보도자료
-
95
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발 - 뇌의 산성도 및 활동을 시각적으로 측정할 수 있는 형광전압센서 개발 - 억제성 신경세포의 상호작용 원리를 규명 인체의 면역계가 정상적으로 작용하기 위해서는 적정수준의 pH(산성도)가 유지되어야 하며, 특히, 뇌 속 산성도의 변화는 암이나 신경질환 등의 질병과 연관성이 높다고 알려져 있다. 외국인 유치과학자가 주축이 된 국내 연구진이 뇌 속 신경세포의 전기적 활동은 물론 pH(산성도) 조절 및 관찰이 가능한 형광전압센서 단백질의 개발에 성공하였다. 해당 단백질을 통해 세계 최초로 신경세포내의 pH농도 조절 및 상호작용을 시각적으로 관찰할 수 있게 되었다. 한국과학기술연구원(KIST) 뇌과학연구소 기능커넥토믹스연구단 브래들리 베이커(Bradley J. Baker) 박사 연구팀은 빛을 통해 뇌 활동을 측정하여 실시간으로 산성도(pH)도 조절이 가능한 바이오 센서를 개발하였다. 이번 연구는 권위 있는 해외 학술지인 ‘Scientific Reports’ 4월 4일자 온라인판에 게재되었다. 2011년 미래창조과학부(장관 최양희)의 세계적 수준의 연구센터(WCI, World Class Institute)사업의 유치 과학자로 초빙되어 현재 KIST 정규직 연구원으로 재직 중인 브래들리 베이커 박사는 위와 같은 센서의 이름을 우리말 ‘파도, Pado’로 정하였는데, 센서를 통해 측정된 산성도와 전압 활동 신호가 파도치는 형상에서 모티브를 얻었다. 브래들리 베이커 박사는 2015년 뇌 속 신경활동의 시각적 관찰이 가능한 제 1호 탐침 ‘봉우리, Bongwoori’(*용어설명)에 이어, 두 번째로 ‘파도, Pado’개발에 성공한 것으로 과학기술연합대학원대학교(UST) 학생과의 독자적인 연구를 통해 이루어진 성과이기에 그 의미가 더욱 깊다. 브래들리 베이커 박사 연구팀은 수소이온통로 단백질과 뇌에서 발현 가능한 형광물질을 이용하여 형광단백질 센서 ‘파도’를 개발하였고, 이를 배양이 용이하여 일반적으로 생물학 실험에 사용되는 HEK 293세포(인간배아신장유래세포)에 발현시켜 pH에 변화에 따라 연결된 다른 세포가 연동됨을 증명하였다. 이 연구결과는 HEK 293세포와 유사하게 전기적으로 연결되어 있는 억제성 뉴런은 물론이고 심장, 신장 등의 연구에도 적용이 가능하며, 추후 ‘파도, Pado’를 이용한 산성도 변화관찰은 물론 산성도 조절을 통해 뇌 세포간의 상호작용 및 다양한 연구 진행이 가능할 것으로 보인다. 또한, ‘파도’는 기존의 ‘봉우리’에서 관찰이 가능하였던 전압과 빛의 세기와의 연관성을 실험적으로 증명할 수 있었는데, 이러한 원리규명을 통하여 그 기능이 향상된 3호 탐침이 개발 중이다. 베이커 박사는 “본 연구로, 신경세포부터 면역세포에 이르기까지 건강상태와 질병상태에서 pH의 역할을 파악할 수 있었고, 향후 파킨슨병과 같이 억제성 뉴런의 이상으로 발생되는 뇌질환의 근본적인 원인을 규명하는데 일조할 것으로 예상된다.”고 밝혔다. * (논문명) Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions - (제1저자) Bok Eum Kang - (교신저자) Bradley J. Baker <그림자료> <그림 1> 형광단백질센서 ‘파도, Pado’의 구조 S1-S4는 전압을 감지하며, 수소이온농도를 조절하는 수소이온통로의 역할을 가지며, SE A227D는 수소이온통로의 변화 혹은 S1-S4에서 감지되는 전압변화에 따라 형광세기를 변화시키는 역할을 한다. <그림 2> 왼쪽사진은 파도를 발현하는 HEK293 세포사진이고, 빨간선은 전기적 활동과 pH농도변화에 따른 형광세기 변화를 파란선은 수소이온이 세포막을 통과하면서 발생하는 전류의 변화를 나타냄. 수소이온이 통과하면서 발생하는 전류 1nA(전류의 단위; 암페어(ampere)의 10억분의 1)당 형광신호 변화량이 약 15% 변화하는 것을 관찰할 수 있음. <그림 3> ‘파도’로 관찰한 전압과 pH이미지 전압은 파란색, pH는 빨간색을 보여줌. 세포는 전압의 변화를 보여주며 파란색으로 시작한다. 3670번 사진에서 세포의 왼쪽 아래 코너에서 pH변화가 보이기 시작하고, 4090사진에서 위쪽 오른쪽 세포의 코너에서 pH가 변화하는 것을 관찰할 수 있다. 4450사진에서는 pH의 움직임이 세포 전역에서 파도처럼 퍼져있다. 각 사진번호는 밀리세컨드(1000분의 1초)를 나타내며, 이 과정은 대략 1초가 소요된다. <그림 4> ‘파도’를 억제성 뉴런에 적용한 예상도 초록색으로 표기된 파도가 발현함에 따라 한 억제성 뉴런(Inhibitory Neuron)에서의 변화가 다른 억제성 뉴런(Inhibitory Neuron)로 이동하는 것을 볼 수 있다.
