채용 본부	채용부서	채용분야(직급)	연수제안서 (별첨 참조) Reserch Fields	채용예정인원	직무내용	지원자격	문의처
				강릉분	2		1
	스마트팜융합연구센터	기능성천연물 대사조절 및 생합성 연구 (Post-Doc.)	1-1	1	스마트팜, 식물공장을 통한 기능성천연물 생산을 위한 기능성 분 규격 및 표준화 연구, 유용 기능성분 대상 대사조절 및 생 합성 조절 메커니즘 연구	강릉 근무 가능자 / 박사 학위 소지자 식물분자생물학, 천연물생합성, 천연물대사조절	
	스마트팜융합연구센터	온실 환경 정보 기반의 작물 생육 예측 (인턴)	1-2	1	- 실증온실 식물 재배관리, 데이터 수집 및 분석 - SOTA 모델 기반의 온실 내부 환경 시계열 예측 - 온실 환경 정보 기반의 작물 생육 예측	강룡 근무 가능자 / 학/석사(우대) 학위 소지자 농업공학, 컴퓨터공학, 스마트생명산업용합	
	천연물소재연구센터	마이크로바이옴 생리학적 특성 규명 및 천 연물과의 상호 작용 연구	1-3	2	천연물-마이크로바이용 상호 작용연구 미생물의 생리학적 특성 연구 천연유래 신물질 발굴 연구	강릉 근무 가능자 / 학/석사(우대) 학위 이상 소 지자	
강릉분원	천연물인포매틱스연구센터	(Post-Doc., 인턴) 전연물 대사체 분석 및 생체 시료 분석	1-4	2	생물학적 가공기술을 이용한 천연물 산업화 연구 식물 및 미생물 시료 추출, 생체(인체) 시료 전처리 및 추출, 유효성분 분석 및 도출(크로마토그래피, LC/MS 등), 고분해능 질량분석(Orbitrap)을 이용한 생체 시료 정밀 분석, 통계 기반	생물학 및 생물공학 강릉 근무 가능자 / 학/석사(우대) 학위 이상 소 지자	jhwon@kist.re.kr
	천연물인포매틱스연구센터	(Post-Doc, 인턴) 언제 마이크로바이용 기반 분자생물학적 기전 검증	1-5	1	대사체학 업무 수행 마이크로바이용 분석을 토대로 장내 미생물과 대사체의 분자 생물학적 검증 진행. 타켓 물질의 기전 규명을 위한 세포 실험	화학, 생명과학, 의약학 관련 전공 강릉 근무 가능자 / 박사 학위 소지자	_
	천연물인포매틱스연구센터	(Post-Doc.) 식품 및 천연물 기기분석 혹은 NMR 분광 법 연구	1-6	2	(일반 세포 및 오가노이드) 및 동물 실험 진행 - - 식품 및 천연물 내 유용 화학성분의 기기분석 및 화학구조 규명연구	미생물학, 면역학, (암) 생물관련 분야 강릉 근무 가능자 / 학사 학위 이상 소지자	
	0020±444=0+04	(Post-Doc., 인턴)	1-6	2	- 유기 혼합물 및 생체 대사체 구조분석을 위한 NMR 분광법 연구	직무관련 유관분야	
		(전북분			
		차세대 스마트 고분자 및 복합소재의 제			(1) 화학/고분자 합성 및 복합소재 제조/분석	학사 이상	
	구조용복합소재연구센터	조/분석 (Post-Doc. 또는 인턴)	2-1	2	(2) 스마트/능동감응형 고분자 및 복합소제 (3) 소재의 구조-물성 상관관계 규명 (4) 이종소재 계면제어 및 접착	학위: 학사/석사(인턴) 또는 박사(Post-Doc) (졸 업예정자 포함) 전공: 화공, 화학, 재료, 신소재, 고 분자, 섬유, 기계 등	
	구조용복합소재연구센터	에너지 저장/변환 분야 응용 연구 (Post-Doc.)	2-2	2	1. 탄소소재 및 기타 유무기소재 제조/개절, 에너지 분야 응용 연구 (1) 전고체 전지, 리튬이온전지, 슈퍼커패시터, 연료전지 등 에 너지 저장/변환 장치의 전극 및 전해질 등 관련 소재 연구		
	기능성복합소재연구센터	차세대 이차전지 응용을 위한 고분자-탄소 복합소재 개발 (Post-Doc. 또는 인턴)	2-3	2	1. 유기물-탄소, 고분자-탄소 복합소재 합성 2. 복합소재의 기계적 물성 및 전기화학적 특성 분석 3. 이자전기 제작 및 성능 행간, 특성 분석 4. 논문, 기술자료, 특히 및 보고서 등 관련 기술문서 조사 및	학사 이상 고분자, 재료, 화공, 화학, 신소재, 유기소재 전공	
	기능성복합소재연구센터	기능성 복합신소재 개발 (Post-Doc. 또는 인턴)	2-4	2	적성 등 1. 저차원 나노소제 합성 및 광/전자 소자 및 전기화학 응용 연구 2. 나노목함소재 합성 및 에너지 소자 및 축매 응용 연구 3. 나노소재 표면 개절 연구 및 광응답 어울리게이선 적용 연구 구 4. 고순도 나노/마이크로 금속 소재 합성/백막화 및 특성 평가	학사 이상 신소재, 재료, 화학, 화공, 고분자공학, 반도체공 학, 인쇄전자공학, 에너지과학, 나노과학 등	
전북분원	기능성복합소재연구센터	기능성 나노소자 및 반도체의 전자소자 응 용, 전자파차페, 에너지 응용	2-5	2	연구 1. 전자파차폐용 필리 소재 및 반도체 응용 연구 2. 전자파차폐효율 측정 및 주파수 선택층 연구 3. 나노소재 나노소자 연구	박사 또는 학/석사(우대) 신소재, 재료공학, 전자공학, 물리학등	sang9419@kist.re.kr
	기능성복합소재연구센터	(Post-Doc. 또는 인턴) 차세대 슈퍼 섬유 제조 및 응용 (에너지)	2-6	2	1. 차세대 기능성 탄소나노튜브섬유 제조 2. 섬유기반 웨어러블 에너지저장 (슈퍼캐패시터 및 배터리)	박사	
	탄소융합소재연구센터	(Post-Doc.) 다기능성 복합소재 제조 및 분석, 평가 (Post-Doc. 또는 인턴)	2-7	2	정치 개발 1. 기능성 나노섬유 제조 (기상반응, 전기방사, 용액방사능) 2. 복합소재 강화용 나노 필리제조 3. 섬유강화 복합소재 제조 4. 미세 나노구조 분석 및 평가	항공, 재료, 신소재, 고분자, 화학, 섬유 학사 이상 재료공학, 신소재공학, 화학공학, 화학, 고분자공 학, 기계공학	
	탄소용합소재연구센터	세라믹 섬유강화 복합재 제조 (Post-Doc. 또는 인턴)	2-8	2	1. 섬유강화 복합재 제조를 위한 섬유 표면 개질 및 계면 제어 연구 2. 열처리 온도와 압력에 따른 세라믹 복합재 소결 특성 분석 연구 3. 섬유강화 새라믹 복합재 내부의 세라믹 섬유 배향 연구 4. 세라믹 섬유강화 복합재의 전기적, 기계적, 열적 특성 분석	학사 이상 재료, 화학, 화공 등	
