연구소 소개
-
19
뇌 신경 회로망, 이제 실험실에서 배양한다
뇌 신경 회로망, 이제 실험실에서 배양한다 - KIST 뇌과학연구소, 뇌 신경망 재구성을 위한 3차원 플랫폼 개발 - 3차원 체외 환경에서 뇌 안에 있는 해마 신경 회로망의 구조 및 기능을 구현 최근 국내 연구진이 많은 신경 회로망들이 복잡하게 연결된 뇌 조직을 실제 세포 배양에 쓰이는 생체재료(3차원 체외환경) 내에서 구현하는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 뇌과학연구소 최낙원 박사, 허은미 박사 팀으로 구성된 공동 연구팀은 콜라젠 섬유를 특정 방향으로 정렬할 수 있는 기술을 세계 최초로 개발하여 콜라젠 내에서 신경세포를 3차원 배양할 때 세포 축삭*의 성장 방향을 유도할 수 있도록 하였다. *축삭 : 신경 세포(뉴런)의 세포체에서 길게 뻗어나온 가지로, 활동 전위를 전달하는 역할을 함. 축삭, 축색돌기, 축색이라고도 함 본 공동 연구팀은 이 기술을 적용하여 뇌 안에 있는 해마의 CA3, CA1**에서 추출한 신경세포들이 정렬된 콜라젠 섬유를 따라 분화, 성장하면서 시냅스를 형성하는 CA3-CA1 신경 회로망을 재구축하는데 성공하였다. 또한, 이 신경 회로망이 구조적 연결성뿐만 아니라 기능적 연결성도 갖추었음을 실험적으로 증명하였다. *CA3, CA1 : 대뇌변연계의 양 쪽 측두엽에 존재하는 해마 내 부위이며 학습과 기억을 담당 우리 몸 안의 여러 장기 및 조직은 세포와 세포 이외에 다양한 요소들이 흔히 특정 방향으로 정렬되어 있는데, 이것은 구조적인 속성을 부여하여 생물학적 기능이 작동되도록 하기 위한 것이다. 조직공학 측면에서 보자면, 체외 환경에서 장기 또는 조직을 새롭게 만들어 내고자 할 때 세포의 방향성을 구현하고 조절할 수 있다는 것은 조직의 외형적 구조뿐만 아니라 기능도 모사할 수 있다는 것을 의미한다. 본 연구 성과는 실제 세포 배양에 쓰이는 생체재료(3차원 체외 환경) 내에서 방향성 구현이라는 난제를 해결하고, 특히, 해부학적으로 뚜렷하게 구별되는 많은 신경 회로망들이 서로 복잡하게 연결된 뇌 조직을 체외환경에서 재구축했다는 것에 큰 의미가 있다. 이번 연구 결과를 통해 최낙원 박사는 “정상적인 신경 회로망뿐만 아니라 알츠하이머 병, 파킨슨 병 등 비정상적인 질병 상태의 신경 회로망까지 재구축하는 데 적용될 수 있다.”고 말했다. 또한, 허은미 박사는 “이번 기술을 환자 유래 줄기세포 기술과 융합한다면 다양한 뇌질환/장애와 신경 회로망의 기능 장애와의 연관성을 이해하는데 한 발짝 더 다가갈 수 있을 것”이라고 전망했다. KIST 뇌과학연구소 내 바이오마이크로시스템연구단 최낙원 박사와 신경과학연구단 / 치매DTC 융합연구단 허은미 박사 공동 연구팀은 UST(과학기술연합대학원대학교) 전공 교원으로 KIST 스타 포스닥 김소현 박사(현재 SK 바이오팜 재직), 임선경 박사(신경과학연구단/치매DTC융합연구단), 그리고 선임연구원 오수진 박사(신경과학연구단/치매DTC융합연구단/신경교세포연구단)와 함께 UST 학생을 포함하는 국내 연구자들로만 구성된 팀의 공동 연구를 통해 독자적으로 이루어낸 성과이기에 그 의미가 더욱 크다. 또한, Nature Communications 부편집자 Amos Matsiko 박사는 해외 리뷰 학술지인 Nature Reviews Materials에 이번 연구 결과를 Research Highlight(연구 하이라이트)로 2017년 2월 21일경 소개할 예정이다. 이번 연구는 미래창조과학부(장관 최양희) 뇌과학원천기술개발사업과 KIST Young Fellow 사업, 미래선도형융합연구단 사업의 지원으로 수행되었으며, 연구 결과는 저명한 국제 학술지인 네이쳐 커뮤니케이션즈 (Nature Communications, (IF : 11.329))에 2월 1일자 온라인 판에 게재되었다. * (논문명) Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network - (공동 1저자) 김소현, 임선경, 오수진 - (공동 교신 저자) 최낙원, 허은미 <그림 설명> <그림 1> 해마 내 상이한 CA3, CA1 세포군을 구획화할 수 있도록 고안한 3차원 세포 배양 플랫폼 (위)에 신경세포를 배양하면, 축삭의 성장 방향을 일정하게 유도 (아래) <그림 2> 투명한 탄성 고분자인 PDMS 기판을 미리 당기거나 (pre-stretch), 눌렀다 (pre-compression) 놓으면서 콜라젠 하이드로젤을 굳히면, PDMS가 변형되었다 복원되는 방향과 직각 (파란색, 위) 또는 평행한 (빨간색, 중간) 방향으로 콜라젠 섬유가 일괄 정렬하게 되고, 이를 따라 정렬된 축삭의 구조가 서로 다른 뇌 부위를 기능적으로 연결하게 됨
- 18
- 작성자뇌과학연구소 최낙원 박사, 허은미 박사팀
- 작성일2017.02.13
- 조회수23718
-
17
KIST, 두 마리 토끼 잡은 알츠하이머병 신약물질 발굴
KIST, 두 마리 토끼 잡은 알츠하이머병 신약물질 발굴 - 주요 발병기전인 베타아밀로이드(Aβ), 타우(tau) 단백질을 동시에 표적억제 - ‘Necrostatin-1’신약물질 생쥐 투여 후 인지기능 정상 수준으로 회복 - 치매DTC 융합연구단 및 대통령 Post-Doc 펠로우십 사업 수행 성과 알츠하이머병(알츠하이머성 치매)은 현대인의 10대 사망 원인 질환 중 유일하게 예방 및 치료 방법이 없는 질병으로 치매의 60~80%를 차지하는 가장 흔한 퇴행성 뇌질환이다. 현재까지 알려진 알츠하이머병의 주요 특징은 뇌 속에 존재하는 베타아밀로이드와 타우 단백질 이상 현상으로, 이들을 각각 표적하는 약물이 개발된 바 있으나 연이은 임상실패로 인해 학계와 산업계 전문가들은 베타아밀로이드와 타우, 두 개의 학파로 나뉘어 어떤 단백질을 조절해야 알츠하이머 치료가 가능한지 20년 넘게 치열한 논쟁을 벌이고 있었다. 한국과학기술연구원(KIST, 원장 이병권) 치매DTC융합연구단 김영수, 양승훈 박사팀은 베타아밀로이드와 타우 단백질의 이상 현상을 동반 억제하는 신약 후보물질인 Necrostatin-1(네크로스타틴-원)을 개발했다. 이 합성신약은 동시에 두 단백질을 직접 뇌에서 조절하고, 치매 증상을 정상 수준으로 회복시켜줄 수 있는 물질로, 국제적으로 처음 보고되는 치료방법이다. 