연구본부소개
-
27
컴퓨터 시뮬레이션 기술로 전지의 화학반응 예측한다
컴퓨터 시뮬레이션 기술로 전지의 화학반응 예측한다 - 전지 성능저하의 원인인 계면막(SEI) 형성을 예측하는 시뮬레이션 기술 개발 - 전극의 계면막 제어를 통한 전지 성능 향상 및 수명 개선 기대 리튬이온전지는 밀도가 높아 무게가 가볍고 고용량의 전지를 만드는데 유리해 휴대폰, 노트북, 디지털 카메라 등에 많이 사용되고 있다. 리튬이온전지는 충?방전을 거듭할수록 전극 표면에서 산화·환원 반응을 통해 전극-전해질 계면막(SEI, Solid-Electrolyte Interphase)이 형성되어 적층되는데 이것이 전지의 성능을 저하시킨다. 최근 국내 연구진이 이러한 전지의 계면현상을 이해하기 위해 컴퓨터 시뮬레이션을 이용한 나노 단위에서 전극의 계면반응을 빠르게 예측할 수 있는 기술을 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 계산과학연구센터 한상수 박사 연구팀은 ‘리액티브 포스 필드’(ReaxFF, Reactive Force Field)라는 자체 개발한 시뮬레이션 기술을 통해 실리콘(Si) 전극과 다양한 종류의 전해질 간의 화학반응을 예측할 수 있는 소프트웨어(S/W)를 개발함으로써, 화학반응 중에 생성되는 다양한 계면막 구성성분(유·무기화합물) 및 가스 생성 메커니즘을 규명하고, ‘안전하고 우수한 전해질·첨가제 선택의 조건’을 정립했다고 밝혔다. 전지를 반복적으로 충?방전 하면, 계면막이 형성되어 전지의 성능(수명, 용량 등) 및 안전성에 결정적인 영향을 미치는 것으로 알려져 있다. 간혹 휴대폰 혹은 노트북 충전 시 전지가 부풀어 오르거나 폭발하는 사고를 볼 수 있는데, 원인은 계면막 형성과 직결되어 있으나 현재의 분석 장비로는 이러한 계면 반응을 분석하기가 불가능하다는 것이 일반적인 견해였다. 연구진은 시뮬레이션 기술을 통해 계면막 내의 가스 성분이 방출되는 과정을 실시간으로 모니터링 가능하며, 각 가스 성분이 미치는 영향을 파악하고 이를 제어하는 방법에 대한 결과를 제시할 수 있다고 밝혔다. 또한 연구진은 개발된 시뮬레이션 기술을 온라인상에 그래픽사용자인터페이스(GUI, Graphical User Interface) 환경을 기반으로 하는 리튬이온 배터리 시뮬레이션 플랫폼인 ‘iBat’(http://battery.vfab.org) 내에 장착함으로써 계산전문가가 아닌 실험연구자도 쉽게 계면막 형성거동을 예측해 볼 수 있도록 무상으로 제공(*2017년 6월 1일(목) 공개)하고 있다. KIST 한상수 박사는 “전해질의 종류에 따라 각종 전극 표면에서 계면반응을 미리 예측함으로써 우수한 전해질 및 첨가제 개발의 비용을 절감하고 개발 시기를 앞당길 수 있다”라고 말하며, “또한, 이 기술은 기존 계산과학기술의 한계였던 소규모 샘플링 방법을 극복해 실제 실험과 유사한 조건에서 결과를 도출해 낼 수 있다”라고 말했다. 연구진이 개발한 이 기술은 향후 탈리튬계 이차전지, 연료전지 및 촉매 개발 등에 폭 넓게 활용될 전망이다. 본 연구는 미래창조과학부 지원의 KIST 기관고유사업, 산업통상자원부의 산업핵심기술개발사업으로 수행되었으며, 연구결과는 물리화학분야 국제학술지인 '저널 오브 피지컬 케미스트리 레터스(Journal of Physical Chemistry Letters / IF : 9.353, JCR 분야 상위 2.86%)' 7월 6일(목)자로 출판되었다. <그림설명> <그림 1> 리튬이온배터리 실리콘 전극 표면에 계면막(SEI)이 생성되는 과정을 예측할 수 있는 컴퓨터 시뮬레이션 기술 <그림 2> 실리콘 전극과 에틸렌카보네이트(EC) 전해질과의 계면반응 예측. (a) 시간에 따른 전해질 분해 및 가스 생성물 변화량. (b) 전해질이 분해되어 일산화탄소 가스가 생성되는 과정. (c) 에틸렌 가스가 생성되는 과정 <그림 3> 계면막(SEI) 층 내부 리튬무기물 분포량 분석 프로파일 <그림 4> KIST 계산과학연구센터 주도로 개발된 리튬이온배터리 시뮬레이션 플랫폼 ‘iBat’ 메인화면(http://battery.vfab.org) *6월 1일 무상공개
- 26
- 작성자계산과학연구센터 한상수 박사팀
- 작성일2017.07.07
- 조회수35566
-
25
나노 주름에 물 한 방울, DNA 나노선 만든다
나노 주름에 물 한 방울, DNA 나노선 만든다 - KIST-프린스턴大 공동연구팀, 나노 주름이 나노터널로 전이되는 현상 규명 - 나노크기의 물질 전달 및 배열이 필요한 생체 센서, DNA나 단백질 정밀분석에 활용 고분자 실리콘 화합물(PDMS) 소재를 압축하게 되면 주름이 생기게 된다. 이 표면에서 우리 손바닥의 손금과 같은 ‘구조의 접힘(folding)’ 상태를 만들기 위해서는 소재의 30%이상의 압축 변형이 필요하다. 최근 국내 연구진이 매우 낮은 수치인 1%정도의 작은 변형에서 물방울로 인한 표면장력으로 나노주름에 더 큰 변형을 유도하여 접힘 구조를 만들 수 있게 되는 현상을 규명하고, 이로 인해 DNA 나노선(nano-wire)을 만드는 기술을 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 계산과학연구센터 문명운 박사 연구팀은 프린스턴大 하워드 스톤(Howard A. Stone) 교수팀과 공동 연구를 통해 ‘액체 표면장력에 의한 나노 주름 형상이 나노터널로 전이되는 현상’을 규명하고 이를 적용하여 ‘DNA 나노선을 만드는 매우 손쉬운 방법’을 제안하였다고 밝혔다. 