- 94
- 작성자기능커넥토믹스연구단 브래들리 베이커(Bradley J. Baker) 박사 연구팀
- 작성일2016.04.06
- 조회수24343
-
93
KIST-서울대 공동연구팀, 암 혈관세포 특이 단백질 발굴 및 이를 제거하는 항암치료제 개발
KIST-서울대 공동연구팀, 암 혈관세포 특이 단백질 발굴 및 이를 제거하는 항암치료제 개발 - 암 혈관세포에만 특이적으로 발현되는 ‘Doppel’(단백질) 발굴 - ‘Doppel’ 적중하여 제거하는 경구용 헤파린 유도체 개발, 항암효과 검증 한국과학기술연구원(KIST, 원장 이병권) 의공학연구소 테라그노시스연구단 김인산 박사 연구팀과 서울대 융합과학기술대학원 및 약학대학 변영로 교수 연구팀은 항암제를 회피하는 능력을 가지고 있는 암세포를 직접 적중하는 대신에 비교적 형질의 변화와 적응력이 낮고, 암조직의 생존에 필수적인 암 혈관세포만 선택적으로 적중할 수 있는 단백질을 발굴하였으며, 이를 적중하는 기술을 개발하여 항암효과를 검증했다. 기존의 암 혈관형성을 억제하는 아바스틴(*용어설명)과 같은 항암제가 개발되어 임상에서 사용 중에 있으나 암 혈관에만 선택적으로 작용하지 않는 부작용이 있었으며, 장기적으로는 암 조직이 다른 혈관형성기전을 진행함으로써 암세포가 계속 생존할 수 있게 된다. 본 연구팀은 이 두 가지 문제 중 첫 번째 문제인 부작용을 줄일 수 있는 길을 규명했다. 발굴한 특정 단백질이 암 혈관에만 선택적으로 작용함으로써 다른 조직에는 영향을 최소화 한다는 것을 밝혔다. 연구팀은 향후 추가 연구를 통해 암혈관형성의 새로운 경로 발현까지 억제할 수 있는 방법을 개발하는 것을 목표로 하고 있다. 이번 연구의 또 다른 중요한 의미는 환자의 치료편의성을 높인 경구용 항암제의 개발이다. 일반적으로 혈액 응고를 억제하는 ‘헤파린’(*용어설명)을 사용하고 있었으나, 이번 연구를 통해 헤파린을 변형시켜 혈액응고 효과는 없으면서 경구흡수가 가능하고 암 조직 혈관에서만 발현되는 Doppel(*용어설명) 단백질의 작용을 억제할 수 있는 물질을 개발하여 항암제로서의 개발 가능성을 보였다. 연구팀은 현재 Doppel 단백질의 기능을 억제하는 단 클론항체를 개발하여 항암치료효과를 보는 연구와 Doppel 유전자를 지닌 마우스를 제작하여 이 단백질의 암 혈관형성에서의 중요성을 검증하는 연구를 진행 중이다. 고령화 시대의 대표적 질환인 암은 국민 3명당 1명이 걸린다는 통계가 말해주듯이 의료계의 난제 중 하나이다. 의료계와 학계에서는 지금까지의 항암치료 관련 전략의 패러다임 전환이 필요함을 인식하게 되었고, 새로운 개념과 전략들을 발표하고 있다. 현재 항암제 개발의 주요 전략은 암세포만 선택적으로 찾아 제거할 수 있다는 타겟 항암 치료에 초점이 맞춰져 있다. 일부 항암제 개발의 성공에도 불구하고 암세포의 다형성(heterogeneity)과 복잡적응성(complex adaptiveness)로 인해 항암치료 효과가 기대에 미치지 못하는 실정이고, 최근 면역 항암 치료제의 부분적 성공으로 인해 치료에 대한 기대가 커지고 있음에도 불구하고 단일 치료법만으로는 한계가 있다. 본 연구는 KIST 의공학연구소 기관고유사업, 미래창조과학부 의학-첨단과학기술 융합원천기술개발사업과 보건복지부 암정복사업의 일환으로 추진되었으며, 세계적으로 권위 있는 과학지인 ‘Journal of Clinical Investigation’ 2016년 3월 7일자 온라인판에 게재되었다. * (논문명) Targeting prion-like protein doppel selectively suppresses tumoral angiogenesis’ - (제1저자) Texas Tech Univ. Taslim Ahmed Al-Hilal - (교신저자) 한국과학기술연구원 김인산 박사 (교신저자) 서울대학교 융합과학기술대학원 및 약학대학 변영로 교수 <그림자료> <그림 1> 정상폐조직(좌상)과 폐암조직(좌하)에서 Doppel단백질의 발현과 정상폐조직(우상)과 폐암조직(우하)에서 혈관염색. 정상 폐조직의 혈관에서는 Doppel단백질의 발현이 없으나 폐암조직의 혈관에는 Doppel단백질이 많이 발현하고 있다. <그림 2> 헤파린 유도체(LHbisD4)에 의한 항암효과. 헤파린 유도체를 경구로 투여하였을 때 암의 성장이 현저히 줄어듦. <그림 3> 암혈관 특이 단백질(Doppel) 을 적중하는 암 치료 기전 암조직의 혈관만을 선택적으로 적중함으로써 부작용이 적은 항암제의 개발이 기대됨
- 92
- 작성자테라그노시스연구단 김인산 박사 연구팀
- 작성일2016.03.30
- 조회수26203
-
91
마이크로 입자다발로 수십 종의 유전자를 동시에 진단하는 원천기술 개발
마이크로 입자다발로 수십 종의 유전자를 동시에 진단하는 원천기술 개발 -메르스, 지카바이러스 등 신변종 감염병 조기 정밀진단 적용가능 최근, 차세대 유전자 시퀀싱 기술과 생물정보학의 발전으로 질환과 유전자와의 상관관계가 밝혀지고 있다. 특히, 유전자 변이에 의한 질환인 각종 암과 감염원에 의한 만성질환 등은 유전자를 정밀하게 분석함으로써 질환의 특징을 자세히 파악할 수 있다. 질환에 대한 정보를 보유한 유전자는 현재까지 real-time PCR(실시간 핵산증폭(polymerase chain reaction), *용어설명) 기술로 한번에 3~4종의 유전자까지만 분석할 수 있었다. 따라서 여러 종의 마커를 분석하려면 그에 따른 비용이 가중되어 진단법으로 자리잡는데 불리하며, 환자로부터 얻는 시료 중에는 여러 번의 분석에 필요한 양을 채취하기 어려운 경우도 있다. 한국과학기술연구원(KIST 원장 이병권) 뇌과학연구소 바이오마이크로시스템 연구단 김상경 박사팀은 기존의 유전자 정밀 다중분석 비용과 시료의 제한을 해결하기 위해 표지(Marker)를 가진 마이크로 입자에서 핵산을 고효율로 증폭하는 기술을 개발했다. 표적 유전자만을 증폭하는 프라이머(특정 DNA단편, *용어설명)을 다량 함유한 다공성 마이크로입자에서, 실시간으로 증폭과정의 형광신호를 측정하여 그 유전자의 유무와 양을 측정한다. 몇 가지 유전자를 동시에 분석하고자 하면 해당되는 입자를 골라서 시료와 섞고 함께 분석하면 되고, 이때 각 입자에는 해당되는 표적유전자가 패턴으로 표지되어 신호를 구분할 수 있다.. 핵산증폭용 마이크로입자는 다공성 하이드로젤 (*용어설명)로 구성되어 있고 광가교반응 (*용어설명)을 통해 인식패턴과 프라이머를 포함한 형태로 제작된다. 제작과정이 빠르고 안정적이며 대량생산이 가능하여 제품으로 개발할 때 가격경쟁력이 높을 것으로 기대된다. 도장과 같이 올록볼록한 구조를 가진 기판에 폴리머 전구물질과 프라이머를 포함한 액체를 떨어뜨려 반구모양의 액적을 만들고 자외선을 쬐어 완성한다. 입자의 크기는 100~500 마이크로미터 정도의 범위에서 조절가능하며 입자식별을 위하여 다양한 패턴을 넣을 수 있다. 현재는 패턴인식으로 10만 종류 이상의 입자 식별이 가능한 코드를 적용하여, 한꺼번에 분석하는 유전자 표적의 수는 거의 제한이 없다. 김상경 박사팀은 질환의 표지자로 주목받는 miRNA (*용어설명) 10종을 1.5 mm 폭의 용기에서 동시에 검출하였다. 각각의 miRNA를 선택적으로 증폭하는 입자를 1개씩 모은 10개의 입자다발과 극미량의 생체시료를 섞고 그 속에 포함된 10종의 miRNA 양을 분석한 것이다. 