메뉴 건너띄기
본문 바로가기 대메뉴 바로가기

KIST 한국과학기술연구원

통합검색

최신연구성과

총 게시물 : 427

KIST 유럽(연), 인공 제브라피쉬로  화학물질 장기적 유해성 평가한다

KIST 유럽(연), 인공 제브라피쉬로 화학물질 장기적 유해성 평가한다

 - 인공장기 기반 독성평가기법 개발로 환경 위해성 평가 표준화 제시- 3차원 세포 맞춤형 지지체 개발을 통한 동물 대체 환경 독성 평가기법 확립새롭게 개발된 화학물질이나 화장품 등 화학물질을 원료로 개발된 신규 제품은 인체에 대한 독성과 환경에 대한 독성 두 가지 부문의 평가를 모두 통과하여 안전성을 확인받아야만 시중에 유통될 수 있다. 위 평가를 통과하지 못하면 내분비 장애 물질의 일종인 비스페놀A(BPA)처럼 유통이 금지된다. 화학물질의 환경 독성 평가는 물벼룩, 녹조 그리고 인간의 유전자와 90% 이상 동일한 물고기인 제브라피쉬 이 세 가지를 대상으로 시험을 해야 하는데, 최근 제브라피쉬는 척추동물로 분류되어 동물실험의 윤리적 문제에 직면하여 보건당국의 허가를 받아야만 실험할 수 있게 됐다.이런 상황을 극복하고자 한국과학기술연구원(KIST, 원장 윤석진)은 독일 현지법인인 KIST 유럽연구소(소장 김준경) 환경안전성연구단 김용준 단장 연구팀이 미국 일리노이 대학교 공현준 교수 연구팀과 공동연구를 통해 제브라피쉬의 간을 모사한 오가노이드(Organoid)를 배양하여 동물실험을 대체하면서 환경에 대한 장기적 독성 및 유해성을 평가할 수 있는 방법을 개발했다고 밝혔다.제브라피쉬를 이용하여 내분비 장애에 영향을 미치는지를 평가할 수 있는 지표 물질인 ‘비텔로제닌(Vitellogenin)’에 대한 유해성 평가 기법은 독성학 분야에서 널리 이용되고 있다. 그러나 제브라피쉬를 대체하여 시험하기 위하여 개발된 제브라피쉬 오가노이드는 아직 고농도의 VTG를 생성할 수 있는 조직으로 배양할 수 없어 실제 독성평가에 사용할 수 없었다. 공동연구진은 제브라피쉬 간세포를 배양하기 위해 폴리에틸렌 글리콜(Polyethiylene glycol, PEG)을 활용하여 오가노이드의 뼈대(지지체)를 제작하였다. 그 결과, 제브라피쉬 간세포들이 스스로 결합하고 조립되어 28일 동안 형상을 유지하여 장기적으로 배양할 수 있게 되었다. 연구진은 이러한 배양방식을 통하여 6주 이상 장기적 영향을 평가할 수 있는 만성독성 시험용 제브라피쉬의 인공 간 오가노이드 개발에 성공하였다. 이 인공 간을 활용하면 제브라피쉬를 대상으로 직접 시험한 것과 유사한 결과를 도출할 수 있어 윤리적 문제가 있는 동물실험을 대체할 수 있을 것으로 기대된다. 특히, 연구팀이 개발한 제브라피쉬 간세포의 3차원 생체모사 시스템을 활용하면, 내분비 장애 물질이 환경에 미치는 장기적 영향을 단시간에 평가할 수 있다. KIST 유럽연구소 김준경 소장은 “KIST 유럽연구소는 그간 축적된 환경안전성 분야의 연구 경험을 집약하여 2018년부터 ‘생태계 내 내분비 장애 물질 독성발현경로 프레임워크 개발’ 연구에 매진해왔다.”라고 말하며 “독성평가 및 동물대체시험법 분야 자체 보유 역량을 기반으로 국민 체감형 안전 및 보건 기술 개발지원을 위해 노력하겠다.”라고 강조했다.공동연구팀을 이끈 김용준 단장은 “글로벌 수준의 동물대체시험법 기반 독성평가 관련 기술을 확보해 국내 기술이전을 위한 기반을 마련하는 것이 단기적인 목표”라며 “앞으로 다양한 내분비 장애 물질이 환경에 미치는 영향을 분석할 수 있는 독성 신호체계를 개발하여 환경 독성 분야에 새로운 대체 시험법을 개발하는 데 주력할 예정이다.”라고 밝혔다.이번 연구는 과학기술정보통신부(장관 최기영) 지원으로 국가과학기술연구회 창의형융합과제와 KIST 유럽연구소 중점연구과제를 통해 진행됐으며, 해당 연구 성과는 Environmental Science & Technology(IF : 7.86, JCR 분야상위(%) : 5.47) 최신 호에 게재되었다.* (논문명) Matrix softness-mediated 3D zebrafish hepatocyte modulates response to endocrine disrupting chemicals- (교신저자) 한국과학기술연구원 유럽연구소 김용준 책임연구원- (교신저자) 미국 일리노이대학 공현준 교수 <그림설명>  [그림 1] PEG를 활용한 지지체의 Elastic modulus 변화 [그림 2] 제브라피쉬 간세포 장기배양 및 생리활성을 촉진하기 위한 지지체 구성 [그림 3] 세포 지지체에 따른 바이오 마커 발현 변화 

2020.11.15유럽연구소 환경안전성연구단 김용준 박사팀조회수 : 2705

공기 중 바이러스, 현장에서 일회용 키트로 바로 검출!

공기 중 바이러스, 현장에서 일회용 키트로 바로 검출!

 - 공기 중 바이러스 포집 및 검출 일체형 진단 플랫폼 개발- 일회용 포집·진단 키트를 이용한 부유 바이러스의 빠르고 선택적인 탐지국내 연구진이 공기 중의 특정 바이러스를 현장에서 바로 검출할 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 분자인식연구센터 이준석 박사팀이 광주과학기술원(GIST, 총장 김기선) 화학과 김민곤 교수팀, 건국대학교 (총장 전영재) 수의학과 송창선 교수팀과의 공동연구를 통해 공기 중의 바이러스를 현장에서 포집하고 동시에 검출할 수 있는 진단 플랫폼을 개발했다고 밝혔다. 현재 공기 중에 퍼져있는 각종 세균, 곰팡이, 바이러스와 같은 생물학적 위해물질을 검사하기 위해서는 검사할 장소의 공기를 포집하고 포집한 공기를 실험실에 가져온 후 적게는 수 시간에서 길게는 수일이 소요되는 별도의 분석 공정이 필요하다. 실험실로 옮기지 않고 현장에서 바로 검사할 수 있는 기존 기술은 세균 또는 곰팡이의 농도를 모니터링할 수는 있었으나, 특정 미생물의 유무나 입자 크기가 작은 바이러스를 구별하는 데는 한계가 있었다. KIST-GIST 공동연구진은 공기 중의 바이러스를 현장에서 일회용 키트를 활용하여 손쉽게 포집하고 동시에 검출할 수 있는 일체형 진단 플랫폼을 개발했다. 연구진이 개발한 일회용 바이러스 포집·진단 키트는 임신 진단 키트와 유사한 형태로 별도의 세척이나 분리 없이 하나의 키트 내에서 10분~30분간의 포집 후 20분의 분석을 통해 현장에서 최대 50분 안에 포집, 분석의 모든 과정을 완료하여 손쉽게 부유 바이러스의 존재를 확인할 수 있다.개발한 진단 플랫폼은 공기 채집기를 통해 부유 바이러스를 유리 섬유로 이루어진 필터인 다공성 패드에 수집, 농축하고 모세관 현상을 이용하여 검출 영역으로 이동시킨다. 이동한 바이러스는 특정 바이러스에만 반응하는 항체가 부착된 적외선 발광 나노입자와 결합되어 여러 바이러스가 공존하고 있는 환경에서도 원하는 바이러스를 선택적으로 검출할 수 있다. 또한, 이러한 진단 키트를 동시에 4개 이상 삽입할 수 있는 형태로 제작하여 동시에 여러 종류의 바이러스를 검출할 수도 있다.부유 바이러스는 실내 공간의 크기, 공조 시스템의 유무, 온도 및 습도 등의 외부 요인에 영향을 받기 때문에 공동연구진은 개발한 플랫폼을 검증하기 위해 외부 요인들을 조절할 수 있는 인공 부유 바이러스 조성 시스템을 구축하여 일정한 조건에서 실험을 진행했다. 넓은 공간에 확산되어 있는 인플루엔자 바이러스를 포집하여 다공성 패드 내에서 약 100만 배 이상의 농도로 농축하였으며, 패드 표면에 부착된 바이러스들을 표면 전처리 및 분석용액 최적화를 통해 약 82% 수준의 효율로 회수하여 검출 영역으로 이동시켜 분석할 수 있었다.KIST 이준석 박사는 “현장에서 포집하고 바로 분석이 가능한 플랫폼으로 코로나19 바이러스와 같은 공기중에 부유 중인 생물학적 위해 인자를 현장 진단하여 실내 공기 오염 모니터링 시스템으로 응용할 수 있다.”라고 밝혔다. 본 연구는 삼성미래기술육성사업 지원으로 수행되었으며, 이번 연구 결과는 ‘ACS Sensors’ (IF: 7.333, JCR 분야 상위 2.907%) 최신 호에 게재되었으며, 표지논문으로 선정되어 출판될 예정이다.* (논문명) An Integrated Bioaerosol Sampling/Monitoring Platform: Field-deployable and Rapid Detection of Airborne Viruses- (제 1저자) 한국과학기술연구원 이인애 박사후연구원- (제 1저자) 광주과학기술원 석영웅 박사후연구원- (교신저자) 광주과학기술원 김민곤 교수|- (교신저자) 한국과학기술연구원 이준석 선임연구원<그림설명>  [그림 1] 표지논문 선정 이미지   [그림 2] 공기 중 바이러스를 포집하고 탐지하는 일체형 분석 플랫폼 개략도공기 채집기를 통해 부유 바이러스를 다공성 패드에 수집 및 농축하고 모세관 작용을 이용하여 검출 영역으로 바이러스를 이동시킨다. 포집과 검출의 과정이 일회용 진단 키트 내에서 이루어져 현장에서 쉽고 빠르게 부유 바이러스 분석이 가능하다.  