수 십 나노미터 높이의 나노 주름 위에 물방울과 같은 액체를 올려두게 되면 물방울 주변의 표면장력이 주름의 표면에 작용하여 나노 주름의 입구를 잡아당기며 물이 닿은 주름 안쪽의 단면을 원형 터널에 가깝게 만든다. 특히 친수성을 가지는 나노주름 표면에서 물이 보다 강력한 압축응력을 만들어내게 되어 나노 주름의 깊이가 더욱 깊어지게 되고 그 결과 접힘 구조(folding)의 나노터널이 형성되는 현상이 생긴다. 연구진은 이를 통해 액체의 표면 장력에 의해 고체 표면의 2차원 변형이 가능함을 처음으로 밝혔다. 물 등의 액체 내에 나노입자, 나노와이어와 같은 나노물질이나 DNA 등의 생체 분자물질을 같이 넣고, 나노주름 표면에 떨어뜨리게 되면 물방울과 DNA 등의 물질이 함께 나노터널을 타고 들어가게 된다. 이후 물을 건조, 제거한 뒤에도 함유된 물질은 나노터널이 있었던 곳에 그대로 남아 특정 간격을 유지하면서 DNA로 만들어진 나노와이어가 형성된다. 이와 같이 연구진은 나노터널을 통해 물에 나노 크기의 약물이나 기능성 나노 입자를 혼합하여 나노와이어 형태로 손쉽게 배열하게 할 수 있다는 것을 밝혔다. KIST 문명운 박사는 “나노 터널의 길이를 수십 마이크로 미터에서 수 밀리미터까지 변화시킴으로써 용액 내에 있는 DNA나 단백질 같은 작은 바이오 물질을 포집 혹은 저장하거나 전달할 수 있는 분야에 응용할 수 있다”라고 말하며, “또한, 나노 형광입자를 배열하는데 중요한 수단으로 활용될 수 있는 등 기존에 접근하기 어려웠던 나노크기의 물질 전달 및 배열이 필요한 다양한 분야에 응용될 것”이라고 말했다. 연구진이 개발한 이 기술은 향후 약물전달 장치나 생체 센서, DNA나 단백질 정밀 분석 등에 활용이 높을 전망이다. 본 연구는 한국과학기술연구원 미래원천연구 사업으로 수행되었으며, 연구결과는 미국 국립과학원 회보 'PNAS (Proceedings of National Academy of Sciences, U.S.A.)'온라인 판에 5월 31일(수)자로 실렸다. <그림설명> <그림 1> 액체 내의 DNA가 나노터널을 따라서 배열하는 이미지 <그림 2> 물의 표면장력에 의해서 나노 주름(wrinkle, 중간 아래 이미지)이 나노 접힘(fold, 중간 위 이미지)으로 만들어진 나노 터널 (오른쪽 이미지)로 전이되는 현상에 대한 이미지
- 24
- 작성자계산과학연구센터 문명운 박사팀
- 작성일2017.06.05
- 조회수25135
-
23
수소와 전기 생산하는 고성능 연료전지 개발
수소와 전기 생산하는 고성능 연료전지 개발 - 화학용액 침투공정으로 고온에서 나노 촉매를 합성하는 매커니즘 규명 - 나노 촉매 접합된 전극으로 향상된 성능의 가역 고체산화물전지 상용화 기대 가역 고체산화물전지(Reversible Solid Oxide Cell, RSOC)*는 수소를 연료로 하여 전기를 생산하고, 물을 전기로 분해하여 수소를 생산하는 에너지 저장기능을 단일 시스템에서 동시에 수행 가능하여 미래 청정에너지 기술로 큰 기대를 받고 있다. 최근 국내 연구진이 전력과 수소 생산이 가능한 고온에서 작동하는 가역 고체산화물전지의 성능과 안정성을 획기적으로 향상시킬 수 있는 나노 촉매 기술을 개발했다고 밝혔다. *가역 고체산화물전지 : 수소와 같은 화학에너지를 전기에너지로 변환시키는 연료전지 반응과 물을 수소와 공기로 분리시키는 전해반응이 합쳐진 고체산화물로 이루어진 에너지 변환장치. 한국과학기술연구원(KIST, 원장 이병권) 고온에너지재료연구센터 윤경중 박사팀은 고온에서 안정된 구조를 유지할 수 있는 나노 사이즈의 촉매를 개발하였고, 이를 가역 고체산화물전지에 적용하여 전력 생산과 수소 생산의 효율과 장기 안정성을 크게 향상시킬 수 있는 기술을 개발했다. 현재 다양한 분야에 적용되고 있는 나노 소재 기술이 가역 고체산화물전지의 성능향상을 위해 접목되는 연구가 주목받고 있다. 하지만 가역 고체산화물전지는 700도 이상의 높은 온도에서 작동하고, 이러한 고온의 환경에 나노 소재가 노출될 경우 화학적, 구조적 변형이 발생한다. 따라서 고성능 및 안정성 확보가 매우 어려워져 이 분야에 나노 기술을 적용하는 것은 한계가 있었다. KIST 윤경중 박사팀은 나노 촉매의 형상과 크기, 분포를 정확히 조절할 수 있는 화학용액 침투공정을 개발하여 이 문제를 해결하였다. 온도가 높아지는 과정에서 화학용액으로부터 나노 촉매가 형성되는 메커니즘을 규명하고, 화학적·구조적 특성을 결정하는 단계들을 제어하여 700도 이상의 고온에서도 안정적인 나노 촉매가 접합된 고성능 전극을 제조하였다. 연구진은 일반적인 화학용액 침투 공정과 달리 용액의 건조가 일어나기 전에 화학적으로 침전을 일으키고 침전물을 전극 표면에 부착시키는 기술을 개발하여 건조되는 과정에서 발생되는 불확실성을 제거하고 나노 촉매의 분포와 크기를 정확히 제어할 수 있었다. 