더 작은 입자를 이용하게 되면 100개 이상의 동시분석도 가능하다. miRNA는 생체조절물질로서 폭넓게 연구되는 대상으로, 특히 세포간의 신호를 전달하는 세포외 소포체(*용어설명)에 풍부하게 포함되어 암, 치매 등의 퇴행성 질환의 진행을 표지하는 마커로서 잠재력이 크다. 이번에 개발된 핵산분석기술을 이용하여 수십 종의 miRNA의 양적인 변화를 동시에 측정하면 질환을 보다 정밀하게 진단할 수 있게 된다. 이번 연구는 여러 가지 핵산을 분석하는 동시에 감염성 질환을 정밀하게 파악하고 치료하는 데에도 적용가능하다. KIST 김상경 박사는 “감염균의 정확한 유전형(*용어설명)과 약물 내성 등을 단 1회 분석만으로 파악이 가능하며, 같은 비용으로 환자에게 더 유리한 의료서비스를 제공하는 차별화된 진단기술로 발전될 수 있다. 특히 퇴근 메르스나 지카바이러스 등 신변종 감염병 바이러스와 같이 시급하고 정밀한 진단이 필요한 경우 유용한 기술로 활용되기를 기대한다. 향후 빠른 시일안에 상용화가 될 수 있도록 임삼시험등 필요한 연구들을 계속 진행해나가는 것이 목표”라고 말했다. 본 연구는 미래창조과학부 지원으로 KIST 개방형 연구사업, 미래원천 연구사업, 보건복지부 미래융합 의료기기 개발사업을 통해 수행되었으며 연구결과는 세계적 권위를 자랑하는 Nature의 자매지로서 융합기술분야 국제 저명 학술지인 Scientific Reports (IF: 5.578)에 3월 온라인판에 게재되었다. 또한 해당 연구결과는 국내특허 (출원번호: 1020130128696) 및 해외 PCT (출원번호: PCT/KR2016/001493) 출원되어 등록과정에 있다. * (논문명) Extensible Multiplex Real-time PCR of MicroRNA Using Microparticles - (제1저자) 한국과학기술연구원 정승원 박사 - (교신저자) 한국과학기술연구원 김상경 박사 <그림자료> <그림1> 표적유전자용 다공성 표지입자의 구성도 및 표적 유전자 농도별 입자내 형광 증폭 과정 <그림2> 입자의 제작과정 (위) 및 제작된 표지입자 이미지 (아래) <그림 3> 5종의 서로 다른 miRNA 입자를 배열한 후 각기 다른 농도의 유전자를 주입하여 실험한 결과, 각 입자는 서로간의 교차반응 없이 주입된 농도에 맞는 신호를 보임 <그림 4> 세포외소포체로부터 채취한 미량의 시료로부터 10종의 miRNA를 다중 분석한 결과. 무작위로 2종의 miRNA를 넣어준 결과 다른 유전자의 신호에 영향없이 2종 miRNA의 신호만 변한 것을 확인 <그림 5> 정밀 감별진단 개념도
- 90
- 작성자바이오마이크로시스템 연구단 김상경 박사팀
- 작성일2016.03.29
- 조회수24007
-
89
KIST, 세계 최초로 근육세포 융합의 비밀을 풀다
KIST, 세계 최초로 근육세포 융합의 비밀을 풀다 - 정상 근육세포에 작용하는 ‘포스파티딜세린’ 인식 수용체 규명 - 근육세포 융합의 분자적 기전을 밝히는 돌파구 마련 근육은 인체의 활동성에 매우 중요한 근골격계 유지 및 대사과정에 중요한 역할을 하는 기관이다. 근육 조직은 많은 근섬유로 구성되어 있으며, 각각의 근섬유는 근육세포의 융합에 의해 형성된 하나의 다핵세포로 구성된다. 현재까지 근육세포 융합에 작용하는 다양한 분자들이 밝혀지고 많은 모델들이 제시되었다. 하지만 근육세포 융합의 정확한 분자적 기전을 규명하기 위해서는 아직 많은 연구들이 수행되어야하는 상황이다. 한국과학기술연구원(KIST, 원장 이병권) 김인산 박사, 동국의대 박승윤 교수 연구팀은 근육형성 과정에서 근육 세포의 융합과정에 작용하는 ‘포스파티딜세린’의 수용체를 규명했다. 인지질(*용어설명 참고)의 일종인 포스파티딜세린은 세포막을 구성하는 지질 이중층 중 내부에 존재하다가 근육세포 융합과정에서 세포막의 외부로 노출되어 세포융합에 작용한다. 김인산 박사팀은 이를 인식하는 수용체를 세계 최초로 밝혀냈다. 연구진은 포스파티딜세린을 선택적으로 인식하는 수용체인 ‘스태빌린-2’라는 유전자가 근육세포의 분화 및 손상 후 근육 재형성 동안에 근육세포 융합의 효율을 조절할 수 있다는 사실을 알아냈다. 세포막을 구성하는 포스파티딜세린이 정상세포에서는 세포막의 내부에 존재하지만 세포융합(*용어설명 참고)과정에서 세포 외부로 노출된다는 점과 근육세포의 분화과정에서 다양한 포스파티딜세린의 수용체들 중에서 스태빌린-2가 다량 존재한다는 점에 착안했다. <그림 1> 스태빌린-2 유전자결핍에 의해 근육세포 분화과정 동안에 세포 융합의 감소, 정상 생쥐의 근육세포 분화(좌), 스태빌린-2 유전자결핍 생쥐의 근육세포 분화(우) 연구진은 스태빌린-2가 근육세포에서 중요한 Calcineurin/NFAT(*용어설명) 신호전달을 통해서 발현되는 것을 확인했고, 근육세포에서 스태빌린-2의 양을 증가 시키면 근육세포의 융합이 촉진된다는 연구결과를 도출했다. 이 결과를 바탕으로 스태빌린-2 유전자가 결핍된 마우스를 제작하여 근육세포에서 융합이 줄어 있음을 확인하였고, 정상 생쥐의 근육세포에 비해 손상 후 세포융합에 결함이 있는 것을 발견했다. <그림 2> 스태빌린-2 유전자결핍 생쥐에서 근육 손상 후 재형성의 결함. 정상 생쥐의 근육재형성(상), 스태빌린-2 유전자결핍 생쥐의 근육재형성(하) 연구팀은 본 연구를 통하여 포스파티딜세린 수용체인 스태빌린-2가 근육세포의 융합에 작용할 것이라는 연구진의 가설을 증명했다. 주목할 만 한 점으로 사멸세포가 아닌 살아 있는 근육세포에서 노출된 포스파티딜세린을 인식하는 수용체를 세계 최초로 규명함으로서 단순한 신호전달이 아니라 포스파티딜세린이 세포 간 융합에 직접적으로 작용한다는 기전을 밝혔다는 점에서 가치가 높은 연구결과라 할 수 있다. KIST 의공학연구소 테라그노시스연구단 김인산 박사는 “이번에 밝힌 포스파티딜세린 수용체의 기능은 근육세포 융합에 대한 정확한 기전을 밝히는 돌파구가 될 것으로 보인다”며, “본 연구의 결과를 토대로 근육세포 융합의 분자적 기전의 규명 및 세포막 융합에 작용하는 물질 규명에 더욱 힘쓸 예정”이라고 말했다. 본 연구는 미래창조과학부 지원으로 KIST 기관고유사업으로 수행되었으며, 세계적으로 권위있는 과학지인 ‘Nature Communications’에 2016년 3월 14일자 온라인판에 게재되었다. * (논문명) ‘Stabilin-2 modulates the efficiency of myoblast fusion during differentiation and muscle regeneration’ - (제1저자) 동국의대 박승윤 교수, 경북의대 윤영은 박사 - (교신저자) 한국과학기술연구원 김인산 박사, 동국의대 박승윤 교수
- 88
- 작성자테라그노시스연구단 김인산 박사팀
- 작성일2016.03.23
- 조회수25147
-
87
직물 및 의류 일체형 웨어러블 전자소자를 위한 섬유형 트랜지스터 개발