알츠하이머병은 환자의 뇌에서 베타아밀로이드의 집적으로 인해 나타나는 신경반과 타우단백질의 과다인산화/집적으로 인해 나타나는 신경섬유다발의 형성이 주요 특징으로 관찰되고 있다. KIST 김영수 박사, 양승훈 박사팀은 Necrostatin-1(네크로스타틴-원)이라는 신약 후보물질을 알츠하이머 생쥐에 투약하였을 때, 베타아밀로이드 단백질의 응집체가 뇌에서 현저하게 감소되며, 타우 단백질의 과다인산화 및 응집현상 역시 억제된다는 기능을 밝혀내었다. 알츠하이머병 주요 원인 단백질을 모두 표적 억제하기 때문에, 뇌세포 사멸을 억제시키고 인지기능이 개선되는 효능을 나타내었다. 연구진은 알츠하이머병 환자의 뇌세포가 점점 죽어가면서 뇌의 크기가 작아지고 인지능력도 줄어든다는 사실에 집중해 뇌세포자연사와 괴사를 모두 억제할 수 있는 약물(Necrostatin-1)을 연구 중이었다. 연구 중 Necrostatin-1 (네크로스타틴-원)이 베타아밀로이드 응집현상을 조절하며, 뿐만 아니라 타우단백질의 과다인산화 및 응집을 억제한다는 사실을 밝혀냈다. 연구진은 이 결과를 바탕으로 네크로스타틴-1을 알츠하이머병에 걸린 생쥐에게 3개월간 투여한 후 뇌기능의 변화를 관찰했고, 인지 능력을 관장하는 뇌의 해마와 대뇌피질 부위에 있는 베타아밀로이드 응집체 및 타우단백질 과다인산화가 모두 제거된 것을 발견했다. 생쥐의 기억력 검사인 행동시험(Y-maze, Passive avoidance)에서 약물이 투여된 알츠하이머 생쥐의 인지 기능이 정상 수준으로 회복된 것을 알 수 있었으며, 또한, 알츠하이머병이 진행되면 나타나는 뇌 신경세포의 사멸 및 뇌 구조의 파괴 등의 증상 역시 사라짐을 확인했다. 이번 연구결과는 베타아밀로이드 및 타우를 각각 별개로 억제시키는데 초점을 맞춘 기존의 치료제 개발방법과 차별된다. 개발된 네크로스타틴-1은 병의 증상과 함께 나타나는 뇌신경세포사멸 기전 조절을 통한 새로운 치료방법이며, 베타아밀로이드와 타우 단백질을 동시에 조절할 수 있는 획기적인 신약후보물질이다. 김영수 박사는 “이번 연구 성과는 국제적으로 오랜 논쟁의 대상인 ‘아밀로이드 vs 타우’ 가설의 종지부를 찍을 수 있는 새로운 치료전략을 제시했다는 것에 의미가 크다.”며, “본 연구의 결과를 토대로 알츠하이머병의 병리학적 원인 규명 및 근원적 치료제 개발 연구에 더욱 힘쓸 예정”이라고 말했다. 또한, 양승훈 박사는 “세포자연사(apoptosis)와 괴사(necrosis)가 합쳐진 개념인 네크롭토시스(necroptosis)가 뇌질환에 미치는 영향을 광범위하게 연구 중이다”라고 밝혔다. 연구진은 이번에 개발된 신약물질을 의약품으로 허가될 수 있도록 전임상 및 임상 연구를 추진하고 있으며, 또한 알츠하이머병의 혈액 진단 시스템 개발 사업과 연계되어 알츠하이머병의 진단과 치료를 동시에 수행할 수 있는 연구도 진행 중이다. 본 연구는 국가과학기술연구회(NST, 이사장 이상천) 치매DTC융합연구단(단장:배애님 박사/KIST) 및 교육부(장관 이준식, 전담기관:한국연구재단) 대통령 Post-Doc 펠로우십 지원을 통해 수행되었다. 본 연구 결과는 세계적으로 권위있는 과학지인 ‘EMBO Molecular Medicine’(IF:9.5, JCR:5.6%)에 11월 17일자로 온라인 게재되었다. <그림자료> <그림 1> 신약후보물질의 알츠하이머병 치료 효과 (베타아밀로이드 응집), 치매 생쥐 뇌(좌), 약물 투약 후 치매 생쥐 뇌(우) 알츠하이머병이 유발된 생쥐 모델에 네크로스타틴-1을 투여한 결과 병을 유발하는 좌측사진의 점으로 보이던 베타아밀로이드 응집체가 뇌에서 모두 사라졌음. <그림 2> 신약후보물질의 알츠하이머병 치료 효과 (타우 과다인산화), 치매 생쥐 뇌(좌), 약물 투약 후 치매 생쥐 뇌(우) 알츠하이머병이 유발된 생쥐 모델에 네크로스타틴-1을 투여한 결과, 병을 유발하는 좌측 사진의 붉은 점의 타우단백질 과다인산화가 뇌에서 모두 사라졌음. <그림 3> 신약후보물질의 알츠하이머병 치료 (종합) 알츠하이머병의 원인 독성 단백질인 베타아밀로이드와 타우과다인산화를 완벽히 제거하고 인지 능력을 정상 수준으로 회복
- 16
- 작성자치매DTC융합연구단 김영수, 양승훈 박사팀
- 작성일2016.11.21
- 조회수28808
-
15
치매 전문가, 색다른 도전으로 뇌종양 치료에 변이와 내성 없는 신약 타겟 찾았다
치매 전문가, 색다른 도전으로 뇌종양 치료에 변이와 내성 없는 신약 타겟 찾았다 - 단백질 ‘GRP78’*이 암 세포표면으로 이동하는 특이적 행동 규명 - 암 세포표면의 ‘GRP78’ 표적 시, 동시에 뇌종양의 전이억제와 치료가능 *단백질 ‘GRP78’ (포도당조절단백질(Glucose Regulated Protein 78 kDa)) : 분자량 78,000 포도당제어성 단백질 표적 항암치료제 ‘글리벡’은 정상세포에는 없고 암세포에만 있는 특이 유전자 변이를 찾아내고 암의 전이를 억제하는 "마법의 탄환(Magic Cancer Bullet)"이다. 하지만, 암세포가 새로운 유전자 변이를 만들 경우 내성이 생기고 표적항암제는 결국 무력화 되는 치명적인 단점이 있었다. 최근 KIST 연구진이 기존 표적항암제의 단점을 극복할 수 있는 획기적인 항암 치료전략을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 치매DTC융합연구단 김영수 박사팀은 뇌종양 발생 시, 평상시 세포 내부에만 존재하던 단백질 ‘GRP78’이 암세포표면으로 이동하여 과발현되며, 암의 전이를 조절하는 것을 세계 최초로 규명하였다. 연구진은 단백질 ‘GRP78’을 억제할 경우 뇌종양의 치료가 가능하다는 연구결과를 발표했다. 김영수 박사는 기존에 ‘혈액기반 치매진단시스템 개발’ 및 치매에 대한 괄목할만한 성과로 세간의 주목을 받았던 치매 전문가다. 김 박사는 치매 연구를 하는 동시에, 자율성을 보장, 색다르고 도전적인 연구를 위해 수행되는 KIST 기관고유사업 ‘KIST Young Fellowship’ 프로그램에 참여했다. 단순한 호기심에 의해 시작한 연구가 새로운 분야를 발굴하여 이와 같은 성과를 내었다. 연구팀은 임상 데이터 분석과 생쥐모델 연구를 통해 정상 뇌조직에 비하여 뇌종양 부위에서 단백질 ‘GRP78(Glucose Regulated Protein 78 kDa)’이 특이하게 과발현 되어있다는 점에 주목했다. 다양한 뇌종양 세포막을 분석한 결과, 신규 단백질의 접힘(Folding, 고유의 2차구조의 배치순서로 중첩을 통한 고차구조 형성)을 조절하는 열충격단백질(Heat Shock Protein, 열충격에 의해 합성이 유도되는 단백질)의 일종인 ‘GRP78’은 정상세포 내부에만 존재한다고 알려져 있었으나, 특이하게 뇌종양 암세포의 표면으로 이동하여 비이상적으로 발현된다. 