2020.11.12분자인식연구센터 이준석 박사팀조회수 : 3790

햇빛만으로 깨끗해지는 수처리 분리막 개발

햇빛만으로 깨끗해지는 수처리 분리막 개발

 - 분리막 표면에 쌓인 미생물 오염 층을 햇빛을 쐬어 완전 제거 - 수처리 분리막과 광촉매의 융합 기술로 차세대 분리막 신소재 개발 밑거름수처리 분리막 기술은 바닷물을 담수로 만들 때나 하수 처리, 깨끗한 수돗물을 생산하는 정수 공정에서 다양하게 사용되고 있다. 일종의 필터인 분리막을 사용하여 오염물질을 여과하는 방식인 분리막 공정은 수질을 크게 개선할 수 있는 기술로서 최근 문제가 되었던 수돗물 유충 사태를 원천적으로 방지할 수 있는 대안으로 꼽힌다. 그러나 수처리 분리막을 일주일 정도 사용하면 분리막 표면에 미생물이 쌓이고 이 미생물들이 자라서 필터 성능이 크게 떨어진다.한국과학기술연구원(KIST, 원장 윤석진)은 물자원순환연구센터 변지혜 박사, 홍석원 단장 연구팀이 수처리용 분리막의 고질적인 문제로 알려진 미생물에 의한 표면 오염을 햇빛을 쐬면 스스로 세척되는 분리막 소재를 개발했다고 밝혔다. 이 분리막 소재를 이용하면 10분 가량 빛을 쐬어도 분리막을 다시 사용할 수 있기 때문에 분리막 관리에 드는 비용이 상당폭 절감될 것으로 예상된다.수처리 분리막은 물 여과 후에 오염물질이 표면에 쌓이므로 주기적인 세척이 필수적이다. 현재는 분리막을 적어도 일주일에 한 번 정도 6시간 이상 화학 약품을 이용해 세척하기 때문에 유지 비용이 상당히 많이 들고 분리막이 약품에 의해 손상되기도 하는 문제가 있었다. KIST 연구진은 이러한 문제점을 해결하기 위해 가시광선에 반응하는 광촉매를 수처리 분리막 표면에 단단하게 고정했다. 이렇게 표면처리를 거친 분리막은 가시광선을 쐬었을 때 표면의 오염 물질을 완전하게 분해하여 손쉽게 분리막을 세척할 수 있었다. 특히 분리막 표면에 쌓인 고농도 대장균 및 황색포도상구균 같은 박테리아와 박테리오파지 등의 바이러스를 최대 1시간 만에 99.9% 제거하는 우수한 성능을 나타내었다. 개발된 분리막은 미생물뿐만 아니라 염료 등의 유기 오염물질과 중금속까지도 처리할 수 있었고, 10회 이상 반복 테스트에도 성능이 유지되는 장점을 나타냈다. KIST 변지혜 박사는 “본 연구는 자연광을 이용하는 광촉매 기술과 수처리 분리막 기술을 결합하여 수처리 공정의 효율이 향상될 수 있음을 보여주었다.”라며 “이러한 연구결과를 바탕으로 수처리 분리막 시장을 선도할 수 있는 차세대 분리막 신소재 개발에 힘쓸 것”이라고 밝혔다.본 연구는 과학기술정보통신부(장관 최기영) 지원을 받아 KIST 미래원천 국가기반기술개발사업으로 수행되었으며, 이번 연구결과는 국제학술지인 ‘Applied Catalysis B:Environmental (IF: 16.683, JCR 분야 상위 0.943%) 최신 호에 게재되었다.* (논문명) Hydrophilic Photocatalytic Membrane via Grafting Conjugated Polyelectrolyte for Visible-light-driven Biofouling Control- (제 1저자) 한국과학기술연구원 정은후 박사과정- (제 1저자, 교신저자) 한국과학기술연구원 변지혜 선임연구원- (교신저자) 한국과학기술연구원 홍석원 책임연구원<그림설명>  [그림 1] 햇빛으로 재생할 수 있는 수처리 분리막 [그림 2] 고농도 미생물 오염수 여과 후 자연광 처리로 분리막의 물 투과 성능이 완전히 회복됨을 보여줌    

2020.11.10물자원순환연구센터 변지혜 박사팀조회수 : 4105

KIST, 중국발 미세먼지 국내 유입 한-중 공동연구로 입증했다

KIST, 중국발 미세먼지 국내 유입 한-중 공동연구로 입증했다

- 고해상 실시간 측정으로 오염물질 장거리 이동이 고농도 미세먼지 원인임을 규명- 오염원 규명을 통해 미세먼지 비상 저감조치의 효용성 증명가을, 겨울철만 되면 어김없이 찾아오는 고농도 미세먼지는 국내 대기의 정체 및 외부로부터의 오염물질 유입 등 다양한 원인이 알려져 있다. 현재는 실제 측정을 통해 어떤 성분, 근원지에 의하여 미세먼지가 형성되었는지에 관한 연구는 부족하여 대부분이 기상관측에 판단을 의존하고 있다.?한국과학기술연구원(KIST, 원장 윤석진)은 환경복지연구센터 김화진 박사팀이 고해상 실시간 측정분석기(HR-ToF-AMS)를 이용, 실시간으로 미세먼지의 구성성분을 측정해 2019년 3월의 고농도 미세먼지가 장거리 이동의 영향이었음을 밝혔다. 특히 이 결과는 중국과학원(CAS) 연구진과 공동으로 측정하고 비교하여 중국의 오염물질이 국내에 유입된다는 것을 과학적으로 증명하여 발표한 것으로, 국제적인 정책 수립 시 근거로 활용할 수 있을 것으로 기대된다. KIST 김화진 박사팀은 고해상 실시간 측정분석기를 이용하여 2개월에 걸쳐 3분 단위로 중국과 서울 시내의 대기 중 미세먼지의 화학적 구성성분을 측정하고, 약 이틀간의 시간차를 두고 측정값을 비교하여 어떤 오염원이 주로 미세먼지에 영향을 주는지를 분석했다. 해당 기간 동안 유기 성분, 질산염, 황산염 등이 중국에서 이동해 오는 오염물질임을 명확히 밝혀냈으며, 장거리 이동오염 물질인 납이 이동해 오는 것 또한 실시간 분석을 통하여 밝혀냈다. 연구진이 측정 분석을 수행한 2019년 3월은 고농도 미세먼지 농도가 100μg/m3 가 3일 이상 지속되는 등 매우 심각한 상황이어서 비상저감 조치 등이 시행된 바 있다. 그럼에도 불구하고 정책의 가시적인 효과를 확인할 수 는 없었는데, 오염원 분석을 통하여 자동차 2부제 시행의 효과가 있음을 밝혔다. 당시 고농도 미세먼지의 원인은 장거리 이동에 의한 사례였기 때문에 비상저감 조치가 전체적인 농도 감소에 절대적인 영향을 주지는 못하였으나, 자동차에 기인한 농도 감소에는 기여한 것으로 분석결과 나타났다. 이 결과는 향후 정책 수립을 하는데 있어서 가이드가 될 수 있을 것으로 보인다. KIST 김화진 박사는 “이번 한-중 공동연구를 통해 오염물질의 장거리 이동 영향을 밝히는 한편, 이와 동시에 어떤 오염물질이 이동해 올 수 있는지를 밝힐 수 있었다. 고농도 미세먼지 정책 수립에 참고가 될 수 있겠으나 고농도 미세먼지 현상이 항상 장거리 이동에 의해서만 발생하는 것이 아니므로 좀 더 다양한 케이스의 원인에 대한 실시간 측정을 통한 원인 분석 및 메커니즘 규명이 필요하다.”라고 말하며 “미세먼지는 우리나라만의 문제가 아닌 동아시아 전체의 문제이므로 국제적인 협력연구가 반드시 필요하다.”라고 밝혔다. 본 연구는 미세먼지 국가전략 프로젝트와 대기환경복합대응연구사업으로 수행되었으며, 이번 연구결과는 대기과학 분야 국제 저널인 ‘Atmospheric Chemistry and Physics’ (IF: 5.414, JCR 분야 상위 9.14%) 최신 호에 게재되었다.  * (논문명) Measurement report: Characterization of severe spring haze episodes and influences of long-range transport in the Seoul metropolitan area in March 2019- (제 1저자, 교신저자) 한국과학기술연구원 김화진 선임연구원- (공동저자) University of California Davis, Dr. Qi Zhang- (공동저자) 중국과학원 Dr. Yele Sun<그림설명> [그림 1] 해외로부터 장거리 이동해 온 미세먼지 성분 [그림 2] 고농도 기간 국내 비상저감조치 정책으로 인하여 자동차 배출에 기인한 미세먼지 (vehicle emitted OA) 농도가 줄어드는 것 또한 보여줌 [그림 3] KIST 연구진이 중국과의 공동 측정을 통하여, 국내 고농도 미세먼지 발생시 중국의 미세먼지중, 질산염, 황산염, 유기성분중 장거리 이동 유기오염원이 국내에 이틀 간격으로 영향을 미친다는 결과를 발표함 같은기간 국내 비상저감조치 정책으로 인하여 자동차 배출에 기인한 미세먼지 농도는 줄어드는 것 또한 보여줌 [그림 4] 장거리이동에 의하여 납이 이동하여 고농도 미세먼지 기간 국내에 영향을 미치는 것을 실시간 측정과 분석을 통하여 보여줌    