직물 및 의류 일체형 웨어러블 전자소자를 위한 섬유형 트랜지스터 개발 - 전도성 실, 면사와 함께 직조하여 옷감 일체형 전계효과 트랜지스터 구현 - 스마트 의류, 차세대 웨어러블 제품 개발에 응용 가능할 것으로 전망 최근 웨어러블 전자소자가 시대의 패러다임으로 자리 잡으면서 옷과 같은 섬유에 전자소자의 기능이 결합된 전자섬유(electronic textile)(*용어설명 참고)에 대한 연구가 활발히 진행되고 있다. 웨어러블 스마트 의류는 향후 웨어러블 시장을 주도할 것(ICT 시장조사업체 스트라베이스, 2015)으로 보인다. 섬유는 유연하고 편안하기 때문에 사람이 하루 종일 입고 다녀도 피로감을 덜 느껴 웨어러블 전자소자의 이상적인 플랫폼으로 주목받고 있다. 기존의 기술 수준은 옷감 위에 기존의 딱딱한 고체 전자소자 또는 센서 등을 단순히 붙이거나 전도성 섬유를 이용하여 소자들 사이를 연결하는 형태에 머물러 있어 섬유의 편안함을 기대할 수 없는 단계였다. 이를 개선하기 위해서는 전자소자 자체가 섬유의 특성을 유지할 수 있는 실 형태의 옷감에 삽입될 수 있는 전자소자의 개발이 필요한 상황이었다. 다양한 전자소자 중에서 트랜지스터는 센서, 디스플레이 등 전자소자 구동에 있어 기본이 되는 스위칭 소자로, 섬유형 전자소자 구현에 있어 필수적인 부품이다. 그러나 반도체와 절연막, 전도성 전극의 복잡한 다층구조로 이루어져 있어 섬유형태로 구현하는데 어려움이 있었다. 또한 기존에 보고된 섬유형 트랜지스터는 절연막과 반도체 사이의 계면접착력이 좋지 않아 외부 변형에 소자 성능이 나빠지는 단점이 있었으며, 반도체 층이 섬유의 한쪽 면에만 형성되어 있어 섬유상에 직접 직조해 넣는 데 한계가 있었다. 한국과학기술연구원(KIST, 원장 이병권) 광전소재연구단(단장 이전국) 임정아 박사팀(석사과정 김혜민 연구원)은 전도성 실 위에 1회 코팅으로 절연막과 반도체 막을 동시에 형성할 수 있는 기술을 개발하여 실 형태의 전계효과 트랜지스터(*용어설명 참고)를 구현하는데 성공하였다. 본 연구진은 용액공정이 가능한 유기반도체와 절연체 고분자의 혼합물(블렌드) 용액을 전도성 실 표면에 1회 코팅하여, 혼합물(블렌드)에서 자발적으로 상분리(*용어설명 참고)를 일으켜서, 유기반도체가 실 가장 바깥쪽 표면에 막을 형성하고 그 안쪽에는 절연체 막이 형성되어 절연막/반도체 이중층으로 감싸진 전도성 섬유 구조체를 제작하는데 성공했다. 이때 전도성 섬유는 트랜지스터의 게이트 전극(전류를 제어하는 금속접속자)으로 사용되며, 이후 소스(Source)와 드레인(Drain) 전극을 반도체 층 위에 형성하여 섬유형태의 트랜지스터를 제작하였다. 이렇게 제작된 섬유형 트랜지스터는 기존 평평한 기판에 제작되었던 유기박막 트랜지스터와 유사한 성능을 가지는 것으로 확인되었다. 임정아 박사팀이 개발한 절연막/반도체 이중층 기반 전도성 섬유 구조체는 절연막/반도체 층의 계면접착성이 우수하여 소자를 3mm 까지 접은 후에도 소자의 성능이 80% 이상 유지되는 특성을 밝혀냈다. 또한 섬유 표면 전체에 절연막/반도체가 고르게 형성되어 있어, 트랜지스터 성능이 균일하게 나옴을 알 수 있었으며, 전도성 실을 소스와 드레인 전극으로 사용하고 일반 면사와 함께 직조하여 옷감 안에 트랜지스터 소자를 직접 삽입할 수 있는 전자섬유를 제작할 수 있게 됐다. 이번 연구결과는 직조 가능한 섬유형 트랜지스터로서 기존의 평면상에 제작한 유기반도체 트랜지스터와 유사한 특성과 성능을 구현할 수 있음을 보여준 의미 있는 결과로, 차세대 웨어러블 컴퓨터, 인체신호 모니터링 기능을 가지는 스마트 의류 등 한층 똑똑해진 차세대 웨어러블 제품을 개발하는데 응용 가능할 것으로 기대된다. 또한 임정아 박사는 현재 전자섬유 연구가 세계적으로 섬유형 전자소자를 구현할 수 있는 기술을 개발하는 초기 연구단계이며, 상용화를 위해서는 전극실과의 계면안정성, 세탁 등 외부 자극에 대한 내구성을 보다 향상시키기 위한 더욱 많은 연구가 필요하다고 설명했다. 본 연구는 미래창조과학부 지원으로 KIST의 기관고유사업으로 수행되었으며, 2016년 2월 19일자 Advanced Functional Materials 온라인 판에 게재되었다. (논문명) “Metal-Insulator-Semiconductor Coaxial Microfibers Based on Self-Organization of Organic Semiconductor: Polymer Blend for Weavable Fibriform Organic Field-Effect Transistors” (DOI: http://dx.doi.org/10.1002/adfm.201504972) (제1저자) 한국과학기술연구원, 고려대학교, 김혜민 석사과정 (교신저자) 한국과학기술연구원 임정아 박사 <그림자료> <그림> (a) 유기반도체/절연체고분자 블렌드의 상분리를 이용하여 절연막/반도체 이중층 포함 전도성 섬유 구조체를 제작하는 공정 및 섬유형 트랜지스터 모식도. (b) 개발한 섬유형 트랜지스터의 섬유 표면 전방향에서의 균일한 전류-전압 특성 유지. (c) 개발한 섬유형 트랜지스터의 굽힙정도에 트랜지스터 성능 유지. (d) 전도성 실을 소스와 드레인 전극으로 사용하고 면사와 직조하여 제작한 섬유형 트랜지스터의 모습 및 동작 특성.
- 86
- 작성자광전소재연구단 임정아 박사팀
- 작성일2016.03.08
- 조회수28283
-
85
이산화탄소에서 아세톤 생산 기술 최초 개발
이산화탄소에서 아세톤 생산 기술 최초 개발 - 석유화학 대체로 기후변화 대응의 새로운 돌파구 열려 지구온난화의 주 원인인 이산화탄소를 활용하여 기존의 석유화학 제품을 대체할 수 있는 탄소자원화* 원천기술이 개발되었다. * 탄소자원화 : 저급 탄소 원료(이산화탄소 등)를 이용하여 다양한 탄소화합물로 전환하는 고부가화 기술 한국연구재단(이사장 정민근)은 한국과학기술연구원(KIST, 원장 이병권)과의 공동연구를 통해 인공 시아노박테리아**를 이용하여 태양광과 이산화탄소에서 아세톤***을 직접 생산할 수 있는 태양광세포공장****을 최초로 개발하였다고 밝혔다. ** 시아노박테리아 : 빛과 이산화탄소만을 이용하여 경제적으로 대량 배양이 가능하고, 식물보다 빠른 세포성장과 생산할 수 있다. *** 아세톤 : Cumeme 공법에 의해 페놀 생산 공정의 병산물로 발생하며, 아크릴 수지 및 BPA, 용제 등으로 사용된다. **** 태양광세포공장 : 미생물대사공학기술을 이용하여 인위적으로 다양한 화학제품을 대량 생산하는 공장의 개념인 ‘세포공장’에 무한한 태양광에너지를 적용하여 광합성이 가능한 세포공장 한국과학기술연구원(KIST) 우한민 박사 연구팀은 미래창조과학부 특화전문대학원 학연협력 지원사업을 지원 받아 고려대 심상준 교수와의 공동연구로 수행한 결과, 인공 시아노박테리아의 미생물을 유전자 재조합 기술 (합성생물학과 대사공학*****)로 이용하여 특정 유전자를 삽입하여 태양광과 이산화탄소가 있는 조건에서 광합성 아세톤을 만드는 생물학적 기술 개발에 성공했다. ***** 합성생물학과 대사공학 : 합성생물학은 생명과학적 이해의 바탕에 공학적 관점을 도입한 융합생물공학으로 자연계에 존재하지 않은 생물 구성요소와 시스템을 설계 및 제작하는 분야를 포함하며, 대사공학은 유용 화학제품 및 생물소재의 대량생산을 위해서 세포의 대사과정을 인위적으로 조절하는 학문임. 시아노박테리아는 빛과 이산화탄소만을 이용하여 경제적으로 대량 배양이 가능하고, 식물보다 빠른 세포성장과 생산을 할 수 있으며, 주위 환경에 따른 세포성장과 생산을 조절할 수 있다. 