	혁신기업협력센터(전북)	나노복합소재 사업기획, 사업화, 장비분석 관리 (인턴)	2-9	1	1. 나노복합소재 특성분석 장비, 측정장비 활용 지원 - 분석점수 및 분석결과 도출 지원 - 장비 등계 및 로교부 등 작성 지원 2. 가술동향 조나 및 분석지원 3. 나노복합소재 관련 상용화 지원	학사 이상 이공계열 혹은 경상 또는 사회과학계열	
				뇌과학연·	4. 학회 참가 및 연구활동 지원 구소		
	뇌과학연구소장실	신경회로 규명 연구 (인턴(학사, 석사) / Post-doc(박사))	3-1	3	복잡한 뇌기능과 질환을 이해하기 위해서, 중요한 신경회로를 규명하는 면구를 진행 점단 형광 영상 기술들과 컴퓨터 분석을 통해 신경회로의 구 조적/기능적 연결망을 보석하여 다양한 뇌질환 원인 규정 -in vivoi maging과 행동실점을 동한 활성도 연구 - 실점동물 뇌의 유전자 주인, 뇌절편 염색, 영상 데이터 확보, 신경회로 본석 - 영상 데이터 본석관련 소프웨어, 알고리증 개발 - 신경회로 및 네트워크 작동 원리 본석	- 학위 : 인턴(학사, 석사) / Post-doc(박사) - 우대 전공분야 : 기 생물화(신경)과회(약학 관련 (실험적으로 주요 신경회로 규명) 기 컴퓨터 공화(전자 관련 (영상 데이터 본석관련 소프웨어, 일고리용 개발) 3) 물리/수학 관련 (신경회로 및 네트워크 작동 원리 모델링과 이혼화) 4) 그 외 (행동실험, 전기생리 등) 직무내용 유관분야, 세부 지원자격 참고	kimj@kist.re.kr
뇌과학연구소	뇌기능연구단	신경세포 신호전달 및 활성 기작 연구 (인턴(학사, 석사) / Post-doc)	3-2	2	생쥐 뇌절편 신경세포 및 배양세포 등의 실험 재료에서, 세포 의 활성과 시냅스 기능이 신약 약물 후보 물질을 포함한 외부 자극에 따라 변화하는 것을 분자생물학, 바이러스제조. 전기 생리학, 형광이미징, 생화학, 동물행동실험 등의 기법으로 실 형	- 학위 : 인턴(학사, 석사(우대)) / Post-Doc.(박사) 직무내용 유관분야	ckimya@kist.re.kr
	뇌기능연구단	계산신경과학, 인공지능 (인턴(학사))	3-3	1	(1) 계산신경과학적 뇌회로 모델링 (2) 뇌회로 모델을 통한 인지/운동 가능 시뮬레이션 (3) 뇌회로 모델 기반 인공신경망 설계 및 적용 (4) 뇌회로 모델 기반 뇌질환 메커니즘 규명 및 제어전략 개발	- 학위 : 인턴(학사) - 전공 무관, 학사 인턴의 경우 진학 예정자 우선 선발	taegon.kim@kist.re.kr
	뇌기능연구단	파킨슨병의 기전규명 및 치료전략 연구 (인턴(학사, 석사))	3-4	1	- 유전자변형생쥐를 이용한 파킨슨병의 병리기전 규명 연구 를 위한 동물 행동실임, 조직염색 및 이미칭 - ex vivo 칼슘이미징을 통한 별세포 활성 기전 규명	- 학위 : 인턴(학사, 석사(우대)) - 우대전공 : 생물학 관련 유관 전공 (의약학 포 함)	dr.namminho@kist.re.kr
	뇌용합기술연구단	체액 기반 바이오센서 개발 (의 세부내용 연수제안서 참고) (인턴(학사, 석사) / Post-Doc.)	3-5	3	1) 혈액에서 극미왕의 뇌단백질은 검출할 수 있는 센서 개발 2) MFF 혹은 LSPR 기반의 영광 다중 검출 센서 개발 3) 몸에 붙일 수 있는 폐지형 웨어러블 센서 개발 4) 제내 삽입형 전자약 개발 5) 2자원 물질을 이용한 가스 센서 개발	- 학위 : 인턴(학사, 석사) / Post-doc(박사) - 우대 전공분야 : 전자공학, 의공학, 화학공학, 생 명공학, 기계공학, 재료공학 등	shleekist@kist.re.kr
	뇌용합기술연구단	신경과학 및 신경공학 (인턴(학사, 석사) / Post-Doc.)	3-6	2	망막 신경세포 광유전학 신경 신호 분석 또는 MEMS 기술을 이용한 3차원 신경전극 제작	- 하위: 인틴(학사, 석사) / Post-doc(박사) - 우대 전공: 생명과학, 신경과학, 전자공학, 기계 공학, 재료공학, 의공학	maesoon.im@kist.re.kr

				차세대반도처	l연구소		
	광전소재연구단	양자점 기반 광발광, 수광 소자 개발 (인턴(학사))	4-1	1	- ZnO 양자점 제작 - QD-LEDs, X-ray detector용 필름 설광 소재 제작	- 학사 및 석사학위 소지자 및 취득예정자 - 양자점 기반 광발광, 수광 소자 개발 관련 연구 경험자 우대 화학, 신소재공학, 기계공학, 화학공학, 전기전자, 고분자, 물리학, 나노공학 등	wkchoi@kist.re.kr
	광전소재연구단	인공지능 기반 광학 및 영상표시 시스템 (인턴)	4-2	1	양자컴퓨팅, 인공지능기반 이미진 및 영상표시 광학계설계	- 학사 학위 소지자 및 취득 예정자 - 양자컴퓨팅, 안공지능기반 이미징 및 영상표시 광학계설계 관련 연구 경험자 우대 화학, 신소재공학, 기계공학, 화학공학, 전기전자, 고분자, 불리학, 나노공학 등	minchul@kist.re.kr
	스핀용합연구단	차세대 스핀 메모리 소자 (Post-Doc.)	4-3	1	- 스핀 동역학 측정 기술 개발 - 스핀 소작 개발 - 스핀 동역학 측정 및 분석	- 박사 학위 소지자 및 취득 예정자 - 물리학 천공자 우대 물리학	uzes@kist.re.kr
	양자정보연구단	양자 프로세서 (Quantum processor) (Post-Doc / 인턴)	4-4	2	1. 포덕 - 다시면드 NV센터의 전자스판과 해스핀을 활용하여, 복수의 큐비트 시스템을 구성하여, 양자정보연산을 수행하고, 실제로 필요로 하는 전제를 해결하는 면구 - 다이아몬드 NV센터 내 전문 커비트와 NV센터에서 생성하는 단일광자 간의 양자얽힘 구현 및 이를 활용한 양자인터페이스 요소 기술 연구 (성정 포함) 2. 인턴 - 다이아몬드 NV 센터 내 스핀 큐비트와 NV센터에서 생성하는 단일공자 간의 양자얽히 구현 시스템 구축 - 다이아몬드 NV 센터 내 스핀 큐비트와 NV센터에서 생성하는 단일공자 간의 양자얽힘 구현 시스템 구축	- 박사 학위 소지자 또는 취득 예정자(포닥) - 학사 학위 또는 취득 예정자(포탁) - 학사학의 또는 취득 예정자(만턴) - 전기전자 및 물리학 전공 - 양자정보, 교세물리 및 다이아몬드 이론/설정/ 제산 경험자 우대 - FFGA를 활용 경험자, Python 및 Labview 활용 가능자, Nano fabrication 경험자 우대 전기전자 및 물리학 전공	dykang@kist.re.kr