연구진은 단백질 ‘GRP78’이 단순히 암세포를 정상세포로부터 구분하는 표지인자 역할 뿐만이 아니라, ‘GRP78’을 항체로 표적하여 억제 할 경우 암의 치료가 가능하다는 것을 밝혀냈다. 가장 흥미로운 점은, ‘GRP78’은 변이가 없다는 점이다. 암 특이성이 유전자 변이가 아닌 암세포막 발현 여부이기 때문에 유전자 변이에 의한 내성 문제를 피해갈 수 있다. 김영수 박사는 이번 연구를 통해 “단백질 ‘GRP78’은 전이가 되는 암의 표지인자이자 치료인자이다. 즉, 뇌종양의 전이억제와 치료가 동시에 가능하다. 특히 변이가 없기 때문에 내성이 없는 항암제의 개발을 전망하고 있다. 또한, 뇌종양은 대표적인 전이 암으로, 다른 종류의 전이 암도 ‘GRP78’ 표적항암전략으로 치료 가능할 것으로 예측하고 있다”고 말했다. 본 연구 결과는 세계적인 우수 과학 저널인 ‘Scientific Reports’에 10월 7일(금) 온라인 게재되었다. <관련자료> <그림1> 뇌종양에서의 GRP78 과발현 A) 임상 데이터, B) 세포 실험, C) 생쥐모델 실험을 통해 뇌종양 특이적으로 GRP78이 과발현 되는 점을 확인함. <그림 2> 뇌종양 세포 표면에 발현된 GRP78 정상세포에서는 세포 내부에만 존재하는 GRP78이 전이성이 높은 다양한 뇌종양 세포의 표면에 과발현 됨.
- 14
- 작성자치매DTC융합연구단 김영수 박사팀
- 작성일2016.10.13
- 조회수22269
-
13
삼림욕의 효과, 그 비밀을 풀었다
삼림욕의 효과, 그 비밀을 풀었다 - KIST-식품연 공동연구로 소나무 피톤치드의 진정-수면효과와 그 작용기전을 규명 - 피톤치드 성분 ‘알파-피넨(α-pinene)’이 진정작용 효과와 수면의 질 개선 바쁜 일상에 지친 현대인에게 삼림욕과 등산은 건강과 활력을 불어넣어주는 방법으로 각광받고 있다. 삼림욕의 효과는 침엽수들이 만들어 내는 피톤치드(Phytoncide)에 의한 것으로, 다양한 생리활성이 보고되어 왔다. 국내 연구진이 이 피톤치드의 진정효과에 대한 과학적 작용기전(메커니즘)을 규명했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 신경과학연구단 이창준 박사 연구팀과 한국식품연구원(식품연, 원장 박용곤) 특수목적식품연구단 조승목 박사 연구팀은 공동으로 융합·협력 연구를 통해 소나무 피톤치드*의 진정-수면 효과와 그 작용기전을 규명하는데 성공했다. *우리나라의 산림에서 소나무는 약 37%의 가장 큰 비중을 차지하고 있으며(한국의 산림 자원평가, 산림청, 2013), 특히 삼림욕을 하는 침엽수림에서 소나무는 우리가 가장 흔히 접할 수 있는 품종이다. 그간 피톤치드의 다양한 효능 중 심신을 편안하게 해주는 진정작용은 잘 알려져 있음에도 불구하고, 정확한 메커니즘(작용기전)이 밝혀지지 않았었다. 이번 KIST와 식품연의 공동 연구로 이를 과학적으로 규명하는데 성공했다. 연구팀은 소나무 피톤치드의 진정작용 및 수면개선 작용기전(메커니즘)을 밝히기 위해 소나무 피톤치드의 가장 대표적인 성분인 알파-피넨(α-pinene)을 이용했다. 진정-수면과 관련된 다양한 신경세포 및 동물 실험들을 통해 알파-피넨(α-pinene)의 진정-수면 효과와 메커니즘을 과학적으로 입증하였다. 알파-피넨을 동물에 투여한 결과, 낮은 농도(25 mg/kg 이상)에서 진정작용을 보였으며, 높은 농도(100 mg/kg)에서 수면을 개선하는 효과까지 있는 것으로 확인되었다. 특히, 수면제(졸피뎀, Zolpidem)와 달리 수면의 질 저하 없이 수면을 개선하는 것으로 나타났고, 이러한 수면 효과는 알파-피넨이 GABA A형 수용체*를 활성화시켜 GABA에 의한 신경전달 과정을 연장시키는 것으로 신경세포 및 동물실험을 통해 작용기전을 증명했다. * GABA 수용체에는 A형과 B형 두 가지가 있는데, 졸피뎀 등 벤조디아제핀 계열의 수면제는 GABA A형 수용체에 결합하여 수면 개선 효과를 나타내는 것으로 알려져 있다. KIST 이창준 박사는 “본 연구는 한국식품연구원과의 첫 번째 공동 연구로, 천연물 유래 성분의 수면 개선 효과와 그 작용 기전을 최초로 행동학적, 전기생리학적, 구조학적으로 접근한 공동연구의 좋은 모델로, 이러한 공동연구를 통한 상호 협력을 통하여 천연물 기반 수면제 개발 연구를 계획 중에 있다.”고 밝혔다. 식품연 조승목 박사는 “이번 연구성과를 바탕으로 KIST 배애님, 박기덕 박사 연구팀과 협동연구사업을 통해 더 발전된 연구개발에 힘쓸 것이며, 천연물 기반 수면제를 개발하는데 매진하고 있다.”고 밝혔다. 본 연구는 한국식품연구원의 ‘수면개선 식품소재 유래 수면제 후보소재 및 선도물질’ 과제와 한국연구재단 리더연구자사업 ‘신경교세포 연구단’ 과제로 수행되었으며, 연구 결과는 약리학 분야의 저명 국제학술지인 ‘분자약리학(Molecular Pharmacology)’ 최신호에 8월 29일자 온라인 판에 게재되었다. <그림설명> <그림 1> 소나무 피톤치드 알파-피넨의 진정-수면 효능 및 작용기전 개요도 소나무 피톤치드의 주성분인 알파-피넨은 진정 작용와 수면개선 효과를 모두 가지고 있으며, 이러한 효과는 알파-피넨이 중추신경계의 GABA A형 수용체에 결합하여 GABA에 의한 억제성 신경전달을 연장시켜 나타내는 것으로 확인되었다. <그림 2> 동물을 이용한 소나무 피톤치드 알파-피넨의 진정-수면 효과 알파-피넨을 쥐에 투여한 결과, 낮은 농도(25 mg/kg 이상)에서 진정작용을 보였으며, 높은 농도(100 mg/kg)에서는 수면개선 효과를 나타내었다. 특히, 수면제와 달리 수면의 질 저하 없이 수면을 개선하는 것으로 확인되었다. 경쟁약물 시험법을 통해 동물에서 GABA A형 수용체를 활성화시킨다는 기전을 증명하였다. <그림 3> 신경세포를 이용한 알파-피넨의 전기생리학적 효능 및 기전 연구결과 알파-피넨이 수면에 영향을 미치는 기전을 확인하기 위하여 전기생리학 실험을 수행하였다. 기존에 널리 사용되고 있는 수면제인 졸피뎀과 마찬가지로, 알파-피넨은 GABA A형 수용체에 작용하여 GABA에 의한 억제성 신경전달 과정을 연장시키는 것으로 확인하였다. <그림 4> 알파-피넨의 GABA A형 수용체에 대한 결합력 시뮬레이션 모식도 알파-피넨의 GABA A형 수용체에 결합력 예측을 위하여 단백질 3차원 구조 및 결합모드 예측 결과 일반적으로 잘 알려진 벤조디아제핀 결합부위에 알파-피넨이 졸피뎀, 플루마제닐과 유사한 결합형태를 보여주는 것을 확인하였다.