연구진이 최적의 나노 전극 구조를 구현한 결과, 기존 전극이 적용된 연료전지에 비하여 전력생산은 1.5배, 수소 생산량은 2배 이상 향상되었고 장시간동안 나노소재의 변형으로 인한 성능 감소가 전혀 발생하지 않는 안정적인 특성을 나타내는 것을 규명했다. KIST 윤경중 박사는 “이번 나노 촉매 기술 개발과 구현된 고성능 전극으로 다양한 나노 기술들이 고온에서 안정적으로 사용될 수 있는 플랫폼을 제공할 것이며, 가역 고체산화물전지의 상용화를 앞당기는데 크게 기여할 것으로 예상된다.”라고 말하며, “이는 미래 신재생 에너지 시스템의 중추적인 역할을 하게 될 것으로 기대된다.”고 밝혔다. 연구진은 향후 에너지 저장과 전력 생산이 가능한 가역 고체산화물전지를 신재생 에너지원과 결합한 하이브리드 시스템을 구축하여 온실가스 감축과 수소 경제 시대 구현에 기여할 것으로 전망하고 있다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유사업과 산업부 에너지기술평가원 에너지기술개발사업으로 수행되었으며 연구결과는 나노에너지(IF : 11.553)에 4월 18일(화) 온라인 게재되었다. <그림 설명> <그림 1> 나노촉매 제조 과정 (좌측), 나노 촉매가 접합된 전극 구조 (우측)
- 22
- 작성자고온에너지재료연구센터 윤경중 박사팀
- 작성일2017.04.27
- 조회수24222
-
21
세계 최고 수준의 수소이온 세라믹 연료전지 개발
세계 최고 수준의 수소이온 세라믹 연료전지 개발 - 초박막 BZY 전해질로 기존 연료전지 대비 10배 높은 성능 - 연료전지 사용 영역을 획기적으로 넓힐 것으로 기대 최근 국내 연구진이 세계 최고 수준의 수소이온 세라믹 연료전지를 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 고온에너지재료연구센터 손지원 박사팀과 고려대학교(총장 염재호) 기계공학과 심준형 교수 공동연구팀은 화학적, 기계적으로 안정적인 이트륨*이 도핑된 바륨지르코네이트**(Y:BaZrO3, BZY) 전해질의 박막화에 성공하여 세계 최고 수준의 수소이온 세라믹 연료전지를 개발하였다. *이트륨: 원자번호 39번의 희토류(Rare earth) 원소 **바륨지르코네이트: 원자번호 56번의 바륨과 40번의 지르코늄 기반의 산화물 물질 연료전지***는 연료를 전기화학적으로 직접 전기로 변환하는 친환경-고효율 발전 장치를 일컫는다. 특히, 수소 연료전지의 경우 전력생산 시 부산물로 순수한 물만이 배출되어 미래 청정에너지 시스템으로 각광받고 있다. 또한 연료전지는 자동차에서 드론, 휴대용 전원 및 발전소까지 그 사용 범위가 무궁무진하다. ***연료전지: 연료와 산소를 이용하여 전기를 만드는 전력생산시스템의 일종. 기본적으로 연료를 주입하는 연료극과 공기를 주입하는 공기극, 그 사이에 가스 불투과성 전해질로 이루어져 있음. 이번 손지원 박사팀의 연구결과는 연료전지 중에서도 세라믹 연료전지에 대한 것으로, 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC)로 대표되는 세라믹 연료전지****는 미래형 발전소 전원으로 많은 관심을 받고 있다. 이미 미국과 일본 등에서는 정부의 전폭적인 지원 아래 지난 수 십년 간 세라믹 연료전지 원천기술 연구가 진행되어왔다. 관건은 전해질인데 기존의 세라믹 연료전지는 주로 ‘산소이온’ 전도막을 전해질로 사용한다. 그러나 ‘산소이온’ 전도막을 이용할 경우 온도가 낮아질수록 전도도가 기하급수적으로 떨어져 저온에서의 사용이 제한적이다. ****세라믹 연료전지: 물질 내에서 이온(일반적으로는 산소이온)이 움직일 수 있는 고체산화물을 전해질로 사용하는 연료전지. 이에 연구팀은 기존 ‘산소이온’ 전도막의 대체 물질로 ‘수소이온’ 전도체 세라믹*****에 주목했다. 수소이온은 산소이온보다 무척 작고 가벼워, 일반적으로 수소이온 세라믹은 산소이온 세라믹에 비해 전도도가 수십에서 수백 배 높다. 특히 BZY는 수소이온 세라믹 중에서 전도도가 가장 높은 대표적인 물질로서, 뛰어난 화학적 안정성을 가지고 있다. 하지만 다루기 힘든 물질적 성질로 인하여 BZY를 이용하여 조성과 구조가 적합한 고성능의 전해질로 제작하는 것이 매우 어렵다는 단점이 있다. KIST-고려대 공동 연구진은 최적화된 다층 나노구조 지지체를 이용하여 화학적-기계적으로 안정적인 초박막 BZY 전해질 증착에 성공하였다. 이렇게 제작된 초박막 BZY 기반 연료전지는 기존 BZY 기반 연료전지에 비해 출력밀도가 약 10배에 달하는 등 획기적인 성능을 보였다. *****수소이온 전도체 세라믹: 수소이온을 전도하는 세라믹 물질. 연구진은 “이번 고성능 BZY 연료전지 개발의 성공은 저온 세라믹 연료전지의 새로운 패러다임을 제시했으며 이를 통하여 세라믹 연료전지의 사용 영역이 기존의 분산발전소를 뛰어넘어 가정용, 이동형 전원으로도 확대될 수 있을 것”이라고 의의를 밝혔다. 본 연구는 미래창조과학부(장관 최양희) 일반연구자지원사업, 글로벌프런티어 연구사업, KIST 미래원천연구사업 및 교육부(장관 이준식)의 BK21 플러스사업의 지원으로 수행되었으며, 연구결과는 저명 국제 학술지 ‘네이처 커뮤니케이션즈’ (Nature Communications, (IF : 11.329))에 2월 23일(목)자로 온라인 게재되었다. <그림 설명> <그림 1> 높은 성능의 박막 BZY 전해질이 적용된 연료전지의 부분 모식도(좌측)와 실제 미세구조 사진(중간), 그리고 문헌상에 보고된 다른 수소이온 세라믹 연료전지들과의 성능 비교(우측).