2020.11.05환경복지연구센터 김화진 박사팀조회수 : 3574

화재, 폭발 위험 없는 전기차 배터리 생산을 위한 전극소재 열분석 기법 개발

화재, 폭발 위험 없는 전기차 배터리 생산을 위한 전극소재 열분석 기법 개발

 - 3세대 전기자동차용 안전한 소재 설계를 위한 발판 마련- 전극 소재의 열분해 메커니즘 규명 및 실시간 분석 플랫폼 구축최근 전기자동차 배터리의 화재 사고가 끊이지 않고 있다. 전기 자동차의 배터리 팩의 경우 스마트폰 등의 소형 모바일 기기와 달리 수백 개의 배터리 셀로 구성되기 때문에 배터리의 불안정성은 인적, 물적 피해를 초래하는 매우 중요한 문제이다. 화재의 원인을 밝혀내려는 다양한 노력이 진행 중인 가운데 국내 연구진이 배터리의 열적 불안정성을 평가할 수 있는 새로운 분석기법을 개발했다.한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 장원영 박사, 전북분원 탄소융합소재연구센터 김승민 박사 공동연구팀이 투과전자현미경을 이용하여 배터리 양(+)극 소재의 열 안정성을 평가할 수 있는 실시간 분석 플랫폼을 구축하고, 이를 통하여 전기 자동차용 하이-니켈계 양(+)극 소재의 미세한 화학조성의 변화에 따른 열분해 메커니즘의 변화를 규명했다고 밝혔다.배터리의 양극은 충전용량, 즉 전기자동차의 주행거리를 결정짓는 핵심적인 부분이다. 양극 소재는 니켈·코발트·알루미늄 또는 니켈·망간·코발트 등의 여러 성분을 적정 비율로 배합하여 제작하는데, 기업 및 학계 연구진들은 전기자동차의 주행거리를 늘리기 위해 새로운 구성 비율을 찾으려 노력하고 있다.양극소재에는 니켈 금속이 들어가는데, 니켈이 많이 포함될수록 더 큰 충전용량을 확보할 수 있다. 또한, 니켈은 함께 구성되는 코발트보다 상대적으로 저렴하여 전기자동차 보급에 필수적인 배터리 단가를 낮추는 효과도 있다. 하지만 니켈은 그 충전용량이 큰 만큼 외부 환경에 쉽게 반응하려는 성질이 있어 배터리의 안정성이 낮아지는 치명적인 단점을 갖고 있다. 최근 개발 중인 3세대 전기자동차용 양극 소재는 니켈 함량을 80% 이상으로 높이고 있어서, 이로 인한 안정성 저하를 필수적으로 개선해야 한다.배터리의 화재는 주로 충전된 산화물계 양극 소재와 발화성 액체 전해질의 격렬한 발열 반응에서 기인하기 때문에, 연구진은 전해질과 맞닿아 있는 양극 표면에 초점을 맞춰 다양한 투과전자현미경 분석기법(전자에너지 분광분석법, 전자회절 분석법 등)을 활용하여 온도의 상승에 따른 전극 구조의 결정구조, 구성성분의 화학적 변화를 면밀히 관찰·분석하였다. 그 결과, NCA(니켈·코발트·알루미늄) 양극 소재에서의 화학 조성에 따른 배터리 열적 안정성 저하 원인과 배터리의 안전성 확보를 위한 구성 원소의 역할을 규명할 수 있었다. KIST 연구진은 NCA 양극 소재에서의 알루미늄 대비 니켈의 증가는 용량의 향상을 보이지만, 실제 상한 충전상태(총 리튬 이온의 67% 반응)에서 열 안정성이 크게 저하되는 것을 관찰하였다. 이를 분석한 결과, 실제 산화/환원반응에 참여하지 않는 알루미늄 원소가 부족해 충전 과정 중, 열 안정성을 저하시킬 수 있는 새로운 상(O1 Phase)을 형성하게 하고, 불안정해진 새로운 상의 표면 구조가 결국 저하된 열 안정성의 원인임을 밝혔다.KIST 장원영 박사는 “최근 전 세계적으로 잇따른 전기 자동차의 화재가 발생하고 있으며, 발화 원인이 배터리인 경우가 많았다. 본 연구를 통하여 고성능 양극 소재 개발에 있어서 열 안정성을 확보할 수 있는 화학조성 설계의 중요성을 확인했다.”고 밝혔다.KIST 전북분원 김승민 박사는 “발열 반응의 시발점인 양극 소재 자체의 열적 안정성을 확보하는 것은 전기 자동차 대중적 보급에 매우 중요한 역할을 한다. 이번에 개발한 고도 분석기법을 통하여 향후에는 미량 원소의 혼입에 따른 영향을 파악하여, 안정성이 확보된 고성능 양극소재를 개발할 수 있을 것”이라고 밝혔다.본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 에너지 분야 국제학술지 ‘Nano Energy’ (IF:16.602, JCR 분야 상위 4.29%) 최신호에 게재될 예정이다. * (논문명) Different Thermal Degradation Mechanisms: Role of Aluminum in Ni-rich Layered Cathode Materials- (제 1저자) 한국과학기술연구원 조은미 박사후연구원 - (교신저자) 한국과학기술연구원 장원영 책임연구원- (교신저자) 한국과학기술연구원 김승민 책임연구원 <그림설명>  [대표 이미지] KIST 연구진이 전기차용 양극소재로 널리 쓰이는 NCA (니켈·코발트·알루미늄)에서의 배터리 화재의 위험성을 줄여줄 수 있는 알루미늄 원소의 역할을 그린 예상도   [그림 1] 실제 상한 충전상태에서의 NCA양극 소재의 화학 조성에 따른 열안정성 차이 원인 규명 [그림 2] NCA 양극 소재에서의 니켈과 알루미늄의 교환으로 인한 전지성능과 열안정성과의 상충적 관계

2020.11.03에너지저장연구단 장원영 박사팀조회수 : 4008

부작용 무서운 조영제 없이 치매 원인 물질 모니터링

부작용 무서운 조영제 없이 치매 원인 물질 모니터링

- 테라헤르츠파 기술과 메타물질을 결합한 초고감도 영상기술 개발- 향후 다양한 극미량 질병 원인 물질 진단 기술 응용 기대국내 연구진이 조영제 없이도 생체 내부를 촬영한 영상을 통해 질병을 모니터링 할 수 있는 기술을 개발했다. PET, CT, 형광현미경 등을 이용해 생체 내부를 촬영하기 위해서는 촬영 대상이 잘 보이도록 하는 조영제 사용이 필수적이다. 하지만 조영제는 연관검색어가 ‘부작용’일 정도로 위험성을 갖고 있으며, 몸 속에서 생체 조직과 반응하여 조직을 변형시켜 어떠한 증상을 일으킬지 모른다는 문제가 있었다.한국과학기술연구원(원장 윤석진)은 센서시스템연구센터 서민아 박사 연구팀이 테라헤르츠(THz, 1012Hz) 전자기파를 이용하여, 조영제 없이도 생체 내에 미량만 존재하는 물질을 검출할 수 있는 새로운 방식의 이미징 기술을 개발했다고 밝혔다. 연구팀은 이 기술을 이용하여 치매 원인 물질로 알려진 ‘아밀로이드 플라크’ 단백질을 모니터링할 수 있었다.테라헤르츠 전자기파는 X-ray나 방사선처럼 고에너지를 갖고 있지 않아 생체조직을 변형시키지 않을 수 있는 장점이 있으며, 별도의 조영제 없이도 생체 내부를 관찰할 수 있어 안전한 차세대 이미징 기술에 응용할 수 있을 것으로 기대되고 있다. 하지만, X-ray나 가시광선보다 파장이 길기 때문에 매우 작거나 극미량의 물질은 관찰하는데는 어려움이 있었다. 또한, 테라헤르츠파는 생체 내 수분에 흡수되어 사라지기 때문에 관찰한 정보를 수집할 수 없다는 어려움도 있었다.KIST 연구팀은 자연계에 존재하지 않는 성질을 인위적으로 만들어낸 인공물질인 메타물질을 개발하여 위와 같은 어려움들을 극복해냈다. 메타물질을 활용하여 대상 물질의 광학적 특성을 바꾸면 특정 파장에서 금속을 플라스틱처럼 보이게 할 수도 있고, 눈에 보이지 않도록 할 수도 있다. 서민아 박사팀은 테라헤르츠파의 민감도를 높이고, 생체 내부의 물과 만나 흡수되지 않도록 수분과 만날경우 그 경계면에서 반사되어 돌아오도록 하는 새로운 메타물질을 설계, 개발했다. 그 결과, 기존 테라헤르츠파 기술로 영상화가 어려운 극미량의 생체 조직의 선명한 영상을 촬영하였다. 형광물질이나 방사성동위원소와 같은 조영제를 사용하지 않고도 기존 영상장치와 유사한 수준의 영상을 얻을 수 있게 된 것이다.연구진은 이 기술을 활용하여 뇌 속에 극미량만 존재하고, 치매의 원인 물질로 알려진 ‘아밀로이드 플라크’ 단백질을 관찰하였다. 기존의 영상 진단 방법에서는 영상의 명암 차이를 통한 상대적인 비교만 할 수 있었으나, 테라헤르츠파는 분자들의 상태에 민감하기 때문에 아밀로이드 단백질이 축적된 양까지도 정량적으로 분석할 수 있었다.KIST 서민아 박사는 “인체 내 다양한 질병 원인 물질을 조영제 없이 직접 검출함으로써, 치매뿐만 아니라 다양한 질병 진단 기술 개발에 적용할 수 있을 것으로 전망한다.”라며 “예를 들어 인체 내 암조직 등을 조영제 없이 선명한 경계면을 확인하는 영상기술로도 활용할 수 있을 것”이라고 밝혔다.본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 중견연구자지원사업, 글로벌프론티어사업을 통해 수행되었으며, 연구결과는 분석화학 분야 국제학술지인 ‘Biosensors and Bioelectronics’ (IF:10.257, JCR 분야 상위 0.581%) 최신호에 게재되었다. * (논문명) Label-free brain tissue imaging using large-area terahertz metamaterials​- (제 1저자) 한국과학기술연구원 이상훈 박사후연구원- (교신저자) 한국과학기술연구원 서민아 책임연구원<그림설명> [그림 1] 전자기파 파장별 스펙트럼과 테라헤르츠 정의 [그림 2] 메타물질을 이용한 고민감도 비표지 테라헤르츠 생체 이미징 기술 모식도   [그림 3] 테라헤르츠 메타물질을 이용한 생쥐모델의 뇌에서 노화에 따른 아밀로이드 플라크 응집 정도 모니터링 (좌) 메타물질을 이용한 정상(wildtype, 왼쪽)과 치매모델(APP/PS1, 오른쪽) 쥐 뇌의 비표지 테라헤르츠 이미지, 정상보다 치매 모델 쥐 뇌에서 월령에 따라 아밀로이드 플라크 양이 증가함을 확인할 수 있음