연구팀은 합성생물학의 기술을 통해 기존 유전자발현시스템을 재설계하고 모듈화된 발현시스템을 구축하였으며, 반응율속단계******를 우회하는 경로를 도입하여 이산화탄소에서 아세톤을 생산할 수 있도록 대사공학기법을 활용하였다. ****** 반응율속단계 : 복잡한 다단계 화학반응 (생화학 및 효소반응 포함)에서 전체 반응속도를 결정하는 가장 느린 반응단계 아세톤은 공업과 화학에서 사용되는 중요한 유기용매 및 화학 중간물질로 석유화학공정에서 이산화탄소 발생과 함께 생산된다. 그러나 이번에 개발된 태양광세포공장(인공 시아노박테리아)은 태양광과 시아노박테리아만으로 아세톤을 생산하면서도 또 다른 이산화탄소 배출이 없어 공기 중의 이산화탄소를 획기적으로 줄일 수 있는 친환경탄소자원화기술로 활용될 수 있다. ○ 석유화학제품을 친환경 바이오화학제품으로 대체할 경우 석유자원 사용량은 최대 65% 감축이 가능하고, 이산화탄소 발생량도 최대 67% 저감이 가능하다(한국과학기술기획평가원, 석유대체 친환경 바이오화학 산업정책 동향 및 R&D 이슈, 2012년). □ 우한민 박사는“이번 연구결과는 지구 온난화에 영향을 미치고 있는 이산화탄소를 순수하게 줄여 나갈 수 있는 기술로 바이오화학제품, 바이오연료 생산 등 쏠라-바이오리파이너리 기술에 적용될 수 있어 향후 기후변화에 대응하는 새로운 돌파구가 될 것”이라며 연구의 의의를 설명했다. ******* 쏠라-바이오리파이너리(Solar-biorefinery) : 오일리파이너리(Oil refinery)와 대응되는 용어로 태양광-바이오기술을 통하여 다양한 화학제품을 생산할 수 있는 기술 이 연구성과는 식물과학 분야 세계적 학술지 플랜트 바이오테크놀로지 저널(Plant Biotechnology Journal)에 2월 16일 게재되었다. <그림자료> 그림1. 유전공학기술을 이용하여 합성생물학의 모듈화전략을 도입하여 이산화탄소로부터 아세톤을 생산하는 인공 시아노박테리아를 개발하였으며, 대사공학 전략을 추가로 도입하여 시아노박테리아 내 반응율속단계를 극복하는 우수한 인공 시아노박테리아를 개발하였다. 또한 편형광반응기를 이용하여 고농도 이산화탄소로부터 아세톤을 생산하였으며, 자동으로 시아노박테리아 배지로부터 분리가 되는 반응공정을 동시에 제시하였다.
- 84
- 작성자청정에너지연구센터 우한민 박사팀
- 작성일2016.03.02
- 조회수26704
-
83
유무기 하이브리드 나노 구조 제어 기술을 이용한 산소 환원 반응 촉매 개발
유무기 하이브리드 나노 구조 제어 기술을 이용한 산소 환원 반응 촉매 개발 - 내구성과 안정성 높은 고효율 산소 환원 반응을 일으키는 연료전지 촉매 개발 - 유무기 하이브리드 나노 기술을 통한 수소 연료전지 상용화에 기여 자동차용과 발전용, 휴대용을 포함한 고분자전해질 연료전지 시장은 2012 년 468 M$에서 2017 년 1,248 M$ 로 급격히 성장할 것으로 전망[BCC Research, 2013]된다. 하지만 현재 연료전지 전극에 고가의 백금 촉매를 대량으로 사용하고 있어 아직까지는 에너지 변환장치로서의 경제적 효용성이 낮게 평가되고 있는 실정이다. 특히, 연료전지 환원극 내 산소 환원 반응의 속도는 산화극에서의 수소 산화 반응 속도에 비해 매우 느리기 때문에 산화극 촉매 대비 2 배 이상의 백금 촉매가 사용되어야만 한다. 따라서 저가의 고활성 산소 환원 반응 촉매의 개발이 필요했고, 수소 연료전지로부터의 안정적인 전력 생산을 위해 높은 전기화학적 활성뿐만 아니라 장기 내구성 역시 갖춰야하는 촉매를 개발하는 것이 매우 어려운 과제였다. 지난 10 여 년 동안, 고가의 백금 촉매 사용량을 저감하면서 동시에 촉매의 산소 환원 반응 활성을 극대화기 위해 니켈 (Ni), 코발트 (Co), 철 (Fe)과 같은 3d 전이금속을 백금과 합금시키는 연구가 활발히 진행되었다. 나노 기술의 발달과 함께 연료전지 환원극에서의 산소 환원 반응을 위한 고활성 백금계 합금 나노 입자를 제조할 수 있었으나, 쉽게 산화되는 3d 전이금속의 물리적 특성에 의해 이론적으로 가능한 촉매 활성을 충분히 내지 못하였고, 동시에 장기 내구성까지 약화되는 어려움이 있었다. 실제로 제조된 백금-전이금속 합금 나노 입자가 공기(산소) 또는 수분에 노출되면 니켈, 코발트, 철 등의 3d 전이금속 원자를 가진 나노 촉매 입자 표면이 즉각적으로 산화되어 금속산화물을 형성하여 산소 환원 반응 활성은 이론적인 값보다 상대적으로 낮아지게 된다. 또한 나노 촉매 입자 표면에서 공기 및 수분에 의해 이미 산화된 3d 전이금속 원자는 연료전지가 구동되는 높은 전압 및 낮은 pH 환경에서 쉽게 녹아내려 촉매 성능을 급격하게 떨어뜨렸다. <그림 1> KIST 유성종 박사팀은 기존 백금-전이금속 합금 촉매가 가진 근본적인 단점을 보완하기 위해, 아미드(amide)(*용어설명 참조)기를 가진 고분자를 이용하여 나노 촉매 입자 표면에 존재하는 3d 전이금속 원자를 선택적으로 기능화 함으로써 산소 환원 반응 활성 및 장기 내구성이 극대화된 연료전지 촉매를 개발했다. <그림2> 나노 촉매 입자 표면에서 선택적으로 코발트 (Co)-질소 (N) 결합을 형성하게 함으로써 코발트에서 백금으로 전달되는 전자 이동을 보다 원활하게 하여 반응 활성 사이트인 백금의 전자 구조를 산소 환원 반응에 보다 유리하게 변형시켜 촉매 활성을 기존 백금계 합금 촉매 대비 약 2배가량 향상시켰고, 나노 입자의 선택적 고분자 기능화에 의한 안정화(passivation) 효과가 나타남으로써 코발트 원자의 소멸(dissolution)을 방지하여 촉매 내구성이 약 4배 정도 향상되었다. <그림 3> 인도 방갈로르에 소재한 KIST 한-인도협력센터 이승철 박사연구팀은 인도의 연구진과 함께 제일원리 전자구조계산 기법(*용어설명 참조)을 통해 순수한 금속상태에서는 코발트 (Co)-질소(N) 결합이 백금-질소결합보다 약하지만 코발트와 백금이 1:1로 섞여 합금을 만드는 경우 백금-질소결합보다 코발트-질소결합이 더 강할 수 있다는 것을 이론적으로 예측하였다. 그리고 이런 결합강도의 역전현상은 코발트에서 백금으로 전하가 전달됨으로써 순수한 코발트와는 다른 전기적, 자기적 특성을 보이기 때문이라고 설명하였다. KIST 유성종 박사는 “유무기 하이브리드 나노 구조 제어 기술을 통해, 백금계 산소환원반응 촉매가 가지고 있는 치명적인 단점을 효과적으로 보완한 연구라는 관점에서 기존의 연구와 큰 차별성을 가지고 있다”며, “이번 연구로 수소 연료전지의 상용화를 한 발 앞당겼다는데 의미가 있다”고 말했다. 또한 KIST 한-인도협력센터 이승철 박사는 “본 연구를 통해 백금에 비해 매우 저렴한 자성금속을 촉매로 활용할 수 있어 저렴한 생산비로 높은 반응성과 안정성을 가진 촉매를 개발할 수 있는 가능성을 열었다는 점도 중요하다”고 말했다. 본 연구는 KIST 기관고유 연구사업, 미래창조과학부의 글로벌프론티어사업, 한국연구재단 중견연구자지원사업과 국가과학기술위원회 CAP과제를 통해 수행되었으며 연구결과는 세계적 권위를 자랑하는 Nature의 자매지로서 에너지 및 나노 분야의 국제 저명 학술지인 NPG Asia Materials (IF: 10.118)에 1월 게재되었고, 연구의 우수성을 인정받아 이달의 Top 10 Articles (most downloaded articles)에 선정되었다. 더욱이, 해당 연구결과는 국내특허 출원 (출원번호:2015-0014254) 및 해외 특허 출원도 (출원번호:14/918486) 진행 중에 있다.