- 20
- 작성자고온에너지재료연구센터 손지원 박사팀
- 작성일2017.02.27
- 조회수26615
-
19
보이지 않는 빛, 적외선으로 위조 판독한다
보이지 않는 빛, 적외선으로 위조 판독한다 - 나노기술로 특정문양을 육안으로 관찰 가능한 위조방지 필름 개발 - 화폐, 고가의 상품, 여권, 주민등록증 등 활용분야 광범위 고성능 스캐너와 프린터 기술의 발달로 지폐나, 여권 등 위조 발생 건수는 갈수록 늘고 있다. 이러한 범죄를 막기 위한 여러 가지 위조방지 기술이 있지만, 복제하기가 쉽거나 소비자가 쉽게 판독하기 어려운 문제가 있었다. 최근 국내 연구진은 저 비용으로 높은 보안성을 확보할 수 있는 위조방지 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 나노포토닉스연구센터 고형덕 박사팀은 적외선을 쪼여 진품여부를 감별할 수 있는 나노기술을 활용한 위조방지필름을 개발했다. KIST 고형덕 박사 연구팀은 적외선을 가시광선으로 변환시킬 수 있는 상향변환* 나노형광체와 금속 나노와이어로 구성된 위조방지 필름을 제작하여, 적외선에 노출시키면 보다 효과적으로 특정문양이나 색을 육안으로 관찰 수 있음을 확인했다. *상향변환(Upconversion) : 두 개 혹은 그 이상의 낮은 에너지 광자를 흡수하여 하나의 높은 에너지 광자를 방출하는 현상 연구진은 금속 나노와이어에서 발생하는 플라즈몬* 특성을 이용하여, 적외선을 쪼였을 때 발생하는 가시광선의 발광 강도를 크게 증가시킬 수 있었다. 뿐만 아니라, 이 기술의 핵심은 개발한 위조방지필름을 한번 사용하고 나면 플라즈모닉 특성이 재현되지 않아서, 적외선을 다시 쪼여도 색 혹은 문양을 확인할 수 없다. 따라서, 진품의 인증 라벨을 복제하여 재활용 할 수 없는 고(高)보안성 위조방지기술이 될 것으로 기대하고 있다. *플라즈몬 : 금속 표면에 자유전자가 집단적으로 진동하여 발생하는 표면 전자기파 연구진은 개발된 위조방지 필름에 구성되는 금속 나노와이어 및 형광체의 특성이 제조환경에 매우 민감하고, 이들의 복합적인 구조에서 발생하는 가시광선 스펙트럼과 발광세기가 고유하여 복제 자체가 어려울 것으로 전했다. 고형덕 박사는, “해당 기술은 高보안성 위조방지기술임에도 불구하고, 낮은 비용으로 대면적 제작이 가능하여, 지폐를 비롯한 고가의 제품에 광범위하게 적용할 것으로 기대된다.”라고 밝혔다. 본 연구는 미래창조과학부(전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 및 산업통상자원부(전담기관: 한국에너지기술평가원)의 에너지기술개발사업 지원과 한국과학기술연구원 기관고유사업을 통해 수행되었다. 연구결과는 재료공학분야 국제저명학술지인 Advanced Functional Materials紙(IF:11.382)에 11월 17일자 최신호에 게재되었다. <그림설명> <그림 1> 적외선 감별 위조방지 필름
- 18
- 작성자나노포토닉스연구센터 고형덕 박사팀
- 작성일2016.12.07
- 조회수28471
-
17
초미세 반도체 공정기술로 퀀텀닷(Quantum Dot)* 디스플레이 만든다
초미세 반도체 공정기술로 퀀텀닷(Quantum Dot)* 디스플레이 만든다 - 새로운 퀀텀닷 패터닝 기술 개발로 고해상도, 대규모 양자점 화소 제작 가능 - 능동형 퀀텀닷 발광다이오드(AMQDLED), 태양전지 등 광범위한 분야에 활용 기대 *퀀텀닷 : 양자점, 자체적으로 빛을 내는 나노미터(nm)의 초미세 반도체 결정 고성능 디스플레이 경쟁이 뜨거운 가운데, 퀀텀닷(양자점(Quantum Dot), QD)은 다양하고 순도 높은 빛을 발광하며 세밀한 색상 표현이 가능하여, 높은 색 재현율과 뛰어난 광변환 효율로 차세대 디스플레이 소재로 주목받고 있다. 최근 국내 연구진이 새로운 양자점 패터닝 기술로 대규모 고해상도 퀀텀닷 장치 제작에 실용적이고 비용이 적게 드는 방법을 제시했다. 한국과학기술연구원(KIST, 원장 이병권) 나노포토닉스연구센터의 한일기 박사, 박준서 연구원팀은 기존 반도체 공정법을 활용한 대면적 미세 퀀텀닷(QD) 패턴 형성 기술을 개발했다. 연구진은 기존 반도체 미세 패턴 형성기술인 노광(포토리소그래피) 공정* 을 활용하여 다색 퀀텀닷 미세 패턴 형성 기술을 최초로 개발하였고, 더 나아가 이 기술을 활용하여 패턴된 전기구동 퀀텀닷 발광 소자를 구현하는데 까지 성공, 이 기술이 향후 디스플레이나 전자 소자에 활용 될 수 있는 가능성을 보였다. *노광(포토리소그래피) 공정 : 사진을 찍듯이 빛을 이용하여 미세패턴을 형성하는 기술 이미 디스플레이 업계에서는 퀀텀닷 기반 백색 광원을 제작, 액정 표시 장치(LCD)의 백라이트로 탑재시켜 퀀텀닷 디스플레이라는 이름의 제품으로 출시한 바가 있으나 퀀텀닷 자체가 각 색상을 발광하는 진정한 의미의 퀀텀닷 디스플레이는 구현하지 못하고 있다. LCD 디스플레이 기술은 액정 표시 장치의 자체 두께로 인하여 얇게 만드는데 한계가 있고 또한 유연하거나 투명한 디스플레이 등에 응용하기 어렵다는 문제가 있다. 때문에 기존 스마트폰 등에 탑재된 능동형 유기 발광 다이오드(AMOLED)처럼 각 퀀텀닷 화소가 직접 색을 내는 디스플레이 기술에 대한 수요가 있었으나 여러 가지 난관이 있었다. 퀀텀닷을 능동형 발광 디스플레이에 활용하기 위해서는 우선 여러 종류의 액상으로 분산되어 있던 퀀텀닷을 원하는 위치에 색상별로 고정시켜야하는 기술이 필요하며, 다양한 색상의 패턴을 고해상도로 대면적으로 형성하는데 있어 기술 접근성의 어려움, 공정비용의 상승의 문제 등 여러 기술적, 경제적 제한이 있었다. 