차세대반도체연구소	양자정보연구단	영자정보, 양자센싱, 양자측정 (Post-Doc / 인턴)	4-5	3	1. 포닥 - 큐비트 확장성을 가진 소자를 이용한 기초 양자 정보 연구 - 5큐비트 소규모 점절함 암자 프로세서에서 양자오류형정 기술 개발 및 양자시율 격비선 연구 - 모든 기술 기술 기술 기술 및 양자시율 레이션 연구 - 2 인턴 - 양자 하드웨이 측정 기초 보조 업무 - 미신리성 이용한 소규모 점절함 양자 프로세서 게이트 최적 화 및 양자시뮬레이션 연구 포닥, 인턴 모두 최신 연구 논문에 주도적 참여 및 해외 학위 물 위한 인턴 환영 및 포닥의 해외 연구 경험 적극 제공	출대/전기/전사/외복/심규디증복 균현 복사 현증 자 우대(인턴)	jh_lee@kist.re.kr
	양자정보연구단	양자정보 (Post-doc.)	4-6	1	- 양자컴퓨팅 및 시뮬레이션: 광자의 Orbital Angular Momentum (OAM) 상태를 기반으로 한 교차원 양자계산 및 양자 일고리음을 구현하여 양자화해계산 등 실용적인 문제를 해결 - 양자동산 및 양자 네트워크 , 문신파장대역 (1.5 um 파강에서 다광자 양자점임상태를 준비하고, 이를 이용하여 향후 광성유 기반 경기리 양자 네트워크 구현을 위한 기초 및 응용 연구 수명 - 양자전상: 다중 모드 양자위임상태 (다중모드 NOON 상태등을 이용한 다중 파라이터 동시 측정 및 분산형 양자선성 네트워크 구현을 위한 기초 및 응용 연구 수행 - 위의 주제 이외에도 최신의 양자청보 및 양자광학 분야의 연구를 제안하고 주도적으로 수행할 수 있는 기회 제공 - 양자일고리음 및 양자네트워크 관련하여 현재 양자정보연 및 양리보이 대학 및 양리노이 대학 (UIUC)을 방문하여 공동연구 할 수 있는 기회 제공	- 이학 또는 공학 박사학위 소지자 또는 취득 에 정자 - 양자정보 분야 연구경력자 우대 이학, 공학	hyangtag.lim@kist.re.kr
	인공뇌융합연구단	뉴로모픽 컴퓨팅, 인공지능 알고리즘 (인턴)	4-7	1	1) 뇌기반 뉴럴 네트워크 최적화 2) 뉴로모픽 응용 개발 3) SNN 하습 알고리즘 개발 4) 뉴로모픽 하드웨어 및 엣지 디바이스 활용	인턴: 석사, 하사 학위 소지자, 전기/전자/컴퓨터 관련 전공자 우대, 인공지능 관련 연구 경험자 우대 전기/전자/신소제/컴퓨터 관련 전공자 우대	seong.sik.park@kist.re.kr
	인공뇌융합연구단	초분광 영상센서용 나노광학필터 개발 분 야 (인턴)	4-8	1	- 본 연구책임자로 수행 중인 미래도전국방기술개방사업 과 제(조분광 중적외선 영상 회득을 위한 신호처리 및 나노분광 발터 적용기술, 20개 및 신규 하여 나노미래소재원기술개 방사업 과제(광대역 조분광센서 및 카메라 요소기술 개방) 1 단계 연구에서 핵심이 되는 나노광학필터 설계와 제작을 전담 할 인력 필요 - FDTD 등 광학전산모사 물을 이용한 적외선 대역 나노광학 필터 구조 설계 - 나노일프린트 공정을 이용한 다중분광필터 어레이 제작	- 학사 또는 석사 학위 소지자 또는 취득 예정자, 신소재/물리/전기전자 관련 전공자 우대	kslee21@kist.re.kr

				AI 로봇인	キ テク		
	인공지능연구단	인공지능 및 컴퓨터 비전 핵심 기술 개발 (인턴 연구원)	5-1	1	비디오 영상으로부터 여러 사람의 동작을 인식하는 기술 개발 - 사람의 빠른 동작을 인식하는 뉴럴네트워크 설계 및 SW 개발 - 물리앤진을 이용한 사람의 3D 자세 복원	-인공지능/컴퓨터 관련 학과 학사 (혹은 대학 줄 업 예정자) -파이앤, C/C++ 등 프로그래밍언어 숙런자 -PyTorch, Tensorflow 등 답리닝 라이브리리 활 용 경험자 우대 인공지능/컴퓨터 제열 학과	chocopie@kist.re.kr
	인공지능연구단	XR 광학계 및 시스템 (포닥/인턴)	5-2	2	(1) XR 중작계 개발 (1명) - XR 중작계 설계 및 분석 - XR 광작계 설점 및 개발 (2) XR 기술 개발 (1명) - XR 구동회로 개발 및 실험 - 연구주적 카메라 기술 - XR 전론조 성당 및 표시	(1) XR 광학제 분야: 광학계 설계/분석 경력자 (2) XR 시스템 설계: 광학/전기전자/프로그래밍 분야 광학, 물리, 전기전자, 컴퓨터 공학	kkk@kist.re.kr
	연공지능연구단	컴퓨터비전웨어리를 센서 기반 AI 헬스케 이 용합 기술 개발 (포닥/인턴)	5-3	2	컴퓨터비전 및 웨이러볼 생시 본식 기술을 활용한 사람 등작 영상 및 데이터 본석자리 가는 개발 컴퓨터비전 및 웨이러볼 센서 기반 시 헬스케이 기술 용합을 통한 자세대 결정 진단으보다링 및 디지털 텔스케이 시스템 개발 (되행성뇌질환, 근감소용, 우울등, 지때, 파킨슨 등) 포닥 연구원 1인 - 컴퓨터비전 기술 기반 사용자의 행동-보행동작 인식 기술 개발 - 컴퓨터비전 가술 기반 사용자의 행동-보행동작 인식 기술 개발 - 컴퓨터비전과 시 헬스케이 기술의 용합을 통제 다양한 질병 예곡이 가능한 질병 진단에족-모니터링 인공지능 디지털 텔스케이 일고리증 개발 - 바때和 Data와 Multimodal Foundation 기반의 조연관조 지능화 전우기 라이프케이 기술 개발 인턴 연구원 1인 - 웨이러볼 다하나고 이를 처리 및 분석하여 사용자의 동작과 행동을 인식하는 기술 개발 - 개인 건강 및 질병 상태 예곡을 위한 디지털 텔스케이 기술 개발 기원 1건강 및 질병 상태 예곡을 위한 디지털 텔스케이 기술 개발 기술 1건강 및 질병 상태 예곡을 위한 디지털 텔스케이 기술 개발	포닥 연구원 1인 - 직무내용 관련 연구 경험자 - 박사 이상 학위 소지자(예정자 포함)로서, 컴퓨터공학, 전자정보, 기계공학, 신호 및 영상처리, 인공지능 알고리함 개발 경험자 우대 인턴 연구원 1인 - 하셔서 이상 학위 소지자(예정자 포함)로서, 컴퓨터공학, 전자정보, 기계공학, 신호 및 영상처리, 인공자능 알고리를 개발 경험자 우대 컴퓨터공학, 전자정보, 기계공학, 신호 및 영상처리, 연공자능 알고리를 개발 경험자 우대 컴퓨터공학, 전자공학, 기계공학, 신호 및 영상처리, 인공자능 알고리를 개발 경험자 우대 컴퓨터공학, 전자공학, 기계공학, 신호 및 영상처리, 인공지능 관련 전공	krmoon02@kist.re.kr