- 82
- 작성자연료전지연구센터 유성종 박사팀
- 작성일2016.02.29
- 조회수28031
-
81
간단한 제조공정으로 다기능 그래핀 나노복합구조 양자점 합성 기술 개발
간단한 제조공정으로 다기능 그래핀 나노복합구조 양자점 합성 기술 개발 - 고효율 유기 태양전지 소자 기술 응용 적용 - 유기태양전지 효율 증가, 비용 절감 및 안전성 획기적 개선으로 상용화에 한 발 다가서 태양광을 전기 에너지로 바꾸는 태양전지는 화석 에너지의 고갈과 청정 에너지원의 필요성이 부각되면서 차세대 대체 에너지원으로서 각광 받고 있다. 현재 태양전지는 실리콘계 태양전지가 주로 생산되고 있으나 복잡한 제작공정 및 높은 재료 가격으로 인하여 경제성 확보에 어려움을 겪고 있다. 이에 반해, 유기태양전지는 기존 실리콘계 태양전지와 달리 가공이 쉽고 재료가 다양하며, 가격 또한 저렴하여 경제성이 높다. 그러나 상대적으로 빛을 전기로 바꾸는 광전 변환 효율이 낮고 오래 사용할 경우 안정성이 떨어져 상용화에 어려움이 있었다. 국내 연구진이 기능화된 탄소기반 양자점 단일층을 효과적으로 도입하여 유기태양전지의 안정성 및 광전 변환 효율을 획기적으로 개선한 태양전지를 개발했다. 이러한 이점을 통해 태양전지의 전기적인 성능과 다기능한 역할로 기존보다 약 17.8%이상 효율을 증가함과 동시에 광 에너지 전환 효율(power conversion efficiency: PEC)은 최대 10.3%의 효율을 얻었고, 안정성도 개선됨을 확인하였다. 그래핀 표면에 기능화 형성을 위한 합성을 하였고, 이를 통해, 유기용매 분산도를 높이고 고분자(PEIE)층과 더욱 강한 전기적 결합으로 인해 박막 형성 시 균일한 단일층을 형성할 수 있다. 기존의 금속산화물에 전기전도도가 우수한 그래핀을 껍질로써 감싸고 이를 화학적으로 기능화를 시켜주게 되면 유기용매 분산도가 향상되고, 표면 개질 고분자 층위에 코팅하게 되면 거칠기(roughness)또한 줄어들게 되므로 이는 균일한 박막이 형성되는데 도움을 준다. 이는 ITO전극에 표면개질 고분자만 존재했을 때 보다 일함수가 낮아져 생성된 전하가 빠르게 이동할 수 있다. 한국과학기술연구원(KIST) 전북분원(분원장 김준경) 복합소재기술연구소 양자응용복합소재센터 손동익 박사 연구팀은 유기태양전지의 표면 개질 고분자 층(PEIE) 표면 위에 ‘기능화된 산화아연-그래핀 양자점’을 수 나노미터 두께인 단일층으로 처리하여, 광전환 효율을 증대시키고, 소자의 안정성을 강화한 유무기 하이브리드 구조의 유기태양전지를 개발했다. 일반적으로 유기태양전지에서 태양광을 흡수하여 전자(Electron)와 정공(Hole)을 형성하는 광활성층(Active layer)이라 불리는 유기물층 (PTB7 혹은 PTB7-Th 고분자 물질)은 태양광을 받아 전자를 내놓는 ‘전자주게물질’(Donor)과 전자를 받아서 전극으로 전달해주는 ‘전자받게물질’ (Acceptor; PCBM: 탄소나노물질)의 혼합층 (탄소복합구조)으로 이루어져 있다. 하지만, 태양전지의 효율 및 안정성을 보장하기 위해서는 몇 가지의 원활한 소자구동을 위한 전자수송층(eletron transport layer), 정공수송층(hole transport layer), 전자주입층(eletron injection layer), 정공주입층(hole imjection layer) 등이 도입되어야한다. 연구팀은 또한 기존의 표면 개질 고분자층(PEIE)을 사용한 구조에서는 ITO(Indium tin oxide:투명전극)전극의 일함수를 낮춰주고 태양전지의 전기적 성능을 증가시켜주는 역할을 해주는 데에만 그쳤으나, 광활성층에서 나오는 전하를 효과적으로 이동시켜줄 수 있도록 전자수송층을 도입하였고, 기존에 사용된 자외선 영역의 파장을 가지는 넓은 밴드갭의 금속 산화물 나노입자(ZnO)는 전자 수송층으로만 사용했었기 때문에 효율을 향상시키기에는 많은 제약이 있었다. 이러한 문제를 해결하기 위해서 기존의 금속산화물에 전기전도도가 우수한 그래핀을 껍질로써 감싸고 이를 화학적으로 기능화를 시켜주게 되면 유기용매 분산도가 향상되고, 도 좋아지며 표면 개질 고분자 층위에 코팅하게 되면 거칠기(roughness)또한 줄어들게 되므로 이는 균일한 박막이 형성되는데 도움을 준다. 이는 ITO전극에 표면개질 고분자만 존재했을 때 보다 일함수가 낮아져 생성된 전하가 빠르게 이동할 수 있다는 것을 의미한다. 이러한 이점을 통해 태양전지의 전기적인 성능과 다기능한 역할로 기존보다 약 17.8%이상 효율을 증가함과 동시에 안정성도 개선됨을 확인하였다. ※ 밴드갭 : 전자가 존재하는 에너지 레벨과 전자가 존재하지 않는 에너지 레벨의 사이의 차이 ※ 일함수 : 특정한 고체 표면에서 한 개의 전자를 외부로 빼내는데 필요 <그림 1> 개발된 ‘기능화된 산화아연-그래핀 양자점 단일층’은 단순한 용액공정을 통하여 쉽고 빠르게 형성할 수 있고, 기존의 산화아연-그래핀 양자점보다 우수한 단일층 형성을 보이며 효과적으로 광활성층에서 생성된 전자가 전극으로 원활하게 이동하는 것에 도움을 주게 되어 태양전지의 광전 변환 효율의 증대를 가져 오게 된다. <그림 2> 기존 그래핀 표면에는 존재하지 않는 ?NH 또는 ?NR 기능기 (Yellow: ZnO, Black: Carbon, Red: Oxygen, Grey: Hydrogen, Blue: Nitrogen, Green: Alkyl group(-C7H15))가 옥틸아민(Octylamine)을 통해 그래핀 표면에 형성 됨으로써 유기용매 분산도를 높이고 PEIE층과 더욱 강한 전기적 결합으로 인해 박막 형성 시 균일한 단일층을 형성하고 이를 통해 증가된 태양전지의 효율과 안정성에 기여 하였다. <그림 3> (a)에서 볼수 있듯, 기능화된 산화아연-그래핀 양자점을 소자로 제작하기 위해 단일층으로 형성시킨 역구조 솔라셀 구조로 형성내며, (b)와 같이 솔라셀 소자에서 기능화된 산화아연-그래핀 양자점이 단일층으로 형성된 형상을 투과전자현미경(Transmission Electron Microscope: TEM)으로 단일층 구조체의 단면을 측정하여 확인하였다. 이 구조체를 통해서 유기용매 분산도도 좋아지며 표면 개질 고분자 층위에 코팅하게 되면 거칠기(roughness)또한 줄어들게 되고 이는 태양전지소자의 활성 폴리머 물질이 균일한 박막이 형성되는데 도움을 주게 되고, 이는 ITO전극에 표면개질 고분자(PEIE)만 존재했을 때 보다 일함수가 낮아져 생성된 전하가 빠르게 이동할 수 있다는 것을 의미한다. 