연구진은 이번 개발된 기술이 대면적 전자소자 공정에도 활용되는 기술임에 따라 공정 난이도가 낮고, 공정당 퀀텀닷 소모량이 적다는 점에서 공정비용을 줄일 수 있다고 밝혔다. 향후 다양한 퀀텀닷 기반 소자 개발에 필요한 패턴기술의 대안이 될 수 있을 것이라 기대하고 있다. 이번 연구를 통해 한일기 박사, 박준서 연구원팀은 “기존 반도체 공정 기술을 다색 퀀텀닷 패턴 형성에 응용할 수 있다는 점에서 차별점이 있으며, 활용성이 높아 퀀텀닷 기반 소자 개발에 도움이 될 것으로 기대된다. 향후 AMOLED에 들어가는 유기물을 퀀텀닷으로 대체한 고해상도 디스플레이(AMQDLED)나 다파장 퀀텀닷 기반 광센서 등의 분야로 확장될 수 있는 기술이다.”라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희, 전담기관: 한국연구재단) 미래유망융합기술 파이오니어사업 스펙트럼제어 융합연구단(단장: 한일기 박사/KIST) 지원을 통해 수행되었다. 연구결과는 나노 분야 국제학술지인 ‘Nano Letters’(IF:13.779)에 11월 9일자 최신호에 게재되었고, 국제 유명 과학 뉴스 웹사이트 phys.org에 특집 기사(Featured article)로 소개되기도 했다. *phys.org 특집 기사(Featured article) 링크 http://phys.org/news/2016-11-scientists-bottleneck-fabricating-quantum-dot.html * (논문명) ‘Alternative Patterning Process for Realization of Large-area, Full-color, Active Quantum Dot Display ’ - (제 1저자) 한국과학기술연구원 박준서 연구원, 동국대학교 김지훈 교수, 한국과학기술연구원 김홍희 학생연구원 - (교신저자) 한국과학기술연구원 한일기 박사, 박준서 연구원 <그림자료> <그림 1> 다색 퀀텀닷 패턴형성 기술 예시 및 본 기술을 활용한 패턴된 퀀텀닷 발광소자 구현 결과 (좌상)고해상도로 (중상),(우상)노광공정(포토리소그래피)을 반복하며 여러 종류의 퀀텀닷 패턴을 동일 기판 표면에 형성할 수 있으며, (좌하)위치별로 두께를 조절 할 수 있고, 국부적인 미세패턴 형성뿐만 아니라 (중하)대면적(4인치 기판)에도 동일한 방법으로 패턴 형성이 가능함을 보임. (우하) 더 나아가 패턴 된 전기구동 퀀텀닷 발광소자 제작이 가능함을 보임.
- 16
- 작성자나노포토닉스연구센터의 한일기 박사, 박준서 연구원팀
- 작성일2016.11.23
- 조회수26145
-
15
겔(Gel) 타입의 전해질로 폭발 없는 배터리 만든다
겔(Gel) 타입의 전해질로 폭발 없는 배터리 만든다 - 우수한 이온전도도를 가지는 고체특성 이온성 액정 겔 전해질 개발 - 기존의 액체 전해질의 불안전성(증발, 누액, 발화, 폭발)을 획기적으로 개선 고성능 집적화에 따른 최신형 휴대폰 배터리의 발화 사건이 사회적 이슈이다. 제조업체들은 정확한 발화원인을 규명하지 못하고 있으며, 안전상의 문제가 심각한 것으로 보고되고 있다. 최근 국내 연구진이 이온전도 특성이 우수한 겔(Gel) 타입의 고체 전해질을 개발하여 폭발로부터 안전한 배터리를 제작할 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구단 구종민 박사팀은 경희대학교 이제승 교수팀과 미국 Pacific Northwest National Laboratory의 Karl T. Mueller 교수팀과 공동으로 이온성 액체와 리튬염의 혼합물을 이용하여, 이온전도특성이 우수하면서 증발, 누액, 발화, 폭발 문제가 없는 고체특성의 이온성 액정 겔 전해질*을 제조하였다. *이온성 액정 겔 전해질 : 이온성 액체를 구성성분으로 하면서, 구조적으로 규칙적인 결정구조를 겔 전해질 전해질은 대표적인 에너지 저장소자인 리튬이차전지 및 축전기(Capacitor)등의 필수 구성성분으로 전자의 전달은 제한되지만 이온을 전달하는 특성은 우수해야 한다. 현재 카보네이트계 액체전해질*이 주로 사용되고 있는데, 액체전해질은 증발, 누액, 발화, 폭발에 취약하여 리튬이차전지의 안전성 확보에 큰 문제점으로 대두되고 있다. 이로 인해 리튬이차전지를 이용한 후방산업인 전기자동차 및 대용량 에너지저장시스템(ESS)등의 시장성장에 제약사항으로 작용하고 있었다. *카보네이트계 액체전해질 : EC (ethyl carbornate)와 같이 카보네이트(carbonate, -O-(C=O)-O-) 작용기를 가지는 액체전해질. KIST 구종민 박사팀은 자기조립 특성으로 인해 4.36 나노미터(nanometer) 크기의 규칙적인 층상구조를 이루는 스멕틱 액정*(Smectic Liquid Crystal) 특성과 고체 겔 특성을 동시에 가지는 전해질을 개발했다. 개발된 이온성 액정 겔 전해질은 기존 액체 전해질의 문제점인 증발, 누액, 발화, 폭발 문제를 근본적으로 해결할 수 있으며, 특히 고체 겔 상태임에도 불구하고 액체상태보다도 우수한 이온전달특성을 보이는 독특한 특성을 실험을 통해 증명했다. *스멕틱 액정 : 그림 1과 같이 분자들이 층상(layer-by-layer) 배열 구조를 가지는 액정 KIST 구종민 박사는 “본 연구의 이온성 액정 겔 전해질은 별도의 화학 시약 첨가없이도 물리적 고체 겔화가 가능하며, 종래의 겔 전해질에 비해 전기화학적 특성, 열적 안정성, 이온전도특성이 우수하다. 