- 12
- 작성자신경과학연구단 이창준 박사 연구팀
- 작성일2016.10.07
- 조회수29874
-
11
꿈의 물질 그래핀으로 질병 진단하는 바이오센서 개발
꿈의 물질 그래핀으로 질병 진단하는 바이오센서 개발 - 반도체 공정을 이용한 그래핀 미세 패턴의 대면적 구현 - 피 한방울에 존재하는 극미량의 단백질 검출 가능 최근 국내 연구진이 ‘꿈의 물질’이라 불리는 그래핀을 대면적 패널(4인치 웨이퍼)로 구현하여, 다양한 질병 및 질환들을 진단할 수 있는 고감도 바이오센서 제작기술을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 바이오마이크로시스템연구단 황교선 박사팀은 반도체 공정기술을 적용하여 수십 마이크로미터(10만~100만 분의 1 미터)의 패턴을 정교하게 구현한 그래핀 바이오센서를 제작하였다. 이 센서는 혈액 검진을 통해 피 한방울에 들어있는 특정 단백질의 양을 파악함으로써 질병 발현 유무를 알 수 있다. 특히, 그래핀 센서는 감도가 매우 우수하여 혈액 내 극미량(피코그램(pg/mL)*1조분의 1그램)의 바이오마커(질병표지 단백질)를 빠르고 정확하게 검출해 내어 다양한 질병의 체액 진단이 가능하다. 개발된 센서 기술의 상용화를 위해서는 민감도와 재현성 등의 센서 성능이 우수해야할 뿐만 아니라 대면적에서 센서를 구현하여 제작 단가를 낮추는 제작법이 매우 중요하다. 그러한 측면에서 본 그래핀 바이오 센서 제작 기술은 대면적 구현 가능성을 확보한 상용화 후보 기술이라고 할 수 있다. 그래핀 바이오센서는 혈액 내 존재하는 극미량의 베타아밀로이드 단백질을 검출하여 대표적 노화 질환인 알츠하이머 치매를 쉽고 빠르게 진단가능할 것으로 보인다. 유전자 변이 쥐 (Transgenic (TG) mouse)와 정상 쥐 (Wild Type (WT) mouse)의 혈액을 이용하여 치매 혈액 진단 가능성을 확인하였고, 현재 연구진은 정상인과 환자를 구분 할 수 있는 임상 시험 자료를 확보한 상태다. 본 연구는 대표적인 융합연구의 형태로 이루어졌으며 KIST 김영수 박사 연구팀과 유전자 변이 쥐 관련 연구를 공동 수행하였고, 중앙대학교 장석태 교수팀과 그래핀 센서 제작 기초 성능 평가 연구를 공동 수행하였다. 올해 초 개발된 치매혈액진단시스템을 기업에 기술 이전한 경험이 있는 황교선 박사팀은 치매 뿐만 아니라 암, 당뇨, 우울증 등 다양한 질환을 조기에 진단할 수 있는 가능성을 평가하여 상용화에 이를 수 있도록 후속연구에 박차를 가하고 있다. KIST 황교선 박사는 “본 연구 결과로 혈액 검사라는 쉬운 방법을 통해 다양한 질병이 진단 가능한 고감도 센서의 상용화에 한발 더 접근했고, 대면적에 구현할 수 있는 기술적 토대를 마련했다는 데 의미가 있다”며, “다양한 질병의 적용 가능성을 확인하기 위하여 국내외 임상 기관과 협력하여 임상 연구를 수행할 예정이다.”고 밝혔다. 향후 이 기술이 상용화 되면 누구나 편리하게 혈액검진으로 각종 난치병을 포함한 질병을 진단 가능할 것으로 기대된다. 본 연구는 KIST 기관고유 미래원천기술개발사업과 개방형 연구사업(ORP)과 보건복지부가 시행하는 질환극복기술개발사업의 지원을 받아 수행되었으며, 연구 결과는 세계적인 우수 과학 저널인 ‘Scientific Reports’에 8월 10일자 온라인 판에 게재되었다. * (논문명) Wafer-scale high-resolution patterning of reduced graphene oxide films for detection of low concentration biomarkers in plasma - (제 1저자) 한국과학기술연구원 김진식 박사 - (교신저자) 한국과학기술연구원 황교선 박사
- 10
- 작성자바이오마이크로시스템연구단 황교선 박사팀
- 작성일2016.08.11
- 조회수26836
-
9
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발 - 뇌의 산성도 및 활동을 시각적으로 측정할 수 있는 형광전압센서 개발 - 억제성 신경세포의 상호작용 원리를 규명 인체의 면역계가 정상적으로 작용하기 위해서는 적정수준의 pH(산성도)가 유지되어야 하며, 특히, 뇌 속 산성도의 변화는 암이나 신경질환 등의 질병과 연관성이 높다고 알려져 있다. 외국인 유치과학자가 주축이 된 국내 연구진이 뇌 속 신경세포의 전기적 활동은 물론 pH(산성도) 조절 및 관찰이 가능한 형광전압센서 단백질의 개발에 성공하였다. 해당 단백질을 통해 세계 최초로 신경세포내의 pH농도 조절 및 상호작용을 시각적으로 관찰할 수 있게 되었다. 한국과학기술연구원(KIST) 뇌과학연구소 기능커넥토믹스연구단 브래들리 베이커(Bradley J. Baker) 박사 연구팀은 빛을 통해 뇌 활동을 측정하여 실시간으로 산성도(pH)도 조절이 가능한 바이오 센서를 개발하였다. 이번 연구는 권위 있는 해외 학술지인 ‘Scientific Reports’ 4월 4일자 온라인판에 게재되었다. 2011년 미래창조과학부(장관 최양희)의 세계적 수준의 연구센터(WCI, World Class Institute)사업의 유치 과학자로 초빙되어 현재 KIST 정규직 연구원으로 재직 중인 브래들리 베이커 박사는 위와 같은 센서의 이름을 우리말 ‘파도, Pado’로 정하였는데, 센서를 통해 측정된 산성도와 전압 활동 신호가 파도치는 형상에서 모티브를 얻었다. 브래들리 베이커 박사는 2015년 뇌 속 신경활동의 시각적 관찰이 가능한 제 1호 탐침 ‘봉우리, Bongwoori’(*용어설명)에 이어, 두 번째로 ‘파도, Pado’개발에 성공한 것으로 과학기술연합대학원대학교(UST) 학생과의 독자적인 연구를 통해 이루어진 성과이기에 그 의미가 더욱 깊다. 브래들리 베이커 박사 연구팀은 수소이온통로 단백질과 뇌에서 발현 가능한 형광물질을 이용하여 형광단백질 센서 ‘파도’를 개발하였고, 이를 배양이 용이하여 일반적으로 생물학 실험에 사용되는 HEK 293세포(인간배아신장유래세포)에 발현시켜 pH에 변화에 따라 연결된 다른 세포가 연동됨을 증명하였다. 