이러한 이점을 통해 태양전지의 전기적인 성능과 다기능한 역할로 기존보다 레퍼런스 대비 약 17.8%이상 효율을 증가함과 동시에 안정성도 개선됨을 확인하였다. <그림 4> 이러한 효과로 기능화된 산화아연 그래핀 양자점 단일층을 이용하여 제작된 역구조 유기태양전지의 특성은 태양전지소자의 광 에너지 전환 효율(power conversion efficiency: PEC)은 최대 10.3% 이상 증가 하였고, 양자점 단일층에 의해 형성된 역구조 유기태양전지는 대기와 접촉에서 안정성 증가 확보가 가능하므로, 기능화된 양자점 없는 소자와 비교해서 효율의 안정성이 94%까지 유지되는 것을 보여주는 데이터이다. KIST 손동익 박사는 “기능화된 산화아연-나노카본 양자점을 이용하여 기존 전자수송층 뿐만 아니라, 다양한 기능의 특성을 통해서 광에너지 전환 효율을 향상시키고, 솔라셀 폴리머 물질과의 계면 인터페이스 또한 우수하여 유기태양전지의 내구성을 획기적으로 개선시킨다”며, “후속으로 연구 중인 나노카본을 기반으로 한 금속 물질 복합구조 양자점을 사용한다면 유기태양전지의 상업화에 크게 기여할 것으로 보인다”고 말했다. 본 연구는 미래창조과학부가 지원하는 KIST 기관고유연구사업으로 수행되었으며, 이번 연구 성과는 에너지재료 분야의 권위지인 나노에너지(Nano energy)에 "Enhanced Photovoltaic Performance of Inverted Polymer Solar Cells utilizing Versatile Chemically Functionalized ZnO@graphene Quantum dot Monolayer"의 제목으로 2016년 1월 14일에 온라인판으로 게재되었다.
- 80
- 작성자전북분원 복합소재기술연구소 양자응용복합소재센터 손동익 박사 연구팀
- 작성일2016.02.23
- 조회수18482
-
79
심장질환, 차세대 염증억제 약물방출 스텐트로 해결한다
심장질환, 차세대 염증억제 약물방출 스텐트로 해결한다 - 무독성 세라믹 나노입자를 이용한 비약물 염증억제 시스템 개발 - 획기적 염증 억제와 재협착을 방지하는 관상동맥용 약물방출 고성능 나노표면 스텐트 개발 전 세계 사망 원인의 1위가 심장혈관 질환으로, 2012년 기준 전체 사망자 수의 약 31%인 1,750만 여명이 심장혈관질환으로 목숨을 잃었으며 이 중 관상동맥질환으로 인한 사망자 수는 740만 명에 달한다. 국내에서의도 심장질환은 암에 이은 2번째로 높은 사망원인으로 매년 환자수가 꾸준히 증가하고 있으며, 2012년 기준 국내의 관상동맥질환 환자 수는 2003년 50만명에 비해 58.4%가 증가된 79만명으로 집계되었다. 한국과학기술연구원(KIST, 원장 이병권) 생체재료연구단 한동근 박사 연구팀(이하 연구팀)은 기존의 관상동맥용 약물방출 스텐트(drug-eluting stent, DES)의 표면에 pH 중화 기능을 가진 수산화마그네슘 무독성 세라믹입자를 코팅하여 염증을 획기적으로 억제하고 재협착을 방지하는 심장 관상동맥용 약물방출 스텐트를 세계 최초로 개발했다. 초기 금속스텐트(bare metal stent, BMS)는 비흡수성 금속소재로 제작되어 스텐트 삽입술 후 혈관 평활근세포의 증식에 의한 재협착의 부작용을 보였다. 이후 약물이 코팅된 약물방출 스텐트가 개발되어 재협착은 기존 금속 스텐트에 비해서 현저하게 줄었으나, 약물방출 스텐트 표면에 코팅된 고분자와 약물로 인해서 수년 후혈액이 응고되는 후기 혈전증 문제가 새롭게 제기되었다. 따라서 금속 스텐트와 약물방출 스텐트의 문제점을 모두 해결한 이상적인 스텐트는 개발되지 않은 상황이었다. 일반적으로 스텐트 이식 후 시간이 지남에 따라 코팅된 생분해성 고분자가 분해되면서 분해산물인 산성 단량체(작은 단위체)가 생성되는데, 이로 인해 pH가 산성화되면서 혈관 주변 조직세포의 괴사가 일어나고 그 결과 염증이 발생하여 재협착이 가속화된다. KIST 한동근 박사 연구팀은 이러한 혈관 내 염증을 현저히 억제하여 재협착을 방지하는 심근경색 치료용 차세대 관상동맥 약물방출 스텐트를 개발하였다. 본 연구팀은 제산제나 연하제 등에 이용되고 있는 염기성 수산화마그네슘 세라믹입자[Mg(OH)2]의 pH 중화 효과에 주목하였다. 염기성 수산화마그네슘 세라믹 입자를 첨가했을 경우, 산성화된 혈관 내 환경의 pH가 중화되고, 조직세포가 그대로 생존하여 괴사를 막아 염증을 억제함을 밝혀냈다. 기존에 염증억제를 위한 대표적인 약물인 ‘덱사메타손’을 첨가한 스텐트가 연구되었지만 약물의 심한 부작용으로 인하여 상품화되지 못했다. 대조적으로 생체적합성 세라믹 입자는 인체에 무해하고, 약물과 다르게 생체 내에서 분해되어 오히려 이로운 마그네슘 이온이 되는 장점을 가지고 있다. 또한 이러한 기능을 가진 수산화마그네슘 세라믹입자의 표면을 항염증 효과를 지닌 지방산과 생분해성 고분자로 개질함으로써 pH 중화뿐만 아니라 코팅 매트릭스 고분자의 기계적 물성 개선에도 효과를 보이는 수산화마그네슘 비약물 나노입자를 개발하였다. 연구팀은 개발된 비 약물 나노입자가 함유된 약물방출 스텐트의 염증 억제 및 혈관 내 재협착 방지 효과를 생체 내 검증하기 위해 전남대병원 순환기내과 정명호 교수팀과 공동 연구하여 돼지를 이용한 동물실험을 실시하였다. 그 결과, 기존 스텐트에 비해 염증이 90%이상 감소하였고, 이로 인해 협착률도 3배 이상 감소하였다. 개발된 염증억제 기술은 스텐트뿐만 아니라 생분해성 고분자를 이용한 거의 모든 의료용 이식소재에 확대 적용할 수 있을 것으로 기대된다. 협심증 및 심근경색 환자의 심장 관상동맥이 막히거나 좁아졌을 때 시술하는 약물방출 스텐트 삽입술은 2014년 국내 기준 약 3천억원 이상에 육박하는 시술이 시행되었다. 국내 관상동맥용 스텐트 시장의 성장률은 식생활의 서구화 및 고지혈증과 같은 심장 질환의 증가로 급속도로 상승하고 있다. 따라서 스텐트 원천기술 확보 및 개발은 노령화 사회에 대응하는 미래첨단융합기술로 발전할 전망이다. 스텐트 제품의 경우 다국적 기업의 기술 및 상품 수입에 따른 기술의 종속화 이전에 차세대 핵심 기술이 확보되면 이를 통해 국제 경쟁에서 우위 선점이 가능하다. 