2020.11.02센서시스템연구센터 서민아 박사팀조회수 : 3758

앞뒤가 다른‘야누스’유리 개발

앞뒤가 다른‘야누스’유리 개발

- 투명유리창이지만 앞면과 뒷면의 반사색상이 다른 ‘광학야누스 효과’- 경고 알림,  정보 암호화 가능, 간단한 제조방법으로 상용화 가능성↑영화 속 범죄 피의자를 조사하는 장면에서 안에서는 밖에 보이지 않지만, 밖에서는 안이 보이는 취조실의 스마트 유리를 본 적이 있을 것이다. 그렇다면, 앞면과 뒷면이 서로 다른 색인 투명한 유리는 만들 수 없을까? 앞면의 색이 붉은색이라면 뒷면에서 봤을 때도 그 색이 투과되어 붉은색이 보일 수밖에 없어 큰 어려움이 따른다. 국내 연구진이 유리 양면에 서로 다른 이미지와 색을 표기할 수 있는 유리를 개발했다. 그럴 뿐만 아니라, 외부 환경에 따라 원하는 정보를 한쪽 면에만 나타나거나 사라지게 할 수 있어 유해 가스에 반응하여 경고 문구가 나타나는 유리로 활용할 수 있다.한국과학기술연구원 (KIST, 원장 윤석진)은 센서시스템연구센터 유용상 박사팀이 경북대학교(경북대, 총장 김상동) 전자공학부 이승열 교수팀과의 공동연구를 통해 양면에 다른 색이나 이미지를 표현할 수 있고, 외부 환경에 따라 색이 변화하는 투명 유리를 개발했다고 밝혔다.KIST-경북대 공동연구팀은 머리카락의 1/1000 두께인 30나노미터 수준의 초박막 금속- 유전체(誘電體) : 전기적 유도 작용을 일으키는 물질 유전체-금속 구조를 이용했다. 이 구조의 상부 금속층과 하부 금속층을 구성하는 나노층의 구성비를 다르게 제작하여, 유리의 양면 색상이 다르게 보이는 ‘광학야누스 효과’를 구현하였다. 연구팀은 여기에서 멈추지 않고 한발 더 나아가 가스나 각종 용액 등 유체가 금속층 사이로 스며들 수 있게 했다. 이를 통해 외부 환경에 반응하여 색이나 이미지, 메시지, 심볼 등의 정보를 나타내거나 사라지게 할 수 있었다.연구진이 개발한 초박막형 양면 반전 유리 기술은 고비용의 장비를 이용하지 않고 단순한 증착 공정을 통해 나노구조를 만들 수 있어 제작 단가를 획기적으로 절감하여 상용화를 위한 응용 가능성도 주목을 받고 있다. 또한, 염료를 사용하지 않고도 다양한 색상을 표현할 수 있는 응용기술이기 때문에, 오랜 기간이 지나면 색이 바래는 기존의 컬러 유리와는 달리 반영구적으로 색상을 유지할 수 있다. 여기서 구현된 색은 공작새의 깃털처럼 보는 각도에 따라 다른 화려한 색을 보여 인테리어용 컬러필터로도 활용할 수 있다.KIST 유용상 박사는 “이번 성과는 양면 반전형 정보를 제공하는 유리창 기술로, 정보의 불균형 배분을 가능하게 하는 신기술이다. 관찰하는 면에 따라 보이는 이미지가 다른 이 기술은 광학 스위치, 광소자 저장기기로도 응용 가능성 매우 크다.”라며, “외부가스, 액체, 온도, 습도에 따른 색상변화를 일으키는 유리창 제작과 같은 형태로 바로 적용할 수 있어 수소의 유출을 감지할 수 있는 수소저장용 유리 창고 및 수소 센서로 사용하기 위한 추가 실험이 진행 중이다.”라고 밝혔다.이번 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST의 주요사업으로 수행되었으며, 연구 결과는 광학 분야의 권위지인 ‘Light: Science and Applications’ (IF: 14.09, JCR 분야 최상위 1.9%) 최신 호에 게재되었다.* (논문명) Asymmetric Optical Camouflage: Tuneable reflective colour accompanied by optical Janus effect- (제 1저자) 한국과학기술연구원 김태현 학생연구원- (제 1저자) 한국과학기술연구원 유의상 박사후연구원- (제 1저자) 경북대학교 배영규 석사과정- (교신저자) 경북대학교 이승열 조교수- (교신저자) 한국과학기술연구원 유용상 선임연구원<그림설명>     [그림1] KIST-경북대 공동연구진이 개발한 양면 반전 이미징 반사형 광학야누스 기판 모식도  [그림2] 광학 야누스 원리로 제작된 전후 상이색상의 양면 반전 이미징 기판의 노출 액체의 특성에 따른 정보 암호화 사진 [앞면 (상)과 뒷면 (하)]

2020.10.29센서시스템연구센터 유용상 박사팀조회수 : 4172

반도체에 빛으로 지문 만들어 해킹 막는다

반도체에 빛으로 지문 만들어 해킹 막는다

- 회전하며 직진하는 빛의 특성을 이용한 근적외선 광트랜지스터 개발- 고성능·저비용 암호화 소자 개발로 복제·도감청 원천 차단스마트폰과 가전, 드론, 무인자동차 등이 실시간으로 데이터를 주고받는 사물인터넷(IoT) 기술은 이용자와 자산의 안전에 직결되는 만큼 더욱 강력한 보안 솔루션이 필요하다. 이에 따라 해킹에 노출되기 쉬운 소프트웨어 기반의 키 방식을 보완할 ‘물리적 복제 방지 기능(Physical Unclonable Function, PUF)’이 주목받고 있다.하드웨어 기반의 PUF 반도체 칩은 인간의 홍채나 지문처럼 고유의 물리적 코드를 갖고 있다. 제조공정에서 생성되는 미세구조의 편차를 키 값으로 갖기 때문에 PUF로 생성되는 보안 키는 랜덤하게 생성되어 고유성을 지니며 복제가 불가능하다. 하지만 더 높은 수준의 안전성을 위해 키가 생성되는 조합의 수를 늘리려면 하드웨어의 구조도 바꿔야 하는 한계가 노출된 바 있다.이런 가운데, 한국과학기술연구원(KIST, 원장 윤석진) 광전소재연구단 임정아, 주현수 박사팀은 부산대학교 고분자공학과 안석균 교수팀과 공동연구를 통해 하드웨어 구조 변경 없이도 빛의 회전(편광) 특성을 이용해 PUF의 보안성능을 크게 강화할 수 있는 암호화 소자를 개발했다고 밝혔다.빛이 전파될 때는 전후좌우 다양한 방향으로 진동하면서 나아가게 되는데, 연구진은 원을 그리며 나선형으로 나아가는 빛인  원편광(Circularly polarized light) : 시계방향 또는 반시계 방향으로 회전하면서 진행하는 빛원편광을 암호화에 활용했다. 원편광을 활용하기 위해, 빛의 회전 방향에 따라 소자에 도달하는 빛의 양이 조절되는  콜레스테릭 액정(Cholesteric liquid crystal) : 액정분자가 나선 축을 따라 꼬이면서 주기적인 층을 이루며 배열한 나선구조의 액정콜레스테릭 액정 필름을 근적외선을 감지하는 성능이 우수한 유기  광트랜지스터(Phototransistor) : 전류/전압과 함께 빛의 기본 특성(파장, 강도 등)을 감지하여 신호 증폭 스위치 역할을 하는 소자광트랜지스터에 결합하였다.이렇게 결합된 광트랜지스터는 액정 나선구조의 방향과 같은 방향으로 회전하는 빛은 반사시키고, 반대 방향의 빛은 투과시켜 시계방향 또는 반시계 방향으로 진행하는 빛의 회전 방향을 구분해서 감지할 수 있다. 그 결과, 소자의 물리적 크기를 바꾸지 않고도 암호화 키 생성에 사용되는 조합의 수를 증가시켜 해킹과 도·감청 등을 원천 차단할 수 있는 PUF 소자를 제작하는 데 성공했다.개발한 소자는 근적외선을 흡수하는 고분자반도체의 높은 흡광도와 트랜지스터에 의한 신호 증폭, 그리고 콜레스테릭 액정 필름의 적층으로 인해 생긴 광학적 간섭효과로 인해 기존의 나노패터닝 기반 근적외선 원편광 감응 광트랜지스터보다 최소 30배 이상 우수한 고감도를 보였다. 또한, 기존 가시광선 원편광만을 감지할 수 있던 유기 광트랜지스터 소자들과는 달리 연구진이 개발한 광트랜지스터는 광통신, 양자컴퓨팅 등 차세대 광전소자에 사용되는 근적외선 영역의 원편광을 감지할 수 있어 향후 적용 범위가 넓을 것으로 기대된다.KIST 임정아 박사는 “이번 연구는 원편광 감응 반도체 소자를 이용하여 보안성능이 강화된 암호화 소자를 구현했다는 점에서 그 의의를 찾을 수 있다.”라며 “복잡한 나노패터닝 공정없이 간단한 용액공정으로 고감도 근적외선 원편광 감응 소자의 제작이 가능함을 보였고, 근적외선을 활용했기 때문에 향후 다양한 차세대 광전소자 시스템에 활용될 수 있을 것으로 기대한다.”라고 밝혔다.부산대학교 안석균 교수는 “이번 결과는 콜레스테릭 액정 고분자 고유의 카이랄 성을 암호화 보안기술에 접목시킨 최초의 연구성과로 액정 고분자의 새로운 응용분야를 제시하였다는 점에서도 중요한 의미가 있다”라고 덧붙였다.본 연구는 과학기술정보통신부(장관 최기영) 지원 아래 KIST 주요사업 및 한국연구재단 전략과제, 개인기초과제 및 소재융합혁신기술개발사업으로 수행되었으며, 소재 분야의 국제학술지 ‘Advanced Functional Materials’ (IF: 16.836, JCR 분야 상위 4.678%) 최신 호에 연구 결과가 게재되었다.* (논문명) High-Performance Circularly Polarized Light-Sensing Near-Infrared Organic Phototransistors for Optoelectronic Cryptographic Primitives- (제 1저자) 한국과학기술연구원 한혜미 박사후연구원- (제 1저자) 부산대학교 이유진 학부연구생(現 Texas A&M 대학교 박사과정)- (교신저자) 한국과학기술연구원 임정아 책임연구원- (교신저자) 한국과학기술연구원 주현수 선임연구원- (교신저자) 부산대학교 안석균 부교수<그림설명>   [그림 1](a) 본 연구진이 개발한 카이랄 액정 네트워크 필름이 결합된 근적외선 원편광 감응 광트랜지스터 소자의 모습(b) 본 연구진이 개발한 카이랄 액정 네트워크 필름을 갖는 물리적 복제 방지 기능 (PUF) 어레이의 POM 사진   [그림 2] (a) 본 연구진이 개발한 근적외선 원편광 감응 광트랜지스터의 소자구조, 사용된 물질의 분자구조와 카이랄 액정 네트워크 필름의 모습(오)(b) 본 연구진이 개발한 카이랄 액정 네트워크 필름 형성에 대한 모식도 [그림 3] 근적외선 원편광 감응 광트랜지스터 개발의 주요 전략에 관한 모식도근적외선 감응 고이동도의 공액고분자 합성 및 근적외선 원편광 반사 콜레스테릭 액정 네트워크 필름 제조(상단), 근적외선 원편광 감응 광트랜지스터 어레이의 광감응 특성 및 원편광 빛을 사용하는 광전자 암호화 소자로의 응용결과를 보여주는 그림(하단)

