퓨터 시뮬레이션을 통해 시간과 비용을 획기적으로 줄일 수 있었다.”라고 밝혔다. <span style="font-family: " 나눔고딕코딩",nanumgothiccoding,sans-serif;="" font-size:="" 14pt;"="">본 연구는 과학기술정보통신부(장관 최기영)의 지원으로 한국연구재단 미래소재디스커버리사업 지원으로 수행되었으며, 연구 결과는 재료과학 분야 국제저널인 ‘Acta Materialia’(IF: 7.656, JCR 분야 상위 0.633%) 최신 호에 게재되었다. <span style="font-family: " 나눔고딕코딩",nanumgothiccoding,sans-serif;="" font-size:="" 14pt;"="">* (논문명) Solid-Solution Alloying of Immiscible Pt and Au Boosts Catalytic Performance for H2O2 Direct Synthesis - (제 1저자) 한국과학기술연구원 이홍우 학생연구원 - (제 1저자) 한국과학기술연구원 남효빈 학생연구원 - (제 1저자) 고려대학교 한근호 박사과정 - (교신저자) 한국과학기술연구원 김동훈 선임연구원 - (교신저자) 한국과학기술연구원 이승용 책임연구원 - (교신저자) 고려대학교 이관영 교수 - (교신저자) 한국과학기술연구원 한상수 센터장 <span style="color: rgb(0, 0, 0); font-family: 나눔고딕코딩, NanumGothicCoding, sans-serif; font-size: 14pt;" 나눔고딕코딩",nanumgothiccoding,sans-serif;="" font-size:="" 14pt;"=""> <span style="color: rgb(0, 0, 0); font-family: 나눔고딕코딩, NanumGothicCoding, sans-serif; font-size: 14pt;" 나눔고딕코딩",nanumgothiccoding,sans-serif;="" font-size:="" 14pt;"=""><그림설명> <span style="font-family: " 나눔고딕코딩",nanumgothiccoding,sans-serif;="" font-size:="" 14pt;"="">[그림1] 금-백금 나노입자 합성 모식도 (좌) 및 촉매 성능 평가 (우) <span style="font-family: " 나눔고딕코딩",nanumgothiccoding,sans-serif;="" font-size:="" 14pt;"="">[그림2] 계산과학을 통해 입증된 금-백금 나노입자 촉매의 H2O2 생산 메커니즘 <span style="font-family: " 나눔고딕코딩",nanumgothiccoding,sans-serif;"="">
- 38
- 작성자계산과학연구센터 한상수 박사팀
- 작성일2021.01.12
- 조회수11648