연구팀은 “2015년 현재 혈관 스텐트의 세계 시장은 연간 10조원, 국내 시장은 4,000억원으로 추정되지만 스텐트는 우리나라 수입 의료용품 중 그간 1위 품목으로 수입 의존도가 높기 때문에 선진국과의 기술 격차를 좁히고, 국산화를 위한 지속적인 원천기술 개발과 지원이 필요하다”고 강조했다. 또한, 연구팀은 “이번에 개발된 약물방출제어 나노표면 스텐트는 차세대 미래형 스텐트 국산화 및 실용화에 크게 기여를 할 것이다”라고 밝혔다. 연구팀은 2008년부터 현재까지 관상동맥용 약물방출 스텐트 개발에 관한 미래창조과학부의 미래유망 융합기술 파이오니어사업으로 진행되었으며, 사업 수행기간 중 염증억제 기술을 포함한 원천 핵심기술을 연구·개발하여 다수의 국내외 특허등록을 받았으며, Small(IF=8.368) 등 국제 저명학술지에 논문을 게재한 바 있다. 또한 본 연구 결과는 “심장 관상동맥용 약물방출 스텐트 표면개질” 기술로 2015년 ㈜바이오알파(유현승 대표)에 기술 이전하여 고성능 나노표면 제어 차세대 약물방출 스텐트의 실용화 및 국산화가 진행 중이다. 향후 추가 전임상 동물실험 및 임상실험은 전남대학교 심장센터와 진행할 예정이며, 이 기술은 앞으로 2년 이내에 상품화가 가능할 것으로 전망된다. <그림자료> ○ 개발된 약물방출 스텐트의 염증억제 작용기전을 나타낸 그림. ○ 조직세포가 괴사되고 염증이 발생하는 기존 스텐트와 대조적으로, 약물방출 스텐트에 약물과 함께 코팅에 사용된 염기성 수산화마그네슘 세라믹 입자가 생분해성 고분자가 분해되면서 생성되는 산성 단량체에 의해 낮은 pH로 산성화된 주변 환경을 중화시킴으로써 조직세포의 괴사를 막고 염증을 효과적으로 억제하는 것을 확인함. ○ pH 중화 나노입자의 제조방법 및 특성을 나타낸 그림. ○ 자체의 pH 중화효과를 가지고 있는 수산화마그네슘 세라믹입자에 항염증 효과를 보이는 것으로 알려진 지방산인 리시놀레산(ricinoleic acid, RA)과 생분해성 고분자로 표면을 개질하여 최종적으로 pH 중화효과 뿐만 아니라 기계적 물성향상 효과도 보이는 수산화마그네슘 세라믹입자를 개발함. 이러한 표면개질된 나노입자도 pH 중화효과뿐만 아니라 세포를 죽이지 않고 염증도 현저하게 저하시킴을 확인함. ○ 기존의 약물방출 스텐트와 비교하여, 수산화마그네슘 세라믹 나노입자를 포함한 개발 스텐트의 우수한 염증억제 효과와 현저히 낮은 재협착률을 보여주는 4주 돼지 동물실험 결과임. ○ 개발된 스텐트가 기존 스텐트에 비해 90% 이상 염증이 감소하였고, 3배 이상의 협착률 감소를 보임. 이 결과로부터 기존 스텐트에 비해 개발 스텐트에서 염증이 거의 일어나지 않고 재협착 발생도 대폭 감소하는 것을 재확인할 수 있음.
- 78
- 작성자생체재료연구단 한동근 박사 연구팀
- 작성일2016.02.05
- 조회수29145
-
77
항공우주 복합소재용 고내열 수지 제조 원천기술 개발
항공우주 복합소재용 고내열 수지 제조 원천기술 개발 - 산화 그래핀의 기능화를 통해 고내열 고강도 고분자 수지 제조 원천기술 개발 - 고내열 수지와 고강도 탄소섬유의 복합화를 통해 항공우주용 초고강도 탄소복합소재 상용화를 앞당기는 혁신적 기술 개발 전 세계적으로 자동차, 우주항공 등에서 경량화를 통한 연비 향상과 이산화탄소 배출량을 감소시키기 위하여 탄소복합소재의 활용에 관한 연구가 활발히 진행되고 있다. 국내 기업들은 탄소섬유의 저가화 및 고강도화에 대한 투자와 생산을 늘리고 있으나, 탄소복합소재의 다양한 응용범위에 맞는 에폭시 수지의 개발은 미진한 상황이었다. 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 고문주 박사팀은 산화 그래핀을 화학적 방법을 통해 기능화하고 저가의 범용에폭시와 혼합하여 고내열 고강도 성능을 구현하는 원천 기술을 개발했다. 탄소섬유와 고분자수지의 복합화로 얻어진 탄소복합소재는 비행기, 자동차, 자전거, 로켓 등의 경량화를 시킬 수 있어 연비향상 뿐 아니라 지구온난화의 주요 원인인 이산화탄소 배출을 줄일 수 있을 것으로 기대 된다. 고분자 수지 중 에폭시 수지는 탄소복합소재의 구조를 안정시키는 역할을 담당하는 물질로서 탄소복합소재의 응용분야를 확대하기 위해서는 다양한 종류의 에폭시 수지가 요구되고 있다. 지금까지 항공우주용 고내열 에폭시 수지의 경우는 전량 선진국에서 수입한 고가의 특수 에폭시를 사용해 왔으나, 국내연구진이 저가의 범용에폭시 수지에 산화 그래핀 유도체를 첨가하여 고내열성능을 구현하는데 성공했다. KIST 고문주 박사 팀은 에폭시 수지의 경화에 사용되는 분자를 화학적으로 도입한 기능화 산화 그래핀은 저가의 범용 에폭시 수지와 혼합 사용하여도, 고내열 성능과 고강도 특성을 얻을 수 있음을 밝혀냈다. 고문주 박사팀은 산화그래핀에 에폭시 수지와 가교결합을 형성 할 수 있는 아민 그룹(amine group)을 도입하여, 산화 그래핀 주위에 존재하는 다량의 아민 그룹이 에폭시 수지와 결합하여 많은 가교결합을 통해 가교 밀도가 약 240% 향상되는 것을 밝혀냈다. 연구팀은 에폭시 수지와 가교결합을 하고 있는 산화 그래핀은 에폭시 수지의 강도와 열적 성질을 크게 향상시켰다고 밝혔다. 본 연구결과는 고내열성능을 요구하는 분야로의 탄소복합소재 상용화를 앞당길 수 있을 것으로 보인다. 또한, 고성능의 에폭시 수지의 합성설계에 필요한 원천기술을 확보함으로서, 국내의 탄소섬유와 에폭시 수지 분야 연구불균형 해소에 크게 기여할 것으로 보인다. 이번 연구는 KIST 기관고유연구사업에서 지원되었으며, 연구 결과는 영국왕립화학회에서 발간하는 고분자분야의 권위지인 Polymer Chemistry 표지논문으로 12월 16일자 게재되었다. * (논문명) "Enhancement of the crosslink density, glass transition temperature, and strength of epoxy resin by using functionalized graphene oxide co-curing agents" <그림자료> <그림 1> 기능화 산화그래핀을 이용한 고내열 수지와 이를 이용한 항공우주용 초고강도 복합소재의 모식도
- 76
- 작성자복합소재기술연구소 탄소융합소재연구센터 고문주 박사팀
- 작성일2016.01.14
- 조회수21596