이 연구결과는 HEK 293세포와 유사하게 전기적으로 연결되어 있는 억제성 뉴런은 물론이고 심장, 신장 등의 연구에도 적용이 가능하며, 추후 ‘파도, Pado’를 이용한 산성도 변화관찰은 물론 산성도 조절을 통해 뇌 세포간의 상호작용 및 다양한 연구 진행이 가능할 것으로 보인다. 또한, ‘파도’는 기존의 ‘봉우리’에서 관찰이 가능하였던 전압과 빛의 세기와의 연관성을 실험적으로 증명할 수 있었는데, 이러한 원리규명을 통하여 그 기능이 향상된 3호 탐침이 개발 중이다. 베이커 박사는 “본 연구로, 신경세포부터 면역세포에 이르기까지 건강상태와 질병상태에서 pH의 역할을 파악할 수 있었고, 향후 파킨슨병과 같이 억제성 뉴런의 이상으로 발생되는 뇌질환의 근본적인 원인을 규명하는데 일조할 것으로 예상된다.”고 밝혔다. * (논문명) Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions - (제1저자) Bok Eum Kang - (교신저자) Bradley J. Baker <그림자료> <그림 1> 형광단백질센서 ‘파도, Pado’의 구조 S1-S4는 전압을 감지하며, 수소이온농도를 조절하는 수소이온통로의 역할을 가지며, SE A227D는 수소이온통로의 변화 혹은 S1-S4에서 감지되는 전압변화에 따라 형광세기를 변화시키는 역할을 한다. <그림 2> 왼쪽사진은 파도를 발현하는 HEK293 세포사진이고, 빨간선은 전기적 활동과 pH농도변화에 따른 형광세기 변화를 파란선은 수소이온이 세포막을 통과하면서 발생하는 전류의 변화를 나타냄. 수소이온이 통과하면서 발생하는 전류 1nA(전류의 단위; 암페어(ampere)의 10억분의 1)당 형광신호 변화량이 약 15% 변화하는 것을 관찰할 수 있음. <그림 3> ‘파도’로 관찰한 전압과 pH이미지 전압은 파란색, pH는 빨간색을 보여줌. 세포는 전압의 변화를 보여주며 파란색으로 시작한다. 3670번 사진에서 세포의 왼쪽 아래 코너에서 pH변화가 보이기 시작하고, 4090사진에서 위쪽 오른쪽 세포의 코너에서 pH가 변화하는 것을 관찰할 수 있다. 4450사진에서는 pH의 움직임이 세포 전역에서 파도처럼 퍼져있다. 각 사진번호는 밀리세컨드(1000분의 1초)를 나타내며, 이 과정은 대략 1초가 소요된다. <그림 4> ‘파도’를 억제성 뉴런에 적용한 예상도 초록색으로 표기된 파도가 발현함에 따라 한 억제성 뉴런(Inhibitory Neuron)에서의 변화가 다른 억제성 뉴런(Inhibitory Neuron)로 이동하는 것을 볼 수 있다.
- 8
- 작성자기능커넥토믹스연구단 브래들리 베이커(Bradley J. Baker) 박사 연구팀
- 작성일2016.04.06
- 조회수24341
-
7
마이크로 입자다발로 수십 종의 유전자를 동시에 진단하는 원천기술 개발
마이크로 입자다발로 수십 종의 유전자를 동시에 진단하는 원천기술 개발 -메르스, 지카바이러스 등 신변종 감염병 조기 정밀진단 적용가능 최근, 차세대 유전자 시퀀싱 기술과 생물정보학의 발전으로 질환과 유전자와의 상관관계가 밝혀지고 있다. 특히, 유전자 변이에 의한 질환인 각종 암과 감염원에 의한 만성질환 등은 유전자를 정밀하게 분석함으로써 질환의 특징을 자세히 파악할 수 있다. 질환에 대한 정보를 보유한 유전자는 현재까지 real-time PCR(실시간 핵산증폭(polymerase chain reaction), *용어설명) 기술로 한번에 3~4종의 유전자까지만 분석할 수 있었다. 따라서 여러 종의 마커를 분석하려면 그에 따른 비용이 가중되어 진단법으로 자리잡는데 불리하며, 환자로부터 얻는 시료 중에는 여러 번의 분석에 필요한 양을 채취하기 어려운 경우도 있다. 한국과학기술연구원(KIST 원장 이병권) 뇌과학연구소 바이오마이크로시스템 연구단 김상경 박사팀은 기존의 유전자 정밀 다중분석 비용과 시료의 제한을 해결하기 위해 표지(Marker)를 가진 마이크로 입자에서 핵산을 고효율로 증폭하는 기술을 개발했다. 표적 유전자만을 증폭하는 프라이머(특정 DNA단편, *용어설명)을 다량 함유한 다공성 마이크로입자에서, 실시간으로 증폭과정의 형광신호를 측정하여 그 유전자의 유무와 양을 측정한다. 몇 가지 유전자를 동시에 분석하고자 하면 해당되는 입자를 골라서 시료와 섞고 함께 분석하면 되고, 이때 각 입자에는 해당되는 표적유전자가 패턴으로 표지되어 신호를 구분할 수 있다.. 핵산증폭용 마이크로입자는 다공성 하이드로젤 (*용어설명)로 구성되어 있고 광가교반응 (*용어설명)을 통해 인식패턴과 프라이머를 포함한 형태로 제작된다. 제작과정이 빠르고 안정적이며 대량생산이 가능하여 제품으로 개발할 때 가격경쟁력이 높을 것으로 기대된다. 도장과 같이 올록볼록한 구조를 가진 기판에 폴리머 전구물질과 프라이머를 포함한 액체를 떨어뜨려 반구모양의 액적을 만들고 자외선을 쬐어 완성한다. 입자의 크기는 100~500 마이크로미터 정도의 범위에서 조절가능하며 입자식별을 위하여 다양한 패턴을 넣을 수 있다. 현재는 패턴인식으로 10만 종류 이상의 입자 식별이 가능한 코드를 적용하여, 한꺼번에 분석하는 유전자 표적의 수는 거의 제한이 없다. 김상경 박사팀은 질환의 표지자로 주목받는 miRNA (*용어설명) 10종을 1.5 mm 폭의 용기에서 동시에 검출하였다. 각각의 miRNA를 선택적으로 증폭하는 입자를 1개씩 모은 10개의 입자다발과 극미량의 생체시료를 섞고 그 속에 포함된 10종의 miRNA 양을 분석한 것이다. 더 작은 입자를 이용하게 되면 100개 이상의 동시분석도 가능하다. miRNA는 생체조절물질로서 폭넓게 연구되는 대상으로, 특히 세포간의 신호를 전달하는 세포외 소포체(*용어설명)에 풍부하게 포함되어 암, 치매 등의 퇴행성 질환의 진행을 표지하는 마커로서 잠재력이 크다. 