또한, 성형성과 가공성이 우수하며, 누액, 휘발, 발화, 폭발 가능성이 없어서 기존의 액체전해질의 불안전성 문제를 획기적으로 개선 가능하다.”고 밝혔다. 이번 연구는 대표적인 융합연구의 형태로 이루어졌으며, 경희대학교 이제승 교수팀과 미국 Pacific Northwest National Laboratory의 Karl T. Mueller 교수팀과 공동으로 수행되었다. 구종민 박사팀은 이번에 개발한 이온성 액정 겔 전해질을 리튬이차전지, 리튬이온 축전기(Capacitor) 등의 에너지 저장 소자에 대한 적용 가능성을 평가하여 상용화를 위한 후속연구에 박차를 가하고 있다. 본 연구는 미래창조과학부(장관 최양희)지원으로 KIST 기관고유 미래원천기술개발사업과 산업소재원천기술개발사업, 해양경비안전사업으로 수행되었으며, 연구 결과는 세계적인 우수 과학 저널인 ‘Advanced Materials’(IF:18.960)에 11월 9일자 최신호의 표지논문으로(Inside Back-Cover) 게재되었다. <그림설명> <그림 1> 이온성 액체와 리튬염의 조성 몰비에 따른 광학적 특성과 형성된 나노 구조체 이온성 액체와 리튬염의 조성을 적절하게 조절함에 따라 이온들간의 강한 정전기적 상호작용을 유도할 수 있고 이를 통해 4.4 나노미터 크기의 규칙적인 층상구조의 스멕틱 액정 겔 전해질을 제조하였다. 제조된 이온성 액정 전해질은 고체특성의 겔 전해질이며 광학적으로 강한 이방성을 나타내었다. <그림 2> 자기조립 구조 발달에 따른 이온전도도의 변화 본 이온성 액정 겔 전해질의 이온전도도는 이온성 액체와 리튬염의 조성에 따라 변화하며, 스멕틱 액정 구조를 가지는 이온성 액정 겔 전해질이 구조가 없는 액체상태의 전해질에 비해 우수한 이온전도 특성을 보이며 이는 자기조립형 구조가 이온들의 이동도를 촉진시키기 때문이다.
- 14
- 작성자물질구조제어연구단 구종민 박사팀
- 작성일2016.11.15
- 조회수30165
-
13
금속 없는 고분자 복합체로 전자파 막는다
금속 없는 고분자 복합체로 전자파 막는다 - 그래핀보다 훨씬 우수한 2D 新나노소재(전이금속 카바이트) 응용기술 개발 - 다층적층구조에 의한 강한 내부다중반사 효과 규명하여 우수한 전자파 차폐 입증 전자파 간섭(EMI, Electromagnetic Interference)은 전자, 통신, 운송, 항공, 군사 장비들에서 발생하는 전자기파 간에 의한 간섭 현상으로, 이 현상은 장치들의 오작동 원인이 될 뿐만 아니라 인간에게 유해한 영향을 줄 수 있다. 특히, 최근 전자 장치들이 소형화, 고집적화 및 고기능화 되면서 장치간의 전자파간섭 현상에 의한 오작동 문제가 더욱 심각해지고 있다. 최근 국내 연구진이 이러한 전자파 간섭을 막는 금속을 사용하지 않은 전자파 차폐 소재(EMI Shielding Materials)개발에 성공했다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구단 구종민 박사팀은 미국 Drexel 대학교 Yury Gogotsi 교수팀과 공동연구로 ‘MXene’이라 불리는 2D 新나노재료, 전이금속 카바이트(Transition Metal Carbide)를 이용하여 전기전도성이 우수하면서도 가볍고, 저가이며, 가공성 또한 우수한 전자파 차폐 소재를 개발했다. 전자파 차폐 소재는 전자파간섭 현상을 차단하는 소재로서, 전기전도성이 높은 소재일수록 전자파차폐 효율이 우수한 특성을 가진다. 기존에는 은, 구리와 같은 금속 소재들이 주로 사용되었지만 밀도가 높고, 제조비용이 비싸며, 무겁고 부식이 되기 쉬웠으며, 가공이 어려운 단점을 가지고 있어 차세대 모바일 전자/통신 장치들에 사용에 한계가 있었다. 구종민 박사팀은 기존 소재들의 문제점들을 극복하기 위해, 2D 나노재료인 전이금속 카바이트(Transition Metal carbide (MXene))를 포함하는 고분자 복합체를 이용하여 마치 흑연의 구조와 유사한 다층적층 구조의 전자파 차폐가 우수한 소재를 개발했다. 전이금속 카바이트(MXene) 소재는 티탄늄(Ti )과 같은 중금속 원자와 탄소 (C)원자의 이중 원소로 이루어진 나노물질로서 형상적으로는 1nm(나노) 두께 와 수 μm(마이크로미터) 길이를 가지는 이차원적인 판상구조를 가지는 2D 나노 재료이다. 기존 나노재료들에 비해 제조 공정이 간편하고 저비용으로 생산 가능할 뿐만 아니라 표면에 다수의 친수기(물과 친화성이 강한 원자단)를 포함하고 있어, 용매에 분산이 용이하고 고분자 복합체 제조가 용이하다. 또한 우수한 전기전도성을 가지고 있어 전기전도성이 요구되는 다양한 필름, 코팅 제품 응용에 유리한 특성을 가진다. 전이금속 카바이트 고분자 복합체는 기존 고분자 복합체에 비해 매우 얇은 두께에서도 우수한 전자파차폐 특성을 보인다. 이는 우수한 전기전도도(5000S/cm)를 가지고 있을 뿐만 아니라, 45μm(마이크로) 두께의 얇은 필름 상에서 92dB라는 기존의 금속필름과도 비견될만한 우수한 결과(*그림 3 참조)를 나타냈다. 이는 필름 내에서 MXene들이 다층 적층 구조로 되어있어 필름 내에서 강한 내부다중반사(Internal Multiple Reflection) 효과를 발생시켜 전자파를 흡수하기 때문이다. 