2020.10.20광전소재연구단 임정아 박사팀조회수 : 4682

버려지는 택배박스로 바이오 디젤연료 만든다

버려지는 택배박스로 바이오 디젤연료 만든다

- 유전자 가위와 진화의 원리 이용, 바이오 디젤 원료 생산 수율 2배 향상된 미생물 개발- 온실가스 저감을 통한 기후변화 대응과 미세먼지 저감 기대화석연료를 사용하는 자동차, 특히 경유차가 내뿜는 배기가스는 미세먼지와 온실가스의 주요 원인으로 알려져 있다. 디젤이 아닌 바이오디젤을 사용하면 온실가스에 의한 기후변화 대응 및 미세먼지 저감에 효과적이지만, 현재와 같이 팜유, 대두유 같은 식물성 기름 또는 폐식용유를 화학적으로 처리하여 생산하는 방식은 원료수급이 원활하지 않은 문제점이 있었다.이에 식량 작물 원료가 아닌 농사 또는 벌목 과정에서 부산물로 생성되는 목질계 바이오매스를 이용하여 바이오연료를 개발하려는 노력이 활발하다. 목질계 바이오매스는 경제적이고 지속가능한 원료로, 미생물 대사과정을 거치는 동안 친환경 수송용 연료로 전환될 수 있다.한국과학기술연구원(KIST, 원장 윤석진) 청정에너지연구센터 이선미 박사팀은 버려지는 농업부산물, 폐지, 택배박스 등 목질계 바이오매스로부터 바이오디젤 원료를 생산할 수 있는 신규 미생물을 개발했다고 밝혔다. 이 미생물은 기존대비 2배의 생산 수율을 보였다.이 미생물은 목질계 바이오매스에 포함된 당 성분을 먹이로 하여 대사하는 과정에서 바이오 디젤 원료를 생산할 수 있다. 목질계 바이오매스에 포함된 당은 일반적으로 약 65~70%의 포도당과 약 30~35%의 자일로스로 구성된다. 자연계에 존재하는 미생물들은 포도당을 이용하여 디젤원료를 만드는데 효과적지만 자일로스는 이용할 수 없어 디젤원료 생산 수율을 제한하는 한계를 가지고 있었다. KIST 연구팀은 이를 해결하기 위하여 포도당뿐만 아니라 자일로스도 효과적으로 이용하여 디젤원료를 생산할 수 있는 신규 미생물을 개발하였다. 특히 미생물이 디젤원료를 생산하는데 필수적인 보조효소의 공급을 방해하지 않도록 유전자 가위를 이용하여 대사경로를 재설계했고, 그중에서 능력이 우수한 개체만을 선택하여 재배양하는 방식 등 진화의 과정을 실험실에서 효과적으로 통제하는 공법을 통해 자일로스 이용능력을 향상시켰다.이를 통해 목질계 바이오매스 유래 자일로스를 포함한 당 성분을 모두 사용하여 디젤원료를 생산할 수 있는 가능성을 확인하였으며, 보조효소 문제가 있는 대사경로를 활용한 기존의 연구와 비교하여 생산수율을 2배 가까이 향상시켰다.KIST 이선미 박사는 “바이오디젤은 기존 디젤차량 운행을 제한하지 않으면서 온실가스와 미세먼지를 줄일 수 있는 효과적인 대체 연료로, 바이오디젤 생산의 경제성을 높일 수 있는 핵심기술을 확보하였다.”라고 말하며, “잦은 태풍과 이상기후와 같이 이제 기후변화가 피부로 와닿고 있는 시점에서 가장 빠르고 효과적으로 기후변화에 대응할 수 있는 바이오연료 보급 확대가 이루어진다면 관련 산업 확대 및 기술 개발이 더욱 속도를 낼 수 있을 것으로 기대한다.”라고 밝혔다.이선미 박사는 2019년, 목질계 바이오매스를 이용하여 가솔린 대체 바이오연료를 만드는 미생물을 개발한 바 있다.(※GCB Bioenergy. 2020;12:90-100)본 연구는 과학기술정보통신부(장관 최기영)지원으로 KIST 주요사업과 한국에너지기술평가원 신재생에너지연구사업으로 수행되었으며, 연구결과는 ‘Global Change Biology Bioenergy’ (JCR 분야 상위 0.55%) 최신 호에 게재되었다.* (논문명) High­yield lipid production from lignocellulosic biomass using engineered xylose­utilizing Yarrowia lipolytica- (제 1저자) 한국과학기술연구원 김지원 학생연구원- (제 1저자) 한국과학기술연구원 육상도 인턴연구원(現,일리노이대학교 박사과정)- (교신저자) 한국과학기술연구원 이선미 책임연구원<그림설명> [그림1] 목질계 바이오매스를 원료로 미생물을 이용하여 바이오연료를 생산하는 개념도   [그림2] 목질계 바이오매스를 원료로 바이오디젤 원료를 생산하기 위한 미생물 개발   [그림 3] 디젤 원료 생산 균주 내 도입 된 이성화효소 기반의 자일로스 대사경로   [그림 4] 개발된 지질생산 효모균주(YSXI)와 야생종(WT)과의 자일로스 이용 능력 및 지질 생산 능력 비교 평가 결과

2020.10.13청정에너지연구센터 이선미 박사팀조회수 : 4610

임플란트에 인공뼈 코팅해서 염증 해결한다

임플란트에 인공뼈 코팅해서 염증 해결한다

- 생산 공정 단계, 시간, 비용 대폭 줄이면서도 기존 임상 제품 보다 코팅 성능 우월  - 금속, 고분자 소재 표면에 인공뼈 합성과 코팅을 동시에 구현인구 노령화와 함께 현대 사회로 발전하면서 골질환이 급증하고 있으며, 골질환 치료를 위한 치과용/정형외과용 임플란트의 사용이 증가하고 있다. A.D. 1세기경 로마시대에 철을 치아 대용으로 사용했을 정도로 임플란트의 역사는 오래되었다. 하지만 오랜 역사에도 불구하고 체내 뼈조직과 결합이 빨리 이루어지지 않아 헐거워지거나 염증이 생겨 2차 수술을 해야 하는 등의 문제가 발생한다.뼈와 동일한 성분으로 이루어진 인공뼈를 임플란트 소재에 코팅하여 이러한 문제를 해결하기 위한 방법이 시도되고 있다. 기존의 인공뼈 코팅 방법들은 인공뼈 물질을 제작하기 위한 별도의 합성 공정 과정과 장시간의 코팅 공정 시간이 필요하다. 또한, 모재와 인공뼈 코팅층 간의 결합력이 약하여 쉽게 손상되거나 뜯겨 나가는 경우가 많아 실제 임상에서 환자에게 사용될 수 있을 만큼 강한 코팅 방법은 부족한 상황이었다.그런 가운데, 한국과학기술연구원(KIST, 원장 윤석진) 생체재료연구센터 전호정 박사팀은 생체 이식용 재료 표면에 기존보다 세 배 이상 우수한 결합강도를 갖는 세라믹 인공뼈 코팅 기술을 개발했다고 밝혔다. KIST 연구진은 하루 이상의 시간과 수십 단계의 공정이 필요했던 기존 인공뼈 코팅을 단 하나의 공정만으로 한 시간 이내에 구현 가능한 기술을 개발했다. 이 공정 기법을 이용하면 인공뼈 코팅을 위한 원료 물질을 합성하는 별도의 과정도 필요하지 않고, 고가의 장비와 부수적인 열처리 과정 없이 나노초 레이저(nanosecond laser) 장비 하나만으로 코팅할 수 있다.그 뿐만 아니라 현재 임상에서 사용되고 있는 소수의 인공뼈 코팅 기법들보다 더 강한 결합력을 갖는 코팅층을 형성할 수 있다. 또한, 이 공정을 사용할 경우에 금속 표면뿐만 아니라 기존의 공정으로는 구현하지 못하였던 정형외과용 플라스틱 임플란트 등 고분자 소재 표면에도 강한 코팅을 구현할 수 있는 장점이 있다.전호정 박사팀은 공정 단계와 시간을 단축 하면서도 강력한 코팅을 구현하기 위해, 뼈의 주 성분인 칼슘과 인으로 이루어진 용액 속에 코팅 하고자 하는 재료를 위치시키고 레이저를 조사하는 방법을 사용했다. 이때 레이저의 초점 영역에 국소적으로 온도가 증가하면서 칼슘과 인 성분이 반응하여 세라믹 인공뼈(하이드록시아파타이트)가 합성되고 동시에 코팅층이 형성되었다. 이 방법은 기존의 코팅법들이 재료 표면에 코팅 하고자 하는 성분을 쌓아 올리는 방식과는 다르게, 레이저에 의해 인공뼈 성분의 합성이 일어나면서 동시에 재료의 표면이 녹는점 이상으로 가열되어 녹은 후 합성된 채로 다시 굳기 때문에 코팅 결합력을 극도로 증가시킬 수 있었다.KIST 전호정 박사는 “나노초레이저를 이용한 하이드록시아파타이트 코팅 기법은 현재 생체재료로 많이 사용되고 있는 티타늄, PEEK와 같은 생체비활성 소재의 표면을 간단한 방법으로 생체활성화 시킬 수 있는 기술로, 골융합을 필요로하는 다양한 의료기기로 확대 적용이 가능하게 하는 게임 체인저 역할을 할 수 있을 것으로 기대된다.”고 밝혔다.본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 이번 연구결과는 기능성 재료 분야 국제 저널인 ‘Advanced Functional Materials’ (IF: 16.836, JCR 분야 상위 3.981%) 최신 호에 게재되었다.* (논문명) Robust hydroxyapatite coating by laser-induced hydrothermal synthesis- (제 1저자) 한국과학기술연구원 엄승훈 학생연구원- (제 1저자) 한국과학기술연구원 정용우 학생연구원(現, LASERVAL)- (교신저자) 한국과학기술연구원 전호정 책임연구원<그림설명> [그림 1] KIST 연구진이 레이저를 이용하여 인골 뼈를 세계 최고속 수준으로 구현한 방법과 이로 인해 형성된 코팅층의 구조를 보여주는 모식도 [그림 2] 레이저를 이용한 인공뼈의 합성과 코팅이 동시에 일어나는 원리를 나타낸 모식도 [그림 3] 코팅 방법에 따른 인공뼈 코팅 강도 비교표

2020.10.06생체재료연구센터 전호정 박사팀조회수 : 3490

자료관리 담당 : 커뮤니케이션팀

연락처 : 02-958-6170

e-mail neoryan@kist.re.kr

개인정보처리방침

한국과학기술연구원 개인정보처리 방침

한국과학기술연구원은 정보주체의 동의, 「전자정부법」 및 「개인정보 보호법」 등 관련 법령상의 개인정보 보호 규정을 준수하여 이용자의 개인정보 보호 및 권익을 보호하고 개인정보와 관련한 이용자의 고충을 원활하게 처리할 수 있도록 다음과 같은 처리방침을 두고 있습니다. 

제1조(개인정보의 처리목적, 항목, 보유 기간 등) 

한국과학기술연구원(이하 “연구원”)은 다음 각 호에서 열거한 목적을 위하여 최소한으로 개인정보를 처리하고 있습니다. 처리한 개인정보는 다음의 목적 이외의 용도로는 이용되지 않으며, 이용 목적이 변경되는 경우에는 「개인정보 보호법」 제18조에 따라 별도의 동의를 받는 등 필요한 조치를 이행하겠습니다.

제2조(개인정보의 처리 및 보유기간) 

연구원은 법령에 따른 개인정보 보유․이용기간 또는 정보주체로부터 개인정보를 수집시에 동의받은 개인정보 보유․이용기간 내에서 개인정보를 처리․보유합니다. 