	인공지능연구단	인공지능 전분야 (포덕/인턴)	5-4	5	1) 수선 채용 - 급리성 화습(자기주도, 최적화, 지속/연합, 생성 모델), 딥리성 기반 모델의 (영상/점군 데이터, 뉴필란터의), 컴퓨터비전(격 제점호(인식/주적, 제식별, 패턴인식, 생체인식, 얼굴표정/난 제통국(정상, 신청행동/상황 보석), 컴퓨터 대략교(사람/공간, 조막제, 가상데이터, 도메인일반화), 로봇지능(업티모달영상, 반격로봇), 때타버스(AA/VA/XA, 원격접임, 디지털드윈, 입 제정상, 유단팩터, 접순제어(영상/동작분석, 스포즈웨어, 웨어라블, 타대, 질병예측) 2) 일반 채용 - 인공지능 원천 및 응용 기술 전분야 3)홈페이지 - 신공지능연구단 https://calkistre.kr - 시각지능 https://valkistre.kr - 내각되는 https://walkistre.kr - 내각되는 https://walkistre.kr - 내각되는 https://walkistre.kr - 내각물유만 https://walkistre.kr - 대기물유만 https://walkistre.kr	-인턴: 연공지능/컴퓨터/전자/기계 관련 학과 학/ 석사(우대) -포막: 연공지능/컴퓨터/전자/기계 관련 학과 박 학 학의 소지자 -피아엔, C/C++, Java 등 프로그래밍언어 가능자 -PyTorth, PressrHow 등 답러닝 라이브러리 활 용 경험자 우대 연공지능/컴퓨터/전자/기계 관련 학과	hslim@kist.re.kr
Al·로봇연구소	인공지능연구단	컴퓨터비전 및 생성형 인공지능 (인턴/포닥)	5-5	2	· 컴퓨터 비전 및 생성형 인공자능 기술 개발 : 영상 기반 30 휴면 동작 및 모델 생성 기술 개발 · 문장 기반 영상/비디오/3D비디오/3D모델/장면그래프 생성 기술 개발 (Text-to-Image, Text-to-Video, Text-to-3D Video, Text-to-3D Model, Text-to-SceneGraph)	- 인공지능/컴퓨터/전자/기계 관련 학과 학위 소 지자 - 파이번, C/C++, Java 등 프로그래밍언어 가능자 - PyTorch, TensorHow 등 답리닝 라이브리리 활 용 경험자 우대 인공지능/컴퓨터/전자/기계	hslim@kist.re.kr
	지능로봇연구단	로봇 비전 및 딥러닝 (인턴)	5-6	1	1) 로봇 환경에 착합한 강인한 객체 안식 및 추적 알고리증 개발 - 로봇시스템에 장작된 센서를 통해 획득된 영상에서 실시간으로 안식 및 자세 추정 - 학습 데이터에 없는 객체에 대한 안식 및 본찰 방법 연구 - 로봇 플랫폼에서 연산 처리가 가능하도록 모델 경랑화 방법 연구 - 성능 항상을 위한 모델 구조 개선 2) 투명 객체 인식 및 로봇 팔을 이용한 몸체 파지 기술 개발 3) 딥러닝을 이용한 영상 저리 기술(의미론적 분활 등) 개발 연구생 홈페이지: www.kistrobot.vision	- C++/Python 프로그래밍 가능자 - ROS 사용 검행자 우대 - 로봇 비친 영상 저리, I리닝 개발 경험자 우대 - KIST 확연과정 진학 희망자 우대 - 컴퓨드/전신전자기계 등 권한 학과 학사 학위 이상 소지자 (예정자 포함)	danny@kistre.kr
	지능로봇연구단	서비스로봇 개발 (인턴)	5-7	1	- 로봇 Navigation등 로봇지능 S/W 개발 - 로봇 Task management S/W 개발	- 인공지능 및 로봇지능 S/W 연구개발에 열정이 있으신 분 - 자바/파이선 활용 경험자 컴퓨터/전기전자/기계/자동차	skee@kist.re.kr
	지능로봇연구단	AI/컴퓨터비전 (포닥)	5-8	1	- 영상 기반 AI/딥러닝 원천기술 연구 - Few-shot/zero-shot learning 기반 물제 인식 AI 연구 - 인어 모델 용합 물체 인식 및 장면 분할 AI 연구 - AI 솔루션 구현 및 실제 플랫폼에의 적용 - 참고: https://sites.google.com/view/harilab	(Post-Doc) - 박사학위 소지자 (또는 예정자) - 채용 분야에 관한 전문 지식을 갖춘 전공자 - 관련 분야 논문 실적 보유자	juyounpark@kist.re.kr
	지능로봇연구단	웨어러볼 인터렉션 로봇 (포닥, 인턴)	5-9	2	고형자 임상 근력 보조를 위한 AI 기반 웨어라볼 로봇 기술 개발 O 개인 맞증형 헬스케어를 위한 AI기반 웨이라볼 보행 보조로봇 개발 - AI 기반 사용자 등작 의도, 보행 환경 인식, 인터텍션 제어 일고리즘 개발 - 사용자 보행 보조, 밸런스 보조 위한 최적 근력 제어기 개발 및 실험 - 조건량 다자유도 웨어러블 로봇 시스템 개발 - 참고 홈페이지: https://sites.google.com/view/kist-airlab	- 제할 로봇/데이러블 로봇 분야 연구 유강점자 - 로봇 설계, 인터렉션 제이 및 응용/평가 연구 유 강함자 - 회사 경력 우대 (인턴) - 3D CAD 프로그램 사용 가능자 우대 - C/C++ 프로그램의, SBC 기반 로봇 시스템 제 어, 회로설계 영화 우대 - 회X 검탁 한대로 전략 회망자 우대 - 회X 검탁 우대	jwlee@kist.re.kr