연구진은 이번에 개발된 고분자 복합체는 스핀코팅, 스프레이코팅, 롤가공 등의 다양한 필름가공과 코팅성형이 가능하여 향후 전자파차폐재 상용화 연구에도 매우 유리한 장점이 있을 것으로 전망했다. KIST 구종민 박사는 “본 연구의 전이금속 카바이트(MXene) 고분자 복합체는 기존 소재에서 구현하기 힘들었던 우수한 전기전도성을 구현할 수 있을 뿐만 아니라, 용이한 가공성, 저비중, 저비용, 고유연 특성들을 가지고 있어 전자파차폐소재 뿐만 아니라 다양한 전자소재분야에도 응용이 기대되는 소재이다.”고 밝혔다. 현재 연구진은 개발된 MXene 고분자 복합체를 이용한 전자파차폐소재 상용화 후속연구에 박차를 가하고 있다. 본 연구는 대표적인 융합연구의 형태로 이루어졌으며, 미국 Drexel University, Yury Gogotsi 교수팀과 공동으로 수행되었다. 본 연구는 KIST 기관고유 연구사업과 미래창조과학부(장관 최양희) 미래원천기술개발사업, 산업소재원천기술개발사업, 해양경비안전사업의 지원을 받아 수행되었으며, 연구 결과는 세계적인 우수 과학 저널인 ‘Science’에 9월 9일자(한국시간) 온라인 판에 게재되었다. * (논문명) Electromagnetic interference shielding with 2D transition metal carbides (MXenes) - (제 1저자) 한국과학기술연구원 Faisal Shahzad - (교신저자) 한국과학기술연구원 구종민 박사, Drexel University Yury Gogotsi 교수 <그림자료> <그림 1> Ti3C2Tx 및 Ti3C2Tx-SA 고분자 복합체 필름 제조 모식도 Ti3C2Tx MXene 표면에 다양한 관능기가 존재하여 고분자 (SA)와의 친화도가 우수하여 고분자복합체 제조 및 필름 성형이 용이하다. <그림 2> Ti3C2Tx 및 Ti3C2Tx-SA 고분자 복합체 형상 및 특성 2D 나노 판상구조의 Ti3C2Tx MXene 및 이를 이용한 MXene 고분자 복합체 이미지와 두께에 따른 전자파 차폐 특성을 보인다. Ti3C2Tx는 1나노미터(nm) 두께에 수 마이크로미터 (μm) 길이를 가지는 2D 판상구조이며 고분자 복합체 제조시 여러 층이 적층된 구조를 보이고 고분자 내에 잘 분산 된다. 또한 두께에 따라 전자파차폐성능이 증가하며 2.5마이크로미터 두께에서 58 dB, 45마이크로미터 두께에서 92dB 의 높은 전자파차폐특성을 보인다. <그림 3> Ti3C2Tx-SA 전자파차폐 특성 비교 및 메커니즘 기존 전자파차폐재료와 비교했을 때 MXene 고분자 복합체는 기존 고분자복합체 재료에 비해 매우 우수한 전자파 성능을 보이며 그 특성은 금속필름의 특성에 가까운 우수한 특성이다. 이러한 우수한 전자파차폐특성은 2D 나노 판상구조인 MXene이 우수한 전기전도도를 가지고 있을 뿐만 아니라, 필름 내에서 MXene들이 다층 적층 구조로 존재하여 필름 내에서 강한 내부다중반사(internal multiple reflection) 효과가 발생하기 때문이다.
- 12
- 작성자물질구조제어연구단 구종민 박사팀
- 작성일2016.09.08
- 조회수39065
-
11
KIST, 2차원 흑린 원자막 소재의 숨겨진 비밀을 풀다
KIST, 2차원 흑린 원자막 소재의 숨겨진 비밀을 풀다 - 실리콘 소자를 대체할 흑린 기반 전하주입형 플래시 메모리 소자개발 - 기존의 메모리 구동 방식을 그대로 재현, 세계 최초 2차원 흑린 소재의 에너지 구조 정보 규명 실리콘 반도체를 대체할 미래 반도체로써 활발히 연구되고 있는 2차원 원자막 소재 가운데, 그래핀의 뒤를 이어 흑린(Black Phosphorus) 이라 불리는 2차원 소재에 대한 관심이 집중되고 있다. 이번에 국내 연구진이 발표한 흑린 기반의 전하주입형 메모리 소자에 대한 연구결과는 전하주입층(charge injection layer)과 전하구속층(charge trapping layer)을 모두 흑린 원자막을 사용하는 전하주입형 메모리소자에 대한 연구로 소자구조의 대칭성을 토대로 흑린 원자막의 에너지 구조 정보(에너지 밴드)를 규명함으로써 2차원 차세대 반도체 소재 연구 분야에 큰 주목을 받고 있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 광전소재연구단 이영택 박사, 황도경 박사, 미래융합기술연구본부장실 최원국 박사/연세대학교 물리학과 임성일 교수 연구팀은 전하주입층과 및 전하구속층 모두를 흑린 원자막으로 구성된 전하주입형 비휘발성 메모리 소자에 대한 연구를 수행하였다. 연구진은 2차원 흑린 소재의 에너지 구조 정보를 실험적으로 도출하는데 성공하였고, 논리회로에 대한 연구를 수행하여 메모리 특성을 디지털 신호로 직접 읽을 수 있는 메모리 셀을 개발하였다. 일반적으로 전하주입형 메모리 소자는 우리가 일상생활에 사용하는 USB 메모리(플래시 메모리) 소자의 기본 개념으로써 한 종류의 전하를(전자 또는 홀) 전하주입층에서 전하구속층으로 일정량 충-방전시킴으로써 메모리 소자를 구동하는 방식이다. 이때 전하는 수 나노미터 두께의 절연층을 터널링(통과) 하여 전하구속층에 충전되어야 하는데 이는 특정 에너지 장벽을 넘어서는 외부전압이 인가되어야만 가능하다. 이러한 원리로 특정전압 이상의 입력신호를 이용하여 전하를 충전시켜 메모리 기능을 프로그래밍 할 수 있으며, 역방향의 입력신호를 인가함으로써 입력된 메모리 정보를 지울 수 있다. 