이번에 개발된 핵산분석기술을 이용하여 수십 종의 miRNA의 양적인 변화를 동시에 측정하면 질환을 보다 정밀하게 진단할 수 있게 된다. 이번 연구는 여러 가지 핵산을 분석하는 동시에 감염성 질환을 정밀하게 파악하고 치료하는 데에도 적용가능하다. KIST 김상경 박사는 “감염균의 정확한 유전형(*용어설명)과 약물 내성 등을 단 1회 분석만으로 파악이 가능하며, 같은 비용으로 환자에게 더 유리한 의료서비스를 제공하는 차별화된 진단기술로 발전될 수 있다. 특히 퇴근 메르스나 지카바이러스 등 신변종 감염병 바이러스와 같이 시급하고 정밀한 진단이 필요한 경우 유용한 기술로 활용되기를 기대한다. 향후 빠른 시일안에 상용화가 될 수 있도록 임삼시험등 필요한 연구들을 계속 진행해나가는 것이 목표”라고 말했다. 본 연구는 미래창조과학부 지원으로 KIST 개방형 연구사업, 미래원천 연구사업, 보건복지부 미래융합 의료기기 개발사업을 통해 수행되었으며 연구결과는 세계적 권위를 자랑하는 Nature의 자매지로서 융합기술분야 국제 저명 학술지인 Scientific Reports (IF: 5.578)에 3월 온라인판에 게재되었다. 또한 해당 연구결과는 국내특허 (출원번호: 1020130128696) 및 해외 PCT (출원번호: PCT/KR2016/001493) 출원되어 등록과정에 있다. * (논문명) Extensible Multiplex Real-time PCR of MicroRNA Using Microparticles - (제1저자) 한국과학기술연구원 정승원 박사 - (교신저자) 한국과학기술연구원 김상경 박사 <그림자료> <그림1> 표적유전자용 다공성 표지입자의 구성도 및 표적 유전자 농도별 입자내 형광 증폭 과정 <그림2> 입자의 제작과정 (위) 및 제작된 표지입자 이미지 (아래) <그림 3> 5종의 서로 다른 miRNA 입자를 배열한 후 각기 다른 농도의 유전자를 주입하여 실험한 결과, 각 입자는 서로간의 교차반응 없이 주입된 농도에 맞는 신호를 보임 <그림 4> 세포외소포체로부터 채취한 미량의 시료로부터 10종의 miRNA를 다중 분석한 결과. 무작위로 2종의 miRNA를 넣어준 결과 다른 유전자의 신호에 영향없이 2종 miRNA의 신호만 변한 것을 확인 <그림 5> 정밀 감별진단 개념도
- 6
- 작성자바이오마이크로시스템 연구단 김상경 박사팀
- 작성일2016.03.29
- 조회수24005
-
5
KIST, 세계최초로 알츠하이머병의 근원적 치료 가능한 신약 개발
KIST, 세계최초로 알츠하이머병의 근원적 치료 가능한 신약 개발 - 알츠하이머병의 원인 독성 단백질 완벽히 제거하고, 인지 능력을 정상 수준으로 회복 - 독성 없고 흡수율 높아 물에 타먹을 수 있는 소분자 물질 고령화 시대 대표적 질환인 알츠하이머병은 치매의 60~80%를 차지할 정도로 치매 중 가장 흔한 퇴행성 뇌질환이다. 알츠하이머병은 예방 및 치료 방법이 없는 질병으로, 약 10년여에 걸쳐 진행되며 치료기간동안 오랜 약물 투약이 필요하다. 그래서 섭취하기 쉽고 부작용이 적으며 체내에 들어갔을 때 안정성이 뛰어난 의약품이 필요하다. 한국과학기술연구원(KIST, 원장 이병권) 연구진은 알츠하이머병을 근원적으로 치료할 수 있는 신약 후보물질을 개발했다. 식수에 타서 마셨을 때 알츠하이머병의 원인 단백질인 베타아밀로이드를 뇌에서 완벽하게 제거하고 치매 증상을 정상 수준으로 회복시켜줄 수 있는 물질로 세계적으로 처음 보고되는 치료방법이다. KIST 뇌과학연구소 김영수 박사, 김동진 소장 연구팀은 경구로 투약한 EPPS라는 신약후보물질이 알츠하이머병을 유발하는 베타아밀로이드 단백질의 응집체를 뇌에서 완벽히 제거하고 기억력 감퇴와 인지능력 저하 등의 치매 증상을 치료할 수 있다고 밝혔다. (주: EPPS는 화합물 3-[4-(2-Hydroxyethyl)-1-piperazinyl]propanesulfonic acid의 줄임말) 연구팀은 알츠하이머병의 원인 단백질로 알려진 베타아밀로이드 단량체는 정상인의 뇌에도 분포되어있으나 알츠하이머 환자의 뇌에서만 응집되어있다는 점에서 본 연구의 아이디어를 착안했다. 단백질의 응집체와 다양한 합성화합물들 간의 상호 반응을 조사했고, EPPS가 베타아밀로이드 응집체를 독성이 없는 단량체 형태로 풀어준다는 연구결과를 도출했다. 이 결과를 바탕으로 식수에 EPPS을 녹인 후 알츠하이머병에 걸린 생쥐에게 3개월간 투여하여 뇌기능의 변화를 관찰했고, 인지 능력을 관장하는 뇌의 해마와 대뇌피질 부위에 있는 베타아밀로이드 응집체가 모두 사라진 것을 발견했다. 생쥐의 기억력 검사로 쓰이는 Y-maze, Fear conditioning 및 Morris water maze와 같은 행동시험에서 약물을 섭취한 알츠하이머 생쥐의 인지 기능이 정상 수준으로 회복되었다. 또한, 알츠하이머병이 진행되면서 나타나는 증상인 신경 염증이 사라졌을 뿐만 아니라 뇌 기능 저하를 유발하는 GABA 급성분비 또한 억제 된다는 것을 확인했다. 주목할 만한 특징은 EPPS가 뇌의 혈관장벽을 투과하여 경구로 섭취하여도 뇌에서 흡수가 잘 되는 물질이라는 점이다. 이런 이유로 별도의 복잡한 투약절차 없이 식수 등 음식으로 EPPS를 섭취해도 효과가 높다. 이번 연구 결과를 토대로 연구팀은 EPPS가 의약품으로 허가될 수 있도록 전임상 및 임상 연구를 추진하고 있다. 또한, 이 물질은 알츠하이머병의 혈액 진단 시스템 개발 사업과 연계되어 알츠하이머병의 진단과 치료를 동시에 수행할 수 있는 연구도 진행 중이다. 