	지능로봇연구단	촉각 지능 로봇핸드 (Post-doc./인턴)	5-10	2	- 다지형 로봇텐드 순가락/순바닥 매커니즘 기구 설계 및 제 이 이 - 원출구동(tendon-driven)형 로봇텐드 역주에이터 연구 - 로봇텐드 내장 측김 센서 및 약김 센서 연구 - 축/약김 기반 비탁습 출체 파지 천략 연구 - 다중 정보 (multi-modal information) 기반 로봇텐드 제어 연구 - 물체 물성 적용형 파지 전략 연구 - 원화학(Reinforcement learning) 기반 순 안 (in-hand) 물체 조작 전략 연구 - 비고: 상체 연구분야 및 작무 내용/범위는 지원자와 협의 후 최종 절명	기계, 전기전자, 로봇, 메카트로닉스, 컴퓨터공학 - 학위: 학사/석사(인턴) 또는 박사(포스닥) (졸업 예정자 포함) - 전공: 기계, 전기전자, 메카트로닉스, 로봇, 컴퓨터 공학 - 로봇 기구설계 및 모터 제어 유경험자 우대 (필 수 아남) - (Lab HP 참고) www.dhwanglab.com 기계, 전기전자, 제어계측, 메카트로닉스, 로봇 및 기타 관련 전공	donghyun@kist.re.kr
	지능로봇연구단	가변감성 메커니즘 (Post-doc-/인턴)	5-11	2	O 가반강성 기구 설계 - 마그네틱 알경이 제밍 메커니즘 설계 및 특성화 연구 - 전자석 기반 강성 제이 연구 O 내골격 메커니즘 설계 - 유연기구 기반 연속제 로봇 내골격 설계 - 로봇 내장 모터 기반 자세 제이 연구	- (우대, 로봇 기구 설계 및 해석 유경험자 - (우대, 다자은 로봇 모터 제어 유경함자 - (우대, 아유로 로봇 모터 제어 유경함자 - (우대, 유연기구 설계 유경함자 - 참고: https://www.dhwanglab.com/ 기계, 전기전자, 제어계속, 메카트로닉스, 로봇 및 기타 관련 전공	donghyun@kist.re.kr

				기후 환경인	변구소		
기후환경연구소	지속가능환경연구단	초고해상도 기후모형 활용 (인턴)	6-1	1	○초고해상도 기후모형 세팅 및 안정화 ○기후모형 해상도에 따른 중위도 이상기후 모의 성능 평가	수치모형 활용 유경험자 대기과학	mksung@kist.re.kr
			Е	바이오 메디컬 융	합연구본부		
	바이오닉스연구센터	VR 기반 인지실형, 뇌 영상/신호 분석 (인턴/포닥)	7-1	2	1. VR 기반 인지 실험 - HMD 기반 VR 기술을 활용하여, 인지 기능 수치화 및 평가 기술 개발 - Spatial Navigation 등 고등 인지 관련 신경 과학적 가설 및 아이디어 검증 - VR 기술의 임상적용을 통한 신경 질환 조기 진단/예후 예측 기술 개발 2. 뇌 영상 및 신경 신호 분석 - 인지 혈통 중 획득한 뇌영상 (MMI 혹은 EEG) 분석 기술 - 인지 등록의 1명상의 연관 관계 분석 - 비점습 뇌자극 기술과 연계할 수 있도록 신경 활성 위지 특	(인턴) 학/석사(우대) 학위 소지자 또는 졸업 예정 (포덕) 박사 학위 소지자 또는 졸업 예정 - 뇌명상/이미지 분석 경험자 우대 - 임상 (행동) 실험 경험자 우대 의공학, 뇌공학, 신경과학 등	crescent@kist.re.kr
바이오·메디줟	생체분자인식연구센터	의과학/생물정보학/악학/생명공학 등 이공 게 분야 (포닥)	7-2	1	점 대시제 데이터 bioinformatics 기반 개인별 약물 반응성/부작용 정말 예측 기술 개발 당 정말 예측 기술 개발 - 대규모 코로는 임상시료의 대사제 데이터 분석 - 임상시료 생품의 대사제 정성/정량 분석을 통한 빅데이터 분석 및 대사 네트워크 본석 - 통계치리를 등한 대사제 바이오마커 발굴 - 타 기관과의 협업을 통해 바이오마커 기반 약물 부작용 예 즉 알고리즘 개역	Bioinformatics 관련 박사학위 소지자 절황분석기 기반 대시제 데이터 분석 및 통계 연 구유경험자 우대 생물정보학, 약학, 의과학, 생명공학 및 관련 전공	hyunbeom@kist.re.kr
용합연구본부	생체재료연구센터	생체재료, 생체공학, 재료화학, 의공학, 화학 (포스닥/인턴)	7-3	2	- 생체기능성 소재 설계 및 합성 - 생체기능성 소재 표면특성 평가 - 생체기능성 소재의 생체기능성 in vitro 및 in vivo 평가	- 박사 학위 소지자 생체재료, 의공학	ykjoung@kist.re.kr
	생체재료연구센터	생체재료 (포닥, 인턴)	7-4	2	생체재료 - 생체 재료 개발 - 생체재료의 조직학적 평가 - 생체 반응성 재료 (Bioactive Materials) 평가 및 기능화 (in vitro & in vivo 실험)	2023년 박사학위 예정자 및 소지자 의공학, 컴퓨터공학, 생명공학, 재료공학	hyuhan@kist.re.kr
	의약소재연구센터	생물학, 생화학, 약학, 생명과학, 수의학 등 생명과학관련 전 학과 (인턴)	7-5	2	-세포내 유전자 발현량 분석 (western blotting, RT-PCR, PAGE, FACS, confocal microscopy 등등) -각종 in vitro assay	학/석사(우대)학위자 혹은 학/석사(우대)졸업예정 자 생물학, 생화학, 약학, 생명과학, 수의학 등 생명 과학 관련 전학과	hjahn@kist.re.kr
	화학생명융합연구센터	생물학, 화학, 생명공학 관련 전분야 (포닥 혹은 인턴)	7-6	2	세포 생물학적 실영 (western, PCR, FACS, 형광 이미징 등) 을 이용한 노화세포 분석 동골모델을 이용한 노화세포 제거 효과 확인 물리적 자극을 이용한 세포 활성 및 기능 변화 측정	인턴연구원: 학사 혹은 석사 학위 취득 예정자 혹 은 소지자 Post-doc: 박사학위 취득 예정자 혹은 박사학위 소지자 형광 이미정 및 분광학, 면역학, 노화생물학 관련 경험자 우대	soyeonkim@kist.re.kr
				첨단소재기술	 연그보브	생물학, 화학, 생명공학 관련 전분야	
	계산과학연구센터	언공지능 방법론을 이용한 이자전지 소재 데이터 수집 및 소재물성 예측 (PostDoc 1인 / 인턴 1인)	8-1	2	아래 직무 중 지원자에게 맞는 직무를 수행할 예정 - 고체전해질 및 기타 이자전지 소재 물성 보석: 제일원리제 산, 기계학습파탄설 및 기타 인공자능 방법론을 이용하여 이 차전지용 소재 물성을 예측 - 자연이처리 기법을 이용하여 이차전지 관련 논문으로부터 자동으로 배터리의 구성 및 성능, 소재의 합성법 및 물성을 추 출하는 모델 개발.	- 박사주과장: 소재, 화학, 물리, 컴퓨터 관련 전공 자 중 제일원리계산 혹은 기계학습을 활용한 연 구 유경점자 - 인턴: 소재, 화학, 물리, 컴퓨터 관련 전공자 신소재, 전산, 전자공학, 화학, 화학공학, 물리 관 련 전공자	blee89@kist.re.kr