본 연구진이 사용한 2차원 흑린 원자막 소재는 n형(전자) 및 p형(홀) 반도체 특성이 동시에 나타나는 양극성 반도체 소재로써 넓은 범위의 밴드갭을 가진다. 연구진은 2차원 흑린 소재 기반의 전하주입형 메모리 소자개발을 위하여 전하주입층과 및 전하구속층 모두 흑린소재를 사용하여 전자 및 홀의 전하주입이 가능한 “양극성 메모리 소자”라는 새로운 개념의 메모리 소자를 개발하는데 성공하였다. 이러한 전자와 홀의 이동현상을 이용하는 메모리특성을 이용하여 아직까지 실험적으로 밝혀지지 않은 이차원 흑린소재 에너지 밴드구조를 실험적으로 도출하는데 성공하였다. 이영택, 황도경, 최원국 박사는 “2차원 흑린 원자막 기반의 전하주입형 메모리소자는 현재 우리의 실생활에서 많이 사용되고 있는 저장매체인 USB(실리콘 기반)와 같은 개념의 소자의 방식을 그대로 재현했다. 이로서 구동 원리가 명확하고 신뢰성 높은 전하주입형 2차원 흑린 메모리 특성을 기반으로 생각해 볼 때, 하나의 메모리 셀에서 다양한 기억 패턴(쓰기1, 쓰기2...)을 저장 시킬 수 있는 멀티 비트 개념의 초거대 대용량 메모리 소자 구현의 가능성을 모색할 수 있다. 이 연구는 미래의 메모리 반도체 응용소자로의 실전 및 응용 가능성에 대한 의구심을 해소시켜 주는 중요한 결과이다.”라고 밝혔다. 본 연구는 KIST의 기관고유사업 및 미래창조과학부(장관 최양희) 중견연구자 도약사업의 지원으로 수행되었으며, 6월 7일(화)자 Advanced Functional Materials에 온라인 게재되었다. <그림자료> <그림> 2차원 흑린 원자막 소재 기반의 전하주입형 메모리 소자. (a) 완성된 흑린 전하주입형 메모리 소자의 모식도 (b) 실제 소자의 단면 TEM 분석 사진 (c) 본 연구에서 규명한 흑린 원자막의 에너지 밴드 구조도 (d, e) 흑린 기반 메모리 소자의 구동 원리 및 (f) 메모리 소자의 전압구동 메모리 특성, (g) 메모리 소자의 회로 모식도
- 10
- 작성자광전소재연구단 이영택 박사, 황도경 박사, 미래융합기술연구본부장실 최원국 박사
- 작성일2016.06.15
- 조회수30158
-
9
KIST-고려대 공동연구팀, 현존 최고의 인장강도를 지닌 금속 나노선 개발
KIST-고려대 공동연구팀, 현존 최고의 인장강도를 지닌 금속 나노선 개발 - 기존 금속 소재의 인장강도를 상회하는 니켈/니켈-금 다층나노선 구조 개발 - 미세합금화와 나노구조 제어에 따른 금속소재의 초고강도화의 돌파구 마련 한국과학기술연구원(KIST, 원장 이병권) 미래융합기술연구본부 고온에너지재료연구센터 최인석 박사 연구팀과 고려대학교(총장 염재호) 공과대학 신소재공학부 김영근 교수 연구팀은 기존의 금속소재의 인장강도 수치를 훨씬 상회하는 현존 최고의 인장강도를 지닌 다층나노선을 개발했다. 연구팀이 개발한 지름 200 nm크기의 니켈(Ni)/니켈-금(Ni-Au) 다층나노선 구조의 인장강도는(*용어설명) 현존 최고치인 7.4(GPa:인장강도 단위)로 측정되었으며, 이는 동일 직경의 니켈(Ni) 나노선(*용어설명) 대비 약 5배 수준의 수치일 뿐만 아니라, 통상 알려진 금속소재의 인장강도 값 대비 약 10배 이상으로 니켈이 이론적으로 가질 수 있는 최고 인장강도치를 구현했다. 본 연구팀은 나노틀을 이용하여 한 개의 전기 도금조에 니켈과 금의 이온을 동시에 녹인 뒤, 펄스도금법(*용어설명)을 사용하여 니켈과 니켈-금 합금 층을 순차적으로 제조하였다. 이후 다층구조나노선 다발에서 1개의 나노선을 분리하여 집속이온빔 장치 내에 장착된 고정밀 인장시험기로 실시간 인장실험을 진행하였다. 나노선의 미세구조, 원소분포를 측정하였으며, 절단면의 형태를 파악하여 강도 증강의 원인을 규명하였다. 이번에 개발된 다층나노선구조의 경우 금속변형의 원인이 되는 전위의 움직임(dislocation)을 효과적으로 제어하기 위해 니켈 층과 니켈-금 층(금 15%)의 두께를 각각 10 nm 까지 조절하여, 기존 나노선에 비해 인장강도를 크게 증가시킬 수 있었다. 이번 연구를 통해 기존 연구에서 다층구조를 갖는 나노선의 경우 인장특성이 좋지 않다는 통념을 깨고, 미세합금화, 다층화 등 재료과학적 지식에 기반하여 금속의 강도를 크게 증강시킬 수 있었다. 이러한 연구결과는 향후 금속소재의 초고강도화에 새로운 방향을 제시하였다는 데 그 의의가 있다. 본 연구는 KIST 기관고유사업, 미래창조과학부 중견연구자지원사업 (도약, 융합)의 일환으로 추진되었으며, 나노분야에서 세계적으로 권위 있는 과학지인 ‘Nano Letters’ 2016년 5월 9일자 온라인판에 게재되었다. * (논문명) Ultrahigh Tensile Strength Nanowires with a Ni/Ni?Au Multilayer Nanocrystalline Structure’ - (제1저자) 고려대학교(현, Masdar Institute, UAE) 안부현 박사 - (교신저자) 한국과학기술연구원 최인석 박사 (교신저자) 고려대학교 김영근 교수 <그림자료> <그림 1> 니켈(Ni)/니켈-금(Ni-Au) 다층나노선의 합성방법 개요도(상) 단일 금속 나노선과 다층나노선의 인장파괴 시 절단면 비교(좌하) 다층나노선의 층간 두께에 따른 인장강도(우하) <그림 2> 3차원원자탐침 단층 촬영기를 이용한 니켈(Ni)/니켈-금(Ni-Au) 다층나노선의 단위부피당 조성 분포(좌)와 나노선 길이 방향에 따른 니켈과 금의 조성분포도(우)
- 8
- 작성자고온에너지재료연구센터 최인석 박사팀
- 작성일2016.05.16
- 조회수26886