본 연구 결과는 12월 9일 세계적으로 권위있는 과학지인 ‘Nature Communications’에 ‘EPPS rescues hippocampus-dependent cognitive deficits in APP/PS1 mice by disaggregation of amyloid-ß oligomers and plaques’라는 제목으로 게재되었다. (주: amyloid-ß: 아밀로이드-베타) 이 연구는 KIST 뇌과학연구소 기관고유사업의 일환으로 추진되었다. KIST 김영수 박사는 “이번에 발견한 EPPS의 알츠하이머병 치료 효능을 신약 개발에 적용하면 인체 친화적이고 부작용이 없으며 효능이 우수한 치료제를 개발할 수 있을 것으로 보인다”며, “본 연구의 결과를 토대로 알츠하이머병의 병리학적 원인 규명 및 근원적 치료제 개발 연구에 더욱 힘쓸 예정”이라고 하였고, KIST 김동진 뇌과학연구소장은 “임상 연구를 수행해봐야 알 수 있겠지만, 현재까지의 연구결과만으로도 치매의 근원적 치료제 개발의 새로운 방향을 제시했다는 점에서 그 의미가 크다”라고 말했다. <그림자료> 그림1) 신약후보물질에 의한 알츠하이머병 치료 효과 (원인물질제거), 치매 생쥐 뇌(좌), 약물 투약 후 치매 생쥐 뇌(우) 알츠하이머병이 유발된 생쥐 모델에 EPPS를 투약한 결과 병을 유발하는 베타아밀로이드 응집체가 뇌에서 거의 사라졌음. 그림2) 신약후보물질의 알츠하이머병 치료 기전 알츠하이머병의 원인 독성 단백질 완벽히 제거하고 인지 능력을 정상 수준으로 회복
- 4
- 작성자뇌과학연구소 김영수 박사, 김동진 소장 연구팀
- 작성일2015.12.08
- 조회수37781
-
3
피한방울로 치매진행과정 한눈에
피한방울로 치매진행과정 한눈에 -신규 바이오마커 발굴로 진단 뿐 아니라 증상 변화 관찰까지 가능 -KIST 개방형 연구사업 첫 결실, 치매진단기술 곧 상용화 알츠하이머 치매는 아직까지 진단과 치료가 불가능한 사망률 100%의 퇴행성 뇌질환이다. 한국과학기술연구원(KIST, 원장 이병권) 김영수 박사 연구팀이 간단한 혈액 검사를 통해 알츠하이머 치매의 진단 뿐만 아니라 질병의 악화나 치료과정을 관찰할 수 있는 기술을 개발하였다. 치매의 원인인 베타아밀로이드 단백질과 치매로 인해 발생하는 면역체계이상 단백질인 인터루킨을 동시에 혈액에서 측정하는 방식이다. 이를 통해 정상인과 환자간 구분 뿐만 아니라, 환자들의 증상 차이나 치료 예후도 알아 낼 수 있을 것으로 보인다. 이미 국내외 대형 병원과의 임상실험을 성공적으로 수행해 온 KIST 연구팀은 이번 연구 성과를 계기로 쉽고 빠르며 보다 정밀하게 치매 진단이 가능해 관련기술을 조만간 상용화할 계획이다. KIST 뇌과학연구소 김영수 박사팀은 1년전 혈액 속 베타아밀로이드 측정으로 치매를 진단할 수 있다는 병리학적 근거를 세계최초로 제시한 바 있다. 그 동안 임상 검증 연구에 집중해 온 연구팀은 맞춤형 의료 구현을 위해 치매 환자들의 예후 관찰법의 필요성을 느끼고 신규 바이오마커 연구를 병행해왔다. 치매는 인지 증상만으로는 환자의 병리학적 상태를 정의하기가 어렵다. 뇌발달에 의해 뇌기능이 일정 수준 보완되고 고학력자일수록 증상이 늦게 나타나기 때문인데 그렇다고 해서 뇌세포 파괴와 사망시기가 늦춰지는 것은 아니다. 객관적인 병리학적 정보를 혈액 검사를 통해 얻을 수 있다면 환자 맞춤형 치료법의 개발이 가능해진다. 연구팀은 치매 환자와 동일한 병리학적 변화를 나타내는 유전자 변형 생쥐의 혈액 내 면역계 단백질 변화에 주목했다. 알츠하이머성 치매 환자의 면역체계에 이상이 발생하고 베타아밀로이드 축적에 영향을 미친다는 최신 임상 보고(미국 인디아나 의과대학)에 착안한 것이다. 유전자 변형 생쥐의 치매가 악화 될수록 면역계 내장기관인 비장에 이상이 생긴다는 것을 확인하고 혈액을 뽑아 23종 면역계 단백질의 동정을 관찰했다. 그 결과 치매 초기부터 혈액 내 인터루킨-3(IL-3)의 농도가 정상 생쥐에 비해 감소되어있고 말기로 갈수록 저하 현상이 심해진다는 사실을 확인했다. KIST 김영수 박사는 “본 연구는 혈액 검사라는 쉬운 시험법을 통해 알츠하이머 치매의 진단 뿐만이 아니라 질환의 예후 관찰 또한 가능하다는 이론적 토대를 마련했다는 데 의미가 있다”며, “현재 100 여명 이상의 환자 혈액을 대상으로 한 임상 연구가 매우 성공적이고, 조만간 치매진단기술 상용화를 통해 고령화 사회의 심각한 사회문제로 대두되고 있는 치매해결에 한 걸음 더 다가갈 것으로 기대된다.”고 말했다. KIST는 치매 혈액 진단용 나노바이오 센서 시스템(황교선 박사)을 개발하여 국내외 대형 병원과 현재 성공적으로 임상 검증 연구를 수행 중이며 연내 기술이전을 통한 상용화를 목표로 하고 있다. 이 기술이 상용화 되면 누구나 편리하게 혈액검진으로 치매를 조기에 진단할 수 있고, 또한 질병 조기 발견을 통하여 병이 중증으로 진행되는 것을 최대한 지연시킴으로 환자가 인간다운 삶을 더욱 길게 누리게 할 수 있다. 무엇보다 중요한 것은 치매환자군 분류를 가능하게 하여 치료 신약 개발연구에 기여를 할 수 있다는 점이다. 본 연구는 한국과학기술연구원(KIST, 원장 이병권) 개방형 연구사업 알츠하이머 치매 혈액 진단 시스템 개발(단장 김태송, Dennis Choi) 과제로 진행되었다. KIST는 국가적 사회현안문제해결 및 신산업 창출을 위한 개방형 연구사업(Open Research Program)을 2013년부터 수행하고 있다. 연구 결과는 ‘Scientific Reports’ 10월호에 ‘Abnormalities of plasma cytokines and spleen in senile APP/PS1/Tau transgenic mouse model’라는 제목으로 10월 27일자 온라인 판에 게재되었다. <그림자료> <그림 1> 베타아밀로이드 검출 뇌척수액 및 혈액 검사 치매가 악화 될수록 혈중 베타아밀로이드 농도가 감소함. <그림 2> 치매 악화에 따른 면역계 내장 기관 이상 생쥐모델에서 치매초기부터 면역계 내장 기관인 비장의 조직이 파괴되고(좌) 비장종대 현상이 나타남. <그림 3> 혈액 내 면역계 단백질 동정 관찰 혈액 내 23종의 면역계 단백질(사이토카인)을 분석한 결과 인터루킨-3(IL-3)의 농도가 치매 초기부터 정상 생쥐에 비해 감소현상을 보임.