  • 연구원에서 처리하는 개인정보의 처리 및 보유기간은 개인정보보호 종합포털 (www.privacy.go.kr)의 ‘개인정보파일 목록검색’을 통해 조회 및 확인할 수 있습니다. *개인정보종합포털에서 조회하기(한국과학기술연구원 검색)
제3조(개인정보의 제3자 제공) 

연구원은 정보주체의 개인정보를 제1조(개인정보의 처리목적)에서 명시한 범위 내에서만 처리하며, 정보주체의 동의, 법률의 특별한 규정 등 개인정보보호법 제17조에 해당하는 경우에만 개인정보를 제3자에게 제공합니다.

제4조(개인정보처리의 위탁) 

연구원은 정보주체의 동의 없이 개인정보의 처리를 위탁하지 않습니다. 다만, 정보주체의 동의를 받아 개인정보 처리를 위탁하는 경우에는 다음 사항을 준수하겠습니다.

  • 위탁계약 체결시 개인정보보호법 제25조에 따라 위탁업무 수행목적 외 개인정보 처리금지, 기술적․관리적 보호조치, 재위탁 제한, 수탁자에 대한 관리·감독, 손해배상 등 책임에 관한 사항을 계약서 등 문서에 명시하고, 수탁자가 개인정보를 안전하게 처리하는지를 감독하고 있습니다.
  • 위탁업무의 내용이나 수탁자가 변경될 경우에는 지체없이 본 개인정보 처리방침을 통하여 공개하도록 하겠습니다.
    • 위탁업체 : ㈜워드앤코드
    • 위탁기간 : 1년
    • 업무내용 : 시스템 유지보수
제5조(정보주체와 법정대리인의 권리·의무 및 행사방법) 
  • 정보주체는 연구원에 대해 언제든지 개인정보 열람․정정․삭제․처리정지 요구 등의 권리를 행사할 수 있습니다.
  • 제1항에 따른 권리 행사는 연구원에 대해 개인정보보호법 시행령 제41조제1항에 따라 서면, 전자우편, 모사전송(FAX) 등을 통하여 하실 수 있으며, 연구원은 이에 대해 지체없이 조치하겠습니다. 
  • 제1항에 따른 권리 행사는 정보주체의 법정대리인이나 위임을 받은 자 등 대리인을 통하여 하실 수 있습니다. 이 경우 개인정보보호법 시행규칙 별지 제11호 서식에 따른 위임장을 제출하셔야 합니다. 
  • 개인정보 열람 및 처리정지 요구는 개인정보보호법 제35조 제5항, 제37조 제2항에 의하여 정보주체의 권리가 제한 될 수 있습니다. 
  • 개인정보의 정정 및 삭제 요구는 다른 법령에서 그 개인정보가 수집 대상으로 명시되어 있는 경우에는 그 삭제를 요구할 수 없습니다. 
  • 연구원은 정보주체 권리에 따른 열람의 요구, 정정·삭제의 요구, 처리정지의 요구 시 열람 등 요구를 한 자가 본인이거나 정당한 대리인인지를 확인합니다.
제6조(처리하는 개인정보 항목)

연구원은 민원사무 처리 및 각종 서비스 제공을 위해 개인정보의 처리를 하고 있습니다.

  • 연구원에서 처리하는 개인정보의 항목은 개인정보보호 종합포털www.privacy.go.k의 ‘개인정보파일 목록검색’을 통해 조회, 확인할 수 있습니다. 
제7조(개인정보의 파기)
  • 연구원은 개인정보 보유기간의 경과, 처리목적 달성 등 개인정보가 불필요하게 되었을 때에는 지체없이 해당 개인정보를 파기합니다.
  • 정보주체로부터 동의받은 개인정보 보유기간이 경과하거나 처리목적이 달성되었음에도 불구하고 다른 법령에 따라 개인정보를 계속 보존하여야 하는 경우에는, 해당 개인정보(또는 개인정보파일)을 별도의 데이터베이스(DB)로 옮기거나 보관장소를 달리하여 보존합니다.
  • 개인정보 파기의 절차 및 방법은 다음과 같습니다. 
    • 파기절차 : 연구원은 파기하여야 하는 개인정보(또는 개인정보파일)에 대해 개인정보 파기계획을 수립하여 파기합니다. 연구원은 파기 사유가 발생한 개인정보(또는 개인정보파일)를 선정하고, 연구원은 개인정보 보호책임자의 승인을 받아 개인정보(또는 개인정보파일)를 파기합니다.
    • 파기방법 : 연구원은 전자적 파일 형태로 기록·저장된 개인정보는 기록을 재생할 수 없도록 로우레밸포멧(Low Level Format) 등의 방법을 이용하여 파기하며, 종이 문서에 기록․저장된 개인정보는 분쇄기로 분쇄하거나 소각하여 파기합니다.
제8조(개인정보 자동 수집 장치의 설치·운영 및 거부에 관한 사항)

쿠키의 설치∙운영 및 거부 : 웹브라우저 상단의 도구>인터넷 옵션>개인정보 메뉴의 옵션 설정을 통해 쿠키 저장을 거부 할 수 있습니다.

제9조(개인정보의 안전성 확보조치)

연구원은 개인정보보호법 제29조에 따라 개인정보의 안전성 확보를 위해 다음과 같은 조치를 취하고 있습니다.

  • 관리적 조치 : 내부관리계획 수립·시행, 정기적 직원 교육 등 
  • 기술적 조치 : 개인정보처리시스템 등의 접근권한 관리, 접근통제시스템 설치, 고유식별정보 등의 암호화, 보안프로그램 설치 등
  • 물리적 조치 : 전산실, 자료보관실 등의 접근통제 등
제10조(권익침해 구제방법)

정보주체는 아래의 기관에 대해 개인정보 침해에 대한 피해구제, 상담 등을 문의하실 수 있습니다.<아래의 기관은 연구원과는 별개의 기관으로서, 연구원의 자체적인 개인정보 불만처리, 피해구제 결과에 만족하지 못하시거나 보다 자세한 도움이 필요하시면 문의하여 주시기 바랍니다>

개인정보 침해신고센터 (한국인터넷진흥원 운영)

  • 소관업무 : 개인정보 침해사실 신고, 상담 신청
  • 홈페이지 : privacy.kisa.or.kr
  • 전화 : (국번없이) 118

개인분쟁조정위원회 홈페이지

  • 소관업무 : 개인정보 분쟁조정신청, 집단분쟁조정 (민사적 해결) 
  • 홈페이지 : www.kopico.go.kr
  • 전화 : (국번없이)1833-6972

대검찰청 사이버범죄수사단

경찰청 사이버안전국

제11조(개인정보 보호책임자)
  • 연구원은 개인정보 처리에 관한 업무를 총괄해서 책임지고, 개인정보 처리와 관련한 정보주체의 불만처리 및 피해구제 등을 위하여 아래와 같이 개인정보 보호책임자를 지정하고 있습니다.
    • 개인정보 보호책임자
      • 성명 : 강구인
      • 직책 : 경영지원본부장
      • 전화번호 : 02-958-6036(hammer@kist.re.kr)
    • 개인정보 보호담당자
      • 성명 : 고세환 / 안종욱
      • 직책 : 사이버보안팀 선임전문원, 전문원
      • 전화번호: 02-958-6285(goko@kist.re.kr) / 02-958-6293(jwahn@kist.re.kr)
제12조(개인정보 열람청구)
  • 정보주체는 개인정보보호법 제35조에 따른 개인정보의 열람 청구를 아래의 부서에 할 수 있습니다. 연구원은 정보주체의 개인정보 열람청구가 신속하게 처리되도록 노력하겠습니다.
    • 개인정보 열람청구 접수 및 처리부서
  • 정보주체는 제1항의 열람청구 접수․처리부서 이외에, 행정안전부의 ‘개인정보보호 종합지원 포털‘ 웹사이트를 통하여서도 개인정보 열람청구를 하실 수 있습니다. 
    행정안전부 개인정보보호 종합지원 포털 → 개인정보 민원 → 개인정보 열람등 요구 (공공아이핀을 통한 실명인증 필요)

* 개인정보 처리방침 변경

이 개인정보 처리방침 2021. 4. 14부터 적용됩니다. 이전의 개인정보 처리방침은 아래에서 확인하실 수 있습니다.

이전 개인정보 처리방침 보기(2021.04.14 이전)

이전 개인정보 처리방침 보기(2021.01.12 이전)

개인정보처리방침

한국과학기술연구원 개인정보처리 방침

한국과학기술연구원은 정보주체의 동의, 「전자정부법」 및 「개인정보 보호법」 등 관련 법령상의 개인정보 보호 규정을 준수하여 이용자의 개인정보 보호 및 권익을 보호하고 개인정보와 관련한 이용자의 고충을 원활하게 처리할 수 있도록 다음과 같은 처리방침을 두고 있습니다. 

제1조(개인정보의 처리목적, 항목, 보유 기간 등) 

한국과학기술연구원(이하 “연구원”)은 다음 각 호에서 열거한 목적을 위하여 최소한으로 개인정보를 처리하고 있습니다. 처리한 개인정보는 다음의 목적 이외의 용도로는 이용되지 않으며, 이용 목적이 변경되는 경우에는 「개인정보 보호법」 제18조에 따라 별도의 동의를 받는 등 필요한 조치를 이행하겠습니다.

제2조(개인정보의 처리 및 보유기간) 

연구원은 법령에 따른 개인정보 보유․이용기간 또는 정보주체로부터 개인정보를 수집시에 동의받은 개인정보 보유․이용기간 내에서 개인정보를 처리․보유합니다. 

  • 연구원에서 처리하는 개인정보의 처리 및 보유기간은 개인정보보호 종합포털 (www.privacy.go.kr)의 ‘개인정보파일 목록검색’을 통해 조회 및 확인할 수 있습니다. *개인정보종합포털에서 조회하기(한국과학기술연구원 검색)
제3조(개인정보의 제3자 제공) 

연구원은 정보주체의 개인정보를 제1조(개인정보의 처리목적)에서 명시한 범위 내에서만 처리하며, 정보주체의 동의, 법률의 특별한 규정 등 개인정보보호법 제17조에 해당하는 경우에만 개인정보를 제3자에게 제공합니다.

제4조(개인정보처리의 위탁) 

연구원은 정보주체의 동의 없이 개인정보의 처리를 위탁하지 않습니다. 다만, 정보주체의 동의를 받아 개인정보 처리를 위탁하는 경우에는 다음 사항을 준수하겠습니다.