	극한소재연구센터	기상반응 환경촉매 소재 개발 (인턴)	8-2	1	- 기상반응 촉매 합성 변수 control 연구 등 대기오염물질제어 기술 - 촉매 합성/ 표면 특성 제어를 위한 표면 처리 및 분석 연구 수행 - 촉매 표면계질을 통한 성능증진, 촉매 반응기 및 기기분석/ 해석	- 환경공학, 화학공학 및 재료공학 등 관련 주전 공 석사학위 또는 학사학위 소지자 화학공학/환경공학/재료공학	dwkwon@kist.re.kr
	극한소재연구센터	수처리용 고도산화공정 촉매 개발 (Post-Doc.)	8-3	1	'하페수처리용 고도산화 촉매 소재 제작 및 scale up 기술 - 촉매와 여과필터 복합화 기술 - 용어산문 작성 등 - 기상반응 기반 1) NOx (NO, NO2, N2O) 제거, 2) CO2 전환,	박사 학위 이상 해당분야 전공자	kim_sh@kist.re.kr
	극한소재연구센터	탄소중립 대응 촉매 및 흡착제 소재 개발 (포닥/인턴)	8-4	2	3) CH4 천환, 4) NH3 분해, 5) 휘발성 유기화합물 (VOCs) 제 거를 위한 촉매 합성 및 촉매의 구조/표면 개질 - Hydrocarbon trap 연구 수행 - 작은 기체 출작/분리 연구 수행 - 촉매 및 흡작/분리제 물성 분석	- 화학, 화학공학, 환경공학 등 관련 주 전공 학사, 석사, 또는 박사학위 소지자 화학/화학공학/환경공학	hlee@kist.re.kr
	극한소재연구센터	나노소재개발 (Post-Doc.) 레이저 가공기술, 투명 반도체 소자, 복사	8-5	1	환경반응형 고분자 복합소재 개발 (계산과학, 합성, 3D 설계, 응용)	박사 학위 이상 해당분야 전공자 - 박사 학위 소지자 또는 예정자(Post-doc.)	khur@kist.re.kr
첨단소재기술연구본부	나노포토닉스연구센터	데에서 가능기울, 구성 단도세 도시, 즉시 열 제어 (Post-doc/인턴)	8-6	2	- 레이저 마이크로 가공 기술을 이용한 투명 반도체 소재/소 자 개발 - 에너지 하베스팅 투명 윈도우 개발	- 학사 및 석사 학위 소지자 또는 예정자(인턴) 신소재, 화학, 전기전자, 물리, 기계, 화공 등	kohd94@kist.re.kr
집단고세기를 만두근두	물질구조제어연구센터	광기능성 나노입자(perovskite 양자점/발 광나노입자) 합성 및 응용 (Post-Doc/인턴)	8-7	2	- 경기능성 나노입자 (영자점/페로브스카이트/나노형광체 등) 합성 및 응용(디스플레이, 광천소자 등) - 발광 나노소제 광독성 항상 및 제어 연구 - 나노소제 구조제어 연구	- Post-Doc 박사학위 소지자 및 박사학위 취득 예정자 - 인턴: 학사/석사 학위소지자 및 학위 취득 예정 자 - 전공: 재료, 신소재, 화학, 화공, 물리, 전자 등, 혹은 관련 분야 전공자	msekorea@kist.re.kr
	물질구조제어연구센터	기능성 생분해고분자합성 연구 (Post-doc. 또는 인턴)	8-8	2	바이오 및 에너지 소재용 생분해 고분자 합성	항학, 재료, 선소재, 항공, 전자, 물리 등 - 바이오 및 에너지 분야 응용을 위한 생분해 고 분자 합성 - 인턴(학/석사(우대)), Post-doc(박사/학위취득 5 년 이내) 화학 고부자 제료공학	scho@kist.re.kr
	센서시스템연구센터	인공 감각 개발 (인턴)	8-9	2	- 광수용체 단백질 제작 - 광수용체 단백질 기능화 연구 - 인공 시각 세포 내 신호전달 연구 - 광수용체 제기능화 연구	의학, 고면서, 세료등학 인턴: 화학, 재료, 화공 등 관련 학사학위 소지자 및 취득예정자 화학공학, 생명공학, 화학	hssong@kist.re.kr
	센서시스템연구센터	미세유체공학, 현탁계 유체역학 및 유변학 (인턴/Post-Doc)	8-10	2	- Complex Microfitudics 기반의 나노바이오 센싱 및 계면동 전기 응용 연구 - 현탁계 미세/생체유체의 구조적/동적/유변학적 특성 관련 설명 혹은 계산 연구	- 인턴·석사/예사(예정자 포함), 포스트닥: 박사 (예정자 포함) - 전공·미세유체공학, 현탁계 유체역학 및 유변 학 관련 전공 미세유체공학, 현탁계 유체역학 및 유변학 관련	mschun@kist.re.kr
	소프트용합소재연구센터	소프트 전자시스템, 소프트 로봇, 마이크로 로봇 (Post-Doc)	8-11	1	- 자기조립 기반 자성 유연복합소재 및 고분자 개발 - 자성복합소재 기반 지능형 소프트 전자소자 및 시스템 개발 - 자성복합소재 기반 지능형 소프트 로봇 및 마이크로로봇 기 술 개발	- 신소제/기계/전기전자 전공 박사학위 소지자 및 취득 예정자 - 소프트 전자, 소프트 로봇, 또는 생체의료용 마 이크로로봇 분야 연구 경험자 신소재공학, 기계공학, 전기전자공학	junghwan@kist.re.kr

				청정신기술인	^{부구본부}		
	청정신기술면구본부장실	분야1: 공청 설계 및 최적화, 경제성 평가 / 분야2: Material Discovery using Machine Learning (Post-doc.)	9-1	2	[적무내용 별 각 1만씩 채용] 1. 공기 중 이산화만소 동시 포집·전환 공정 초구조 최적화 및 경제성 및 환경성 병가(10) - Aspen을 활용하여 공정 설계 및 최적화 경제성(단A) 및 환경성(CA) 평가 - 전역만급도 분석 및 시나리고 분석을 통해 유망 동시 전환기술 발建 2. 기계학습 기술 활용 흡수제 및 전해질 스크리닝 (1인) 가. 고제전해질 스크리닝을 위한 인공기능 기술 개발 (전고체 배티리 개발) - 고제전체절 database를 활용하여 높은 ionic conductivity를 가지는 물질 스크리닝. - Superivsed/non-supervised learning을 활용하여 주요 descriptor 혹은 그 조합을 규명	화학공학, 화학, 화공성업공학, 촉매 및 반응공학, 유기화학, 고분자공학, 환경공학 관련 전공 박사 학위 소지자.	won@kist.re.kr