- 2
- 작성자뇌과학연구소 김영수 박사팀
- 작성일2015.10.29
- 조회수27411
-
1
뇌의 신경세포 활동을 실시간으로 볼 수 있는 형광 단백질센서‘봉우리’개발
뇌의 신경세포 활동을 실시간으로 볼 수 있는 형광 단백질센서‘봉우리’개발 - 뇌의 정보 전달 활동을 시각적으로 측정할 수 있는 형광전압센서 개발 - 초고속으로 뇌 전역에서 일어나는 신호를 실시간으로 한 눈에 볼 수 있는 가능성 열어 - 해외 유치과학자의 성과로 개발된 센서를 순우리말 ‘봉우리’로 작명 뇌의 신경계는 자극이 가해지면 전압 변화가 일어나는데, 이러한 전기적 활동을 통해 정보를 전달한다. 해외 유치과학자가 주축이 된 국내 연구진이 신경세포의 전기적 활동을 시각적 신호로 전환할 수 있는 형광단백질 센서 ‘봉우리’를 개발했다. 개발된 단백질은 현재까지 개발된 단백질 센서 중 가장 빠른 반응속도를 보였을 뿐 아니라 뇌의 다양한 영역에서 신경활동 변화를 동시에 관찰하는 것이 가능해 뇌 연구의 새 지평을 열었다. 한국과학기술연구원(KIST, 원장 이병권) 뇌과학연구소 기능커넥토믹스연구단 브래들리 베이커(Bradley J. Baker)박사 연구팀은 빛을 통해 빠른 뇌 활동을 실시간으로 측정할 수 있는 바이오 센서를 개발하였다. 이번 연구는 신경과학 분야의 권위있는 학술지인 ‘Journal of Neuroscience’에 1월 7일 게재되었다.(논문명 : Combinatorial Mutagenesis of the Voltage-Sensing Domain Enables the Optical Resolution of Action Potentials Firing at 60Hz by a Genetically Encoded Fluorescent Sensor of Membrane Potential) 신경세포는 전기적 자극 혹은 신경전달물질에 의해 세포막의 이온 투과도가 변하고, 이때 전압의 +극과 -극이 뒤바뀌는 역전현상이 일어난다. 이러한 현상을 활동전위(Action Potentials)라 부르는데, 하나의 활동전위는 1 에서 2 밀리초(1000분의 1초)로 빠르게 일어난다. 활동 전위는 냄새, 소리, 운동 등 뇌를 통해 일어나는 모든 반응을 전달하는 매개체가 되기 때문에 활동전위를 파악하는 것은 뇌 연구에 필수적이다. 연구팀은 활동전위와 같은 뇌의 전기적 활동을 광학적 신호로 바꾸기 위해 유전적으로 변형된 형광단백질 전압센서를 제작했다. 2011년 미래창조과학부의 세계적 수준의 연구센터(World Class Institute, WCI)사업의 유치 과학자로 KIST에서 오게 된 브래들리 베이커 박사는 개발한 센서의 이름을 순우리말 ‘봉우리, Bongwoori’로 정했다. 센서를 통해 측정된 광학적 신호가 마치 산봉우리 모양으로 보이기 때문이다. 기존의 형광 단백질 센서는 40 밀리초의 반응시간으로 활동전위를 측정할 수 있었다. ‘봉우리’는 8 밀리초로 측정이 가능해 센서의 시간 해상도* (Time Resolution)를 5배로 앞당겼다. 일반적인 활동 전위가 2 밀리초로 일어난다는 점을 감안할 때 봉우리의 시간해상도는 활동 전위 파악에 새로운 전기를 마련했다고 볼 수 있다. * 시간해상도(Time resolution) : 센서가 신호 또는 화상을 얼마나 빠른 속도로 기록할 수 있는지를 나타내는 지표 뿐만 아니라, ‘봉우리’는 60 Hz(1 초에 60번)로 발화(Fire)되는 활동전위를 측정할 수 있다. 이는 세계적으로 보고된 센서 중 가장 빠른 센싱 속도로, 일반적인 세포의 발화는 50~60 Hz 로 일어나기 때문에 봉우리를 사용하게 되면 대부분의 세포의 신경전달 상태를 파악하는 것이 가능하다. * 발화(Fire) : 세포가 신호를 받고 다른 세포로 신호를 전달하는 것 ‘봉우리’를 사용하면 뇌에서 일어나는 신호전달 상황을 한 눈에 실시간으로 볼 수 있기 때문에 뇌가 실제로 기능할 때의 모습을 전체적으로 지도화 할 수 있게 된다. 뿐만 아니라 ‘봉우리’를 뇌에서 행동조절과 관련된 지역에서 발현시킬 경우 정상 뇌와 질병상태의 뇌의 차이를 관찰할 수 있게 된다. 브래들리 박사는 “본 연구로 하나의 신경회로 또는 수천개의 신경회로를 한눈에 실시간으로 볼 수 있게 되었고 전에 볼 수 없었던 기능적 뇌활성지도를 제작 할 수 있게 되었다. 머지않은 미래에는 정상과 비정상인 뇌의 변화를 확인할 수 있게 될 것이고, 이를 통해 질병의 근본적인 원인을 파악하여, 자폐증과 같은 뇌질환의 원인규명 및 치료제 개발에도 이용될 수 있을 것으로 예상된다.”고 밝혔다. 본 연구는 미래창조과학부 WCI 사업과 KIST 주요사업에서 지원되었다. ○ 그림자료 그림 1) 세포막에서 발현하는 봉우리 단백질의 모양. S1-S4는 전압을 센싱하는 단백질 구조를 나타내고 SE A227D는 형광을 내는 단백질 구조를 나타낸다. 주위에 있는 공과 꼬리는 세포막을 형성하는 지방분자들을 표시한다. 그림 2) 왼쪽사진은 ‘봉우리’를 발현하는 하나의 신경세포를 찍은 사진이고 빨간선은 신경세포에서 발현하는 ‘봉우리’의 형광세기의 시간적 변화를 나타내고, 파란선은 자극이 전해질 때 빨간선과 동일한 신경세포에서의 전압의 변화를 시간적으로 나타냄. 봉우리는 12밀리초(0.012초) 정도로 빠른 신경세포 활동도 광학적으로 변환이 가능하며, 신경활동의 변화를 보여주는 파란선이 변할때마다 형광세기인 빨간선도 같이 변하는 것을 관찰 할 수 있음 그림 3) 봉우리를 통해 뇌가 기능하는 모습을 실시간으로 관찰. 위의 왼쪽사진은 봉우리센서가 해마에서 발현하고 있는 모습. 뇌 자극 후 8 밀리초 후에 막전압이 변화하는 모습을 색으로 표시하였음. 박스는 해마의 0.5 cm X 0.5 cm 지역을 나타냄
- 0
- 작성자기능커넥토믹스연구단 브래들리 베이커 박사 연구팀
- 작성일2015.01.08
- 조회수27705