  • 위탁계약 체결시 개인정보보호법 제25조에 따라 위탁업무 수행목적 외 개인정보 처리금지, 기술적․관리적 보호조치, 재위탁 제한, 수탁자에 대한 관리·감독, 손해배상 등 책임에 관한 사항을 계약서 등 문서에 명시하고, 수탁자가 개인정보를 안전하게 처리하는지를 감독하고 있습니다.
  • 위탁업무의 내용이나 수탁자가 변경될 경우에는 지체없이 본 개인정보 처리방침을 통하여 공개하도록 하겠습니다.
    • 위탁업체 : ㈜워드앤코드
    • 위탁기간 : 1년
    • 업무내용 : 시스템 유지보수
제5조(정보주체와 법정대리인의 권리·의무 및 행사방법) 
  • 정보주체는 연구원에 대해 언제든지 개인정보 열람․정정․삭제․처리정지 요구 등의 권리를 행사할 수 있습니다.
  • 제1항에 따른 권리 행사는 연구원에 대해 개인정보보호법 시행령 제41조제1항에 따라 서면, 전자우편, 모사전송(FAX) 등을 통하여 하실 수 있으며, 연구원은 이에 대해 지체없이 조치하겠습니다. 
  • 제1항에 따른 권리 행사는 정보주체의 법정대리인이나 위임을 받은 자 등 대리인을 통하여 하실 수 있습니다. 이 경우 개인정보보호법 시행규칙 별지 제11호 서식에 따른 위임장을 제출하셔야 합니다. 
  • 개인정보 열람 및 처리정지 요구는 개인정보보호법 제35조 제5항, 제37조 제2항에 의하여 정보주체의 권리가 제한 될 수 있습니다. 
  • 개인정보의 정정 및 삭제 요구는 다른 법령에서 그 개인정보가 수집 대상으로 명시되어 있는 경우에는 그 삭제를 요구할 수 없습니다. 
  • 연구원은 정보주체 권리에 따른 열람의 요구, 정정·삭제의 요구, 처리정지의 요구 시 열람 등 요구를 한 자가 본인이거나 정당한 대리인인지를 확인합니다.
제6조(처리하는 개인정보 항목)

연구원은 민원사무 처리 및 각종 서비스 제공을 위해 개인정보의 처리를 하고 있습니다.

  • 연구원에서 처리하는 개인정보의 항목은 개인정보보호 종합포털www.privacy.go.k의 ‘개인정보파일 목록검색’을 통해 조회, 확인할 수 있습니다. 
제7조(개인정보의 파기)
  • 연구원은 개인정보 보유기간의 경과, 처리목적 달성 등 개인정보가 불필요하게 되었을 때에는 지체없이 해당 개인정보를 파기합니다.
  • 정보주체로부터 동의받은 개인정보 보유기간이 경과하거나 처리목적이 달성되었음에도 불구하고 다른 법령에 따라 개인정보를 계속 보존하여야 하는 경우에는, 해당 개인정보(또는 개인정보파일)을 별도의 데이터베이스(DB)로 옮기거나 보관장소를 달리하여 보존합니다.
  • 개인정보 파기의 절차 및 방법은 다음과 같습니다. 
    • 파기절차 : 연구원은 파기하여야 하는 개인정보(또는 개인정보파일)에 대해 개인정보 파기계획을 수립하여 파기합니다. 연구원은 파기 사유가 발생한 개인정보(또는 개인정보파일)를 선정하고, 연구원은 개인정보 보호책임자의 승인을 받아 개인정보(또는 개인정보파일)를 파기합니다.
    • 파기방법 : 연구원은 전자적 파일 형태로 기록·저장된 개인정보는 기록을 재생할 수 없도록 로우레밸포멧(Low Level Format) 등의 방법을 이용하여 파기하며, 종이 문서에 기록․저장된 개인정보는 분쇄기로 분쇄하거나 소각하여 파기합니다.
제8조(개인정보 자동 수집 장치의 설치·운영 및 거부에 관한 사항)

쿠키의 설치∙운영 및 거부 : 웹브라우저 상단의 도구>인터넷 옵션>개인정보 메뉴의 옵션 설정을 통해 쿠키 저장을 거부 할 수 있습니다.

제9조(개인정보의 안전성 확보조치)

연구원은 개인정보보호법 제29조에 따라 개인정보의 안전성 확보를 위해 다음과 같은 조치를 취하고 있습니다.

  • 관리적 조치 : 내부관리계획 수립·시행, 정기적 직원 교육 등 
  • 기술적 조치 : 개인정보처리시스템 등의 접근권한 관리, 접근통제시스템 설치, 고유식별정보 등의 암호화, 보안프로그램 설치 등
  • 물리적 조치 : 전산실, 자료보관실 등의 접근통제 등
제10조(권익침해 구제방법)

정보주체는 아래의 기관에 대해 개인정보 침해에 대한 피해구제, 상담 등을 문의하실 수 있습니다.<아래의 기관은 연구원과는 별개의 기관으로서, 연구원의 자체적인 개인정보 불만처리, 피해구제 결과에 만족하지 못하시거나 보다 자세한 도움이 필요하시면 문의하여 주시기 바랍니다>

개인정보 침해신고센터 (한국인터넷진흥원 운영)

  • 소관업무 : 개인정보 침해사실 신고, 상담 신청
  • 홈페이지 : privacy.kisa.or.kr
  • 전화 : (국번없이) 118

개인분쟁조정위원회 홈페이지

  • 소관업무 : 개인정보 분쟁조정신청, 집단분쟁조정 (민사적 해결) 
  • 홈페이지 : www.kopico.go.kr
  • 전화 : (국번없이)1833-6972

대검찰청 사이버범죄수사단

경찰청 사이버안전국

제11조(개인정보 보호책임자)
  • 연구원은 개인정보 처리에 관한 업무를 총괄해서 책임지고, 개인정보 처리와 관련한 정보주체의 불만처리 및 피해구제 등을 위하여 아래와 같이 개인정보 보호책임자를 지정하고 있습니다.
    • 개인정보 보호책임자
      • 성명 : 강구인
      • 직책 : 경영지원본부장
      • 전화번호 : 02-958-6036(hammer@kist.re.kr)
    • 개인정보 보호담당자
      • 성명 : 고세환 / 안종욱
      • 직책 : 사이버보안팀 선임전문원, 전문원
      • 전화번호: 02-958-6285(goko@kist.re.kr) / 02-958-6293(jwahn@kist.re.kr)
제12조(개인정보 열람청구)
  • 정보주체는 개인정보보호법 제35조에 따른 개인정보의 열람 청구를 아래의 부서에 할 수 있습니다. 연구원은 정보주체의 개인정보 열람청구가 신속하게 처리되도록 노력하겠습니다.
    • 개인정보 열람청구 접수 및 처리부서
      • 성명 : 임두리
      • 직책 : 홍보팀 관리원
      • 전화번호 : 02-958-6416(two_ri@kist.re.kr)
  • 정보주체는 제1항의 열람청구 접수․처리부서 이외에, 행정안전부의 ‘개인정보보호 종합지원 포털‘ 웹사이트를 통하여서도 개인정보 열람청구를 하실 수 있습니다. 
    행정안전부 개인정보보호 종합지원 포털 → 개인정보 민원 → 개인정보 열람등 요구 (공공아이핀을 통한 실명인증 필요)

* 개인정보 처리방침 변경

이 개인정보 처리방침 2021. 1. 12부터 적용됩니다. 이전의 개인정보 처리방침은 아래에서 확인하실 수 있습니다.