	수소·연료전지연구센터	화학 공학, 재료 (촉매, 반응기) (Post-Doc 또는 인턴)	9-2	2	- 실험 팀과 협업하여 모델 validation 나. 아민흡수제 스크리닝을 위한 인공지능 기술 개발 - 아민흡수제 database를 활용하여 직접 공기 이산화 1) 예상유기수소저정의 활용 수소 저장반응 2) 이산화단소 기반 수소 저장반응 3) 역상유기수소저정체 활용 수소 추출반응	관련 전공 석사 또는 박사 학위 소지자 및 졸업에 정자 관련 전공	yongminkim@kist.re.kr
	수소·연료전지연구센터	연료전지 및 수전해용 촉매 소재 개발	9-3	1	고분자 전해질 연료전지 구동에 적합한 적합한 촉매 개발 및 전해질 제조 최적화 및 연료전지 평가를 위한 연구/개발을 수	Post-doc. : 관련 전공 박사 이상	jinykim@kist.re.kr
	수소-연료전지연구센터	(Post-doc.) 고성능 고분자 전해질 수전해 MEA 개별 및 연료전지 전국/MEA 개별/분석 (Post-doc/인턴)	9-4	2	병할 예정인 고분자전해질(PEM) 기반 전기화학 수소생산 장치인 수전해 및 연료전지용 고성능/고내구 전극 소재 (흑매 5) 및 막전극 접합체 개발 연구를 수행할 예정인. 고성능/고내구 소재 개발 및 개발소재를 적용한 장치의 성능 및 내구성 평가를 통해 개 발소재의 작동 및 열화 메커니즘을 규명하고, 이를 개선하기 위한 전략을 도출하는 연구/개발을 수병 할 예정의	관련 전공 관련 전공 학/석사(우대), 박사 이상 관련 전공	parkhy@kist.re.kr
	수소-연료전지연구센터	고분자 전해질 수전해용 고효율 축매 개발 및 MEA 평가/분석 (post.doc)	9-5	1	고분자전해질(PEM) 기반 전기화학 수소설산 장치인 수전해 정치의 해삼소체 (전국, 국매 등) 개발 업무를 수행할 예정의, 등에, 개발 소재의 구조회 본석을 통해 활성인자와 반응메커 내즘을 밝하는 연구를 수행할 예정의, 나이가, 개발 소재를 활 용한 막전극절함체를 개발하여 성능 및 내구를 평가/본석하 는 연구를 수행할 예정임.	관련 전공 박사 이상 관련 전공	brseo@kist.re.kr
	수소·연료전지연구센터	MCFC/MCEC의 촉매 및 구성요소 개발에 대한 연구	9-6	1	MCFC/MCEC의 촉매 및 구성요소 개발	관련 전공 박사 학위 소지자 관련 전공	spyoon@kist.re.kr
	수소-연료전지연구센터	(Post-Doc) 고성능 고분자 전해질 수전해 및 연료전지 소재 및 MEA 개발 (Post-doc/인턴)	9-7	2	교본자전해질(PEM) 수전해 장치의 고성능 저가화 및 발전용 PEM연료전치 고효율화를 위한 연구/개발을 수행할 예정의 구전해 산고국 귀금속 사용량 자감을 위한 저귀금속 전국 소 제 및 비귀금속계 수소극 전극소제 개발, 연료전지 산국 고 성능화를 통한 수전해 장치 및 연료전지 전국 소재의 가격적 검을 위한 연구/개발을 수행할 예정임	관련 전공 학/석사(우대), 박사 이상 관련 전공	jhjang@kist.re.kr
	수소·연료전지연구센터	화학, 화학 공학, 재료 공학 (불균일계 촉매 반응, 가압 반응)	9-8	1	1) 고상 수소 저장체 활용한 연속 수소 방출 기술 개발 (기업 과제) 2) LOHC를 이용한 연속 탈수소화 반응 개발 (기관고유, 공기	관련 전공 학/석사(우대) 또는 박사 학위 소지자 및 졸업예정자	hsjeong@kist.re.kr
	수소·연료전지연구센터	(Post-Doc 또는 인턴) 1.전기화학적 암모니아 합성 촉매, 수소분 리막 및 프로톤 전도성 전해질 신소재 개 발	9-9	1	업 과제) - Ru 기반 암모니아 합성 촉매 신소재 개발 - PO 도평 BaCeO3 페로브스카이트 기반 프로톤 전도성 전해 질 신소재 개발을 통한 전기화학적 암모니아 막 반응기 개발	관련 전공 관련 전공 박사 또는 학/석사(우대) 학위 소지자 및 예정자 관련 전공	shchoi@kist.re.kr
청정신기술연구본부	수소-연료전지연구센터	(Post-Doc 또는 인턴) 2.고온 세라믹 기반 연료전지 및 고온 프로 톤 수전해 (PCFC, PCEC) (Post-Doc 또는 인턴)	9-10	1	- 도핑 Pr2NiO4 (Ruddelsden-Popper phase) 기반 프로톤 수 전해 (PCEC)의 산소발생전극(DER) 촉매 신소재 개발 - Pd 도핑 BaCeO3 페로브스카이트 기반 프로톤 전도성 전해 질 신소재 개발을 통한 PCEC 단전지 제작 및 특성 평가	관련 전공 박사 또는 학/석사(우대) 학위 소지자 및 예정자 관련 전공	shchoi@kist.re.kr
	에너지소재연구센터	산화물 기반 차세대 전자/에너지 소재 분석 및 응용 (Post-doc)	9-11	2	분이소 교이온 전도체 산화물 박막제작 및 용용 상 - 다양한 이온 소제를 적용한 자세대 인공지능형 산화물 박약 소재 제작 및 용명 - 초고이온 전도체의 연료전지 및 수전해 소자 적용 - 박약형 자세대 이자전지 제작 및 용용 본이용: (실시간) 투과전자현미경을 활용한 자세대 전자/에너지 소재의 구조 분석 - 실시간 투과전자현미경 본석법 확립 및 적용 - 자세대 인공자)형 전자소자 구조 분석 및 무등원리 규명 - 초고이은 전도체 적용 연료전지 또는 수전해 소자 분석 - 차세대 안재 소재 설명 등용	진단 단요 관련 연구 박사 학위 소지자 물리/재료/화학/화공 또는 관련전공자	dkwon@kist.re.kr
	에너지저장연구센터	제일원리 계산 및 머신리닝을 이용한 차세 대 이차전지 소재 설계 (인턴)	9-12	1	제일원리 계산 및 머신러닝을 이용한 차세대 이차전지 소재 설계	학/석사(우대) 학위 소지자 및 취득 예정자 제일원리 계산 및 VASP 활용 가능자 우대 미신리닝 및 코팅 경험자 우대 직무 관련 전공	shyu@kist.re.kr