이전 개인정보 처리방침 보기

개인정보처리방침

한국과학기술연구원은 개인정보의 처리업무를 위탁하는 경우 다음의 내용이 포함된 문서에 의하여 처리하고 있습니다. - 위탁업무 수행 목적 외 개인정보의 처리 금지에 관한 사항 - 개인정보의 관리적·기술적 보호조치에 관한 사항 - 개인정보의 안전관리에 관한 사항 위탁업무의 목적 및 범위, 재위탁 제한에 관한 사항, 개인정보 안전성 확보 조치에 관한 사항, 위탁업무와 관련하여 보유하고 있는 개인정보의 관리현황점검 등 감독에 관한 사항, 수탁자가 준수하여야할 의무를 위반한 경우의 손해배상책임에 관한 사항 또한, 위탁하는 업무의 내용과 개인정보 처리업무를 위탁받아 처리하는 자(“수탁자”)에 대하여 해당 홈페이지에 공개하고 있습니다. 한국과학기술연구원은 원활한 개인정보 업무처리를 위하여 다음과 같이 개인정보 처리업무를 위탁하고 있습니다. [시스템 운영] - 수탁자 : ㈜워드앤코드 - 위탁업무내용 : 시스템 운영 및 유지보수 - 개인정보의 보유 및 이용기간 : KIST 견학 완료일로부터 1년 정보주체와 법정대리인이 권리·의무 및 그 행사방법 개인정보주체는 다음과 같은 권리를 행사 할 수 있으며, 만14세 미만 아동의 법정대리인은 그 아동의 개인정보에 대한 열람, 정정·삭제, 처리정지를 요구 할 수 있습니다. 또한, 개인정보주체가 개인정보 열람, 정정·삭제, 처리정지를 요구한 경우 처리요구를 받은 날로부터 10일 이내에 그 결과를 알려야 하며, 처리요구가 완료되기 전까지는 개인정보의 이용 및 제공을 제한하고 있습니다. 가. 개인정보 열람 요구 한국과학기술연구원에서 보유하고 있는 개인정보파일은 「개인정보보호법」제35조(개인정보의 열람)에 따라 자신의 개인정보에 대한 열람을 요구할 수 있습니다. 다만, 아래에 해당 하는 경우에는 법 제35조 5항에 의하여 열람을 제한할 수 있습니다. - 법률에 따라 열람이 금지되거나 제한되는 경우 - 다른 사람의 생명·신체를 해할 우려가 있거나 다른 사람의 재산과 그 밖의 이익을 부당하게 침해 할 우려가 있는 경우 - 공공기관이 다음 각 목의 어느 하나에 해당하는 업무를 수행할 때 중대한 지장을 초래하는 경우 1) 조세의 부과·징수 또는 환급에 관한 업무 2) 「초·중등교육법」및「고등교육법」에 따른 각급 학교,「평생교육법」에 따른 평생교육시설, 그 밖의 다른 법률에 따라 설치된 고등교육기관에서의 성적 평가 또는 입학자 선발에 관한 업무 3) 학력·기능 및 채용에 관한 시험, 자격 심사에 관한 업무 4) 보상금·급부금 산정 등에 대하여 진행 중인 평가 또는 판단에 관한 업무 5) 다른 법률에 따라 진행 중인 감사 및 조사에 관한 업무 나. 개인정보 정정·삭제 요구 한국과학기술연구원이 보유하고 있는 개인정보파일은 「개인정보보호법」제36조(개인정보의 정정·삭제)에 따라 정정·삭제를 요구할 수 있습니다. 다만, 다른 법령에서 그 개인정보가 수집 대상으로 명시되어 있는 경우에는 그 삭제를 요구할 수 없습니다. 다. 개인정보 처리정지 요구 한국과학기술연구원이 보유하고 있는 개인정보파일은 「개인정보보호법」 제37조(개인정보의 처리정지 등)에 따라 처리정지를 요구할 수 있습니다. 다만, 아래에 해당하는 경우에는 법 제37조 2항에 의하여 처리정지 요구가 거절될 수 있습니다. - 법률에 특별한 규정이 있거나 법령상 의무를 준수하기 위하여 불가피한 경우 - 다른 사람의 생명·신체를 해할 우려가 있거나 다른 사람의 재산과 그 밖의 이익을 부당하게 침해 할 우려가 있는 경우 - 공공기관이 개인정보를 처리하지 아니하면 다른 법률에서 정하는 소관 업무를 수행할 수 없는 경우 - 개인정보를 처리하지 아니하면 정보주체와 약정한 서비스를 제공하지 못하는 등 계약의 이행이 곤 란한 경우로서 정보주체가 그 계약의 해지 의사를 명확하게 밝히지 아니한 경우 개인정보의 파기 한국과학기술연구원은 원칙적으로 개인정보의 이용 목적이 만료되면 지체없이 파기합니다. 가. 파기 절차 - 개인정보는 목적 달성 후 즉시 또는 별도의 공간에 옮겨져 내부방침 및 기타 관련법령에 따라 일정기간 저장된 후 파기됩니다. 별도의 공간으로 옮겨진 개인정보는 법률에 의한 경우가 아니고서는 다른 목적으로 이용되지 않습니다. 나. 파기 방법 - 보유기간이 만료되었거나 개인정보의 처리목적달성, 해당 업무의 폐지 등 그 개인정보가 불필요하게 되었을 때에는 지체없이 파기합니다. 전자적 파일형태의 정보는 기록을 재생할 수 없는 기술적 방법을 사용합니다. 종이에 출력된 개인정보는 분쇄기로 분쇄하거나 소각을 통하여 파기합니다. 개인정보 안전성 확보 조치 한국과학기술연구원은 아래와 같이 개인정보의 안전성을 확보하기 위한 조치를 시행하고 있습니다. 가. 개인정보 취급직원의 최소화 및 교육 개인정보를 취급하는 직원은 반드시 필요한 인원에 한하여 지정 · 관리하고 있으며 취급직원을 대상으로 안전한 관리를 위한 교육을 실시하고 있습니다. 나. 개인정보에 대한 접근 제한 개인정보를 처리하는 데이터베이스시스템에 대한 접근권한의 부여·변경·말소를 통하여 개인정보에 대한 접근통제를 위해 필요한 조치를 하고 있으며 침입차단시스템을 이용하여 외부로부터의 무단 접근을 통제하고 있습니다. 다. 접속기록의 보관 개인정보처리시스템에 접속한 기록(웹 로그, 요약정보 등)을 최소 6개월 이상 보관·관리하고 있습니다. 라. 개인정보의 암호화 개인정보는 암호화 등을 통해 안전하게 저장 및 관리되고 있습니다. 또한, 중요한 데이터는 저장 및 전송 시 암호화하여 사용하는 등 별도 보안기능을 사용하고 있습니다. 마. 보안프로그램 설치 및 주기적 점검·갱신 해킹이나 컴퓨터 바이러스 등에 의한 개인정보 유출 및 훼손을 막기 위하여 보안프로그램을 설치하고 주기적으로 갱신·점검하고 있습니다. 바. 비인가자에 대한 출입 통제 개인정보를 보관하고 있는 개인정보시스템의 물리적 보관 장소를 별도로 두고 이에 대해 출입통제 절차를 수립, 운영하고 있습니다. 개인정보 자동수집 장치의 설치, 운영 및 거부에 관한 사항 ① 한국과학기술연구원은 이용자에게 개별적인 맞춤서비스를 제공하기 위해 이용정보를 저장하고 수시로 불러오는 ‘쿠기(cookie)’를 사용합니다. ② 쿠키는 웹사이트를 운영하는데 이용되는 서버(http)가 이용자의 컴퓨터 브라우저에게 보내는 소량의 정보이며 이용자의 PC 컴퓨터내의 하드디스크에 저장되기도 합니다. 가. 쿠키의 사용목적: 이용자가 방문한 각 서비스와 웹 사이트들에 대한 방문 및 이용형태, 인기 검색어, 보안접속 여부, 등을 파악하여 이용자에게 최적화된 정보 제공을 위해 사용됩니다. 나. 쿠키의 설치∙운영 및 거부 : 웹브라우저 상단의 도구>인터넷 옵션>개인정보 메뉴의 옵션 설정을 통해 쿠키 저장을 거부 할 수 있습니다. 다. 쿠키 저장을 거부할 경우 맞춤형 서비스 이용에 어려움이 발생할 수 있습니다. 개인정보 열람청구 - 정보주체는 개인정보 보호법 제35조에 따른 개인정보의 열람 청구를 아래의 부서에 할 수 있습니다. 한국과학기술연구원은 정보주체의 개인정보 열람청구가 신속하게 처리되도록 노력하겠습니다. ▶ 개인정보 열람청구 접수․처리 부서 부서명 : 홍보팀 담당자 : 임두리 연락처 : 02-958-6416 / two_ri@kist.re.kr - 정보주체는 제1항의 열람청구 접수․처리부서 이외에, 행정안전부의 ‘개인정보보호 종합지원 포털’ 웹사이트(www.privacy.go.kr)를 통하여서도 개인정보 열람청구를 하실 수 있습니다. ▶ 행정안전부 개인정보보호 종합지원 포털 → 개인정보 민원 → 개인정보 열람등 요구 (공공아이핀을 통한 실명인증 필요) 권익침해 구제방법 개인정보주체는 개인정보침해로 인한 피해를 구제 받기 위하여 개인정보 분쟁조정위원회, 한국인터넷진흥원 개인정보 침해신고센터 등에 분쟁해결이나 상담 등을 신청할 수 있습니다. ☞ 개인정보 분쟁조정위원회 : 1833-6972 (www.kopico.go.kr) ☞ 개인정보 침해신고센터 : (국번없이) 118 (privacy.kisa.or.kr) ☞ 대검찰청 사이버범죄수사단 : 02-3480-3571(cybercid@spo.go.kr) ☞ 경찰청 사이버안전국 : (국번없이) 182(cyberbureau.police.go.kr) 개인정보보호 책임자 및 담당자 연락처 개인정보보호책임자 및 담당자 연락처 개인정보 보호책임자 경영지원본부장 강구인 개인정보 보호담당자 사이버보안팀장 최연호/사이버보안팀 안종욱 개인정보취급자 부서명 : 홍보팀 담당자 : 임두리 연락처 : 02-958-6416, two_ri@kist.re.kr Fax.02-958-6149 개인정보처리방침의 변경 이 개인정보처리방침은 시행일로부터 적용되며, 법령 및 방침에 따른 변경내용의 추가, 삭제 및 정정이 있는 경우에는 가능한 변경사항의 시행 7일 전부터 공지사항을 통하여 고지할 것입니다. 단, 분야별로 관리되는 개인정보파일 수량 및 개인정보 보호책임자 변경 시는 고지를 생략합니다. ① 본 방침은 2020년 7월 1일부터 시행됩니다.

이메일 무단수집거부

본 웹사이트에 게시된 이메일 주소가 전자우편 수집프로그램이나 그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며, 이를 위반시 정보통신망업에 의해 형사처벌됨을 유념하시기 바랍니다. ※자세한 사항은 한국과학기술연구원 정보통신팀으로 문의하시기 바랍니다.

소비자안내

최근 일부기업이 우리원의 객관적인 연구용역 결과를 제품 판촉 또는 투자 유치 등에 유리하도록 결과를 임의로 왜곡하거나 우리 원과 공동개발
또는 인증 등으로 과대과장 광고하는 사례들이 발생하고 있습니다.
소비자 여러분들께서는 우리 원 명칭을 이용한 과대과장 광고에 현혹되지 않으시기 바라며,
이러한 광고를 보신 분께서는 아래의 연락처로 신고하여 주시기 바랍니다.

소비자안내 테이블
한국과학기술연구원
이메일 boytoy@kist.re.kr
전화번호 02-958-6327
Fax 02-958-6089
주소 우)136-791 서울 성북구 화랑로 14길 5

고객헌장

한국과학기술연구원 고객헌장을 소개합니다. 한국과학기술연구원 고객헌장 우리 한국과학기술연구원은 원천기술의 보급과 국가산업발전을 선도하여 국민이 편안하고, 풍요로운 삶을 누릴 수 있도록 국가와 사회적 소명을 다할 것을 다음과 같이 선언합니다. 하나. 우리는 고객(국가와 국민)의 기대에 부응하는 최상의 R&D 품질을 제공하겠습니다. 하나. 우리는 항상 고객의 소리에 귀를 기울이고 고객의 입장에서 적극반영하겠습니다. 하나. 우리는 고객을 존중하고, 고객감동을 실현하기 위해 열려 있는 소통을 하겠습니다. 하나. 우리는 고객을 소중하게 생각하며, 종합적인 해결책을 제공하겠습니다. 이와 같은 목표를 달성하기 위하여 구체적인 서비스 이행표준을 제정하고, 이를 성실히 준수할 것을 약속드립니다

서비스 이행표준

한국과학기술연구원 서비스이행표준을 소개합니다. 1. 고객을 맞이하는 우리의 자세 가. 전화로 용무를 처리하시고자 하는 경우 전화벨이 울리면 3번 이내에 받고, 받을 때에는"안녕하십니까? 000팀 000입니다."라고 인사를 드리겠습니다. 만약 전화벨이 4번 이상 울려 받는 경우에는"늦게 받아 죄송합니다"라고 인사를 하겠습니다. 전화를 다른 직원에게 연결하여 드릴 경우에는 그 사유와 연결할 직원의 소속부서, 이름, 전화번호를 안내하여 드린 후 바로 연결하여 드리겠습니다. 담당자가 없을 경우에는 전화 요지, 고객의 성함, 연락처 등을 메모하여 담당자에게 전달하고, 담당자는 업무 복귀 후 30분이내에 고객께 연락드리겠습니다. 통화 종료 후에는"감사합니다. 좋은 하루 되세요"라고 인사를 한 다음, 고객이 전화를 끊으신후에 수화기를 내려놓겠습니다. 나. 직접 방문하시는 경우 전 건물 출입구와 승강기 내부에 층별 안내도, 각 사무실 입구에는 직원과 담당업무가 표시된 좌석배치도, 책상 앞에는 명패를 비치하여 방문하시려는 직원을 손쉽게 찾을 수 있도록 하겠습니다. 고객을 맞이할 때는 자신의 이름을 밝히고 친절한 자세와 존중하는 마음으로 임하겠습니다.