	차세대태양전지연구센터	광전 소자용 소재 개발 (인턴)	9-13	3	(1) 광전 소자용 소재 개발 - 광전 소자용 유기 및 무기 소재 개발 및 분석 (2) 광전 소자 분석 및 공정 개발 - 광전 소자 제작 및 분석 (전기적 분석, 광학적 분석, 박막 분 석)	화공/화학/재료/전자/물리 등 관련 분야 학사 줄 업 이상	hjson@kist.re.kr
	차세대태양전지연구센터	진공증착 페로브스카이트 태양전지 개발 (Post-Doc/인턴)	9-14	2	- 광전 소자 용역 공정 기술 개발 - 진공증착 페로브스카이트 태양전지 개발 - 실리콘/페로브스카이트 탠덤 태양전지 개발 - CIGS/페로브스카이트 탠덤 태양전지 개발	관련 전공 학사학위 이상 신소재, 재료, 화공, 물리, 화학 등 관련분야 전공 자	dklee@kist.re.kr
	차세대태양전지연구센터	차세대 화합물 박막태양전지 공정 기술 (인턴)	9-15	2	- 화합물 무기박막(CIGS) 태양전지 셀/모듈 공정 기술 고도화 - 레이저 공정 기반 박막패터닝 기술 - 박막태양전지 소자 특성 분석 연구	- 재료공학, 전기-전자공학, 기계, 물리 분야의 전 공지식이 우수한 자 - 레이저 가공 공정 전문가 재료, 물리학, 전기전자, 기계 등 공학 및 이학전	jhjeong@kist.re.kr
	청정에너지연구센터	고내구성 구리전국 개발 및 메커니즘 연구 (포닥, 인턴)	9-16	3	- 전기화학적 CO2 전환 애틸렌 생산 고효율 전해 시스템 개 발 ● 고압 반응을 위한 반응기 설계 및 운전 최적화 연구를 통한 15 A cm-2 전투밀도 달성 ● 유로설계 및 구조 최적화를 통한 전환을 50% 이상의 이산 회단소 환원 반응기 개발 ● 알레예(소임계) 따른 전기화학적 이산화단소 전환 경향 연구 ● 조임계 조건 전기화학적 CO2 전환 CO/에틸렌 생산 제로 경반응기 성능 향상을 위한 반응기 구성요소 기술 개발 및 운전 조건 확립 ● 분리막, 전해질, 유속, 운전 환경 변수 영향 파악	공 - 학/석사(우대)학위, 박사학위 - 화학, 화학공학, 제료공학 등 관련 분야 화학, 화학공학, 재료공학 등 관련 분야	hyung-suk.oh@kist.re.kr
	청정에너지연구센터	전기화학적 이산화탄소 전환 촉매 소재 및 반응 시스템 개발 (Post-Doc)	9-17	1	● 군디역, 전에일, 유쪽, 군진 환경 반구 영향 파악 - 전기화확적 이산화탄소 전환 기술 개발 - 전기화확적 매반하 및 소재 - Reactive capture and conversion (CO2 동시 포집·전환) 기술 개발	-박사 학위 소지자 (또는 졸업 예정자) - 전공: 화학, 화학공학, 재료공학 등 관련 분야 화학, 화학공학, 재료공학 등 관련 분야	dahye0803@kist.re.kr
	청정에너지연구센터	전기화학적 고부가 유기화함물 생산 (포덕)	9-18	1	1. 유기전기합성 반응을 이용한 바이오매스/폐기물 고부가화 기술개발 2. 전기화학적 반응을 위한 유기금속촉매 합성 3. 실시간 전기화학 계면반응 XAS/ATR-IR 분석	- 화학, 화공, 신소재 또는 관련 전공 박사학위 소 지자 (또는 졸업예정자) - 유기금속촉매 합성 경험자 및 전문지식 보유자 우대 (전기화학 경험 없어도 무관)	dnklee@kist.re.kr

				연구자원 데이	터지워본부		
연구자원 데이터	도핑콘트롤센터	소변 및 혈액 시료 내 생체 유래 금지 약물 중심의 GC-MS/MS 및 Bio분야 펩타이드 분석법 개발 및 분석지원 (인턴)	10-1	2	- 매년 고도화되고 있는 WADA에서의 분석법 기술 요건 충족을 위한 세료은 분석 기술 개발 - 새로운 고분해는 질량분석기와 GC-MS/MS를 융합한 스테로이드 분석법 개발 - 역을 스크리는 본석화 결과 확인, 정량 및 약물복용 의심 시료에 자료 해석 및 반정 관리와 분석업무 수행 및 기기관리	학사,석사(예정자 포함) 분석화학,화학,생물공학,약학,생화학등 관련분야	rrd@kist.re.kr
지원본부	특성분석-데이터센터	광전자분광법을 이용한 나노 유/무기 반도 체 소재 분석법 연구 (인턴)	10-2	3	- 표면분석 장비의 기본 원리 및 장비구성, 신규 재료 물성 분석법 면수 - 건공에 대한 기본이에부터 광전자 분광 장치에 대한 기술 적/파술적 지식 습득 - KIST 원내의 광전자분광 측정 서비스 지원을 통한 다양한 소재의 YSS, USP, IPES 해석법 습득	- 학사 이상(예정자 포함) 물리학, 신소제공학 관련 분야	- nogastrea
				전자파솔루션·	융합연구단		
	전자파솔루션용합연구단	차세대 스마트 고분자 및 복합소재의 제 조/분석 (Post-Doc. 또는 인턴)	11-1	2	(1) 고내열성 및 전자파 대응 고성능 고분자 및 복합소재 (2) 스마트/능동김응형 고분자 및 복합소재 (3) 화학/교분자 합성 및 복합소재 제조/분석 (4) 소재의 구조-물성 상관관계 규명 (5) 이종소재 계면제어 및 접착	무관 화공, 화학, 재료, 신소재, 고분자, 섬유, 기계 등	jaewoo96@kist.re.kr
	전자파솔루션용합연구단	전자파차례용 고전도성 나노소재 합성 및 복합재료 제조 (Post-Doc. 또는 인턴)	11-2	1	● 고전도성 나노 소재 합성 가술 개발 ● 고전도성 나노 소재의 기초적 특성 분석: AFM, KPFM, MFM 등의 sanning probe technique을 이용한 표면 구조와 전기전자적 특성 분석 ● 고전도성 나노 소재의 고분자 복합화 및 가능성 하이브리 도 소재 제작	박사 또는 학/석사(우대) 신소재, 재료, 화학, 화공, 기계 등 관련 학과	taegon.oh@kist.re.kr
전자파슬루선 용합연구단	전자파슬루선용합연구단	이차원 소재의 전하 수송 특성 평가 및 조 절이자원 나노소제 기반 전도성 대면적 공정 기술 개발대면적 이자원 전도성 소 재를 이용한 전자파 제어 및 응용 (Post-Doc. 또는 인탄)	11-3	1	1. 목표 이자원 나노 소재의 제면에서의 전하 수송 특성은 평가 및 제 이하여 최적화 된 이자원 소제 기반 대면적 필름은 형성하고, 전자파 자폐 응용까지 확장 하고자 함. 2. 연구 내용 및 방법 . 이자원 나노 소재의 기계적, 전기화학적 박리를 통해 형성된	박사 또는 학/석사(우대)	kcho@kist.re.kr