연구본부소개
-
38
KIST, 항암제 내성과 부작용 동시에 잡는 신규 약물 개발
- 암세포에서 활성화되어 항암제 내성 억제제 및 항암제를 동시에 방출 - 부작용이 발생하지 않는 새로운 무독성 항암제 나노약물 개발 기대 암을 효과적으로 치료할 수 있는 다양한 방법이 개발되어 왔지만, 항암제를 이용한 화학요법은 암세포를 효과적으로 사멸할 수 있어 임상에서 우수한 항암 효과를 보이고 있다. 무엇보다 다른 항암 치료법보다 상대적으로 치료비용이 저렴하고, 대부분의 암에서 우수한 효과를 보이기 때문에 항암제를 이용한 화학요법은 가장 많이 사용되고 있는 치료법이다. 그러나 암세포에서 발생하는 항암제에 대한 내성은 화학요법의 효과와 민감성을 크게 감소시켜 암의 재발 및 치료 실패를 초래한다. 본래 암세포는 항암제에 대해 내성을 가지고 있으며, 화학요법에 높은 반응성을 나타내는 암세포일지라도 치료 과정 중에 항암제 내성이 발생할 수 있다. 최근 국내 연구진이 이러한 암세포의 항암제 내성을 극복할 수 있는 약물을 개발하여 주목받고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 테라그노시스연구센터 김광명 박사 연구팀이 항암제 내성을 극복할 수 있는 암세포 특이적 항암제 전구체 약물 개발에 성공했다고 밝혔다. KIST 연구진은 항암제 내성을 억제하는 약물(스맥, SMAC : Streptomyces peucetius 세균에서 유래 하며, 백혈병, 림프종, 신경모세포종, 육종 등 많은 종류의 암을 치료하는 데 사용되는 항암제이다. SMAC)과 항암제(독소루비신, Doxorubicin : 세포 내 미토콘드리아(Mitochondria) 유래의 단백질로서, 세포 자멸사를 유도하는 신호 경로에 관여한다. Doxorubicin)를 결합시켜 새로운 약물을 만들었다. 이 약물은 생체 내에서는 활성화되지 않고 있다가, 암세포를 만나게 되면 암세포에서 과발현되는 효소( 카텝신B : 리소솜(Lysosome)에 존재하는 산성의 단백질가수분해효소중 하나. 암세포에서는 정상 세포에 비해 카텝신 B의 발현이 상대적으로 매우 높은 것으로 알려져 있다. 카텝신B)와 반응한다. 암세포와 반응한 약물은 항암제와 함께 내성억제제를 방출하게 되어 효과적으로 항암제 내성을 극복하는 동시에 암세포를 공격할 수 있다. 그 결과 암세포가 갖고 있는 기본적인 항암제 내성뿐만 아니라, 치료 과정 중 발생하는 후천적 항암제 내성 또한 억제할 수 있어 암의 재발 및 치료 실패가 발생하지 않는 효과적인 화학요법이 가능할 것으로 보인다. 또한, 약물이 암세포와 반응하도록 하는 효소인 카텝신 B는 암세포가 아닌 정상 세포에서는 상대적으로 매우 적은 양이 발현되기 때문에, 정상 세포에서는 나노약물이 비활성 상태로 존재하여 독성이 나타나지 않아 기존 화학요법의 문제점인 부작용을 감소시킬 수 있을 것으로 기대된다. KIST 김광명 박사는 “본 암세포 특이적 항암제 전구체 나노약물 기술은 기존 화학요법의 치료 실패를 초래하는 항암제 내성을 효과적으로 억제함과 동시에 정상 세포에 대한 독성을 감소시켜 항암제 내성 및 부작용이 발생하지 않는 새로운 항암제로 활용이 가능할 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 재료과학, 바이오소재 분야의 국제학술지 ‘Biomaterials’ (IF:10.317, JCR 분야 상위 2.6%) 최신호에 게재되었다. * (논문명) Cancer-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant cancer therapy - (제 1저자) 한국과학기술연구원 심만규 위촉연구원(現, 녹스팜) - (제 1저자) 한국과학기술연구원 문유정 학생연구원 - (교신저자) 한국과학기술연구원 김광명 책임연구원 <그림설명> [그림 1] 암세포 특이적 항암제 전구체 나노약물 기술의 모식도 암세포 특이적 항암제 전구체 나노약물은 기존의 항암제인 “Doxorubicin”을 항암제 내성 억제가 가능한 펩타이드인 “SMAC”와 카텝신 B 특이적 절단이 가능한 펩타이드인 “FRRG”를 통해 결합하였다. 이 암세포 특이적 항암제 전구체 (SMAC-FRRG-DOX)는 추가적인 고분자 및 약물 담체를 사용하지 않아도 분자 내의 소수성 상호작용에 의해 자체적으로 나노입자를 형성하였으며, 암세포 내에 과발현되는 효소인 카텝신 B에 의해 선택적으로 활성화되어 SMAC과 Doxorubicin을 동시에 방출한다. [그림 2] 생체발광 영상을 이용한 폐 전이암 동물 모델 내 치료 효능평가 결과 생체발광(Bioluminescence)이 가능한 유방암 세포를 이용하여 폐 전이암 동물 모델을 확보한 뒤, Doxorubicin 투여군, Doxorubicin과 SMAC 병용 투여군 및 암세포 특이적 항암제 전구체 나노약물 투여군의 폐 전이암 성장 속도를 생체발광 영상을 이용하여 추적하였다. 암세포 특이적 항암제 전구체를 이용한 폐 전이암 동물 모델 내 치료 효능이 다른 치료법과 비교하여 암의 성장을 매우 효과적으로 억제하였다.
- 37
- 작성자테라그노시스연구센터 김광명 박사팀
- 작성일2020.09.22
- 조회수13584
-
36
초음파를 활용한 뇌졸중 재활 치료법, 뇌파 변화와 밀접한 상관관계 발견
- 뇌졸중 이후 초음파 자극을 통한 병변부위 뇌파 변화 분석 - 뇌파 관찰을 통한 치료효과 예측 및 맞춤형 자극 기술 개발의 발판 마련 한국과학기술연구원(KIST, 원장 윤석진) 바이오닉스연구단 김형민 박사팀은 뇌졸중으로 손상된 뇌신경의 재활 치료기술이 뇌파 중 하나인 델타파의 변화와 밀접하게 연관됨을 입증하였다. 뇌혈관의 출혈 및 경색에 의한 뇌졸중은 사망률이 높은 질환이다. 사망에 이르지 않더라도 혈액 공급 차단에 의한 신경세포의 손상은 신체 움직임의 장애를 유발시킨다. 다양한 뇌 자극 기술들이 뇌졸중 이후 뇌신경 재활을 위해 연구되고 있다. KIST 김형민 박사는 2018년 소뇌 심부에 저강도 집속초음파 자극을 가하여 편마비에 의해 저하된 운동기능이 회복되는 치료법을 밝힌 바 있다.(Neurorehabil Neural Repair. 2018 Sep;32(9):777-787.) 이 기술은 두개골을 열지 않아도 되고, 정확한 위치의 깊숙한 뇌 영역을 선택적으로 자극할 수 있다는 장점이 있어 다양한 뇌 부위에서 일어나는 뇌졸중 환자를 치료할 수 있는 기술로 주목받고 있다. 이 기술을 다양한 환자 치료에 적용하기 위해서는 뇌 자극 후 치료예후를 평가하고, 운동 기능 회복을 극대화하기 위한 자극의 강도 및 빈도를 최적화 할 수 있는 자극 가이드가 필요하다. 이를 위해 KIST 연구진은 뇌졸중으로 손상된 부위의 뇌 신경세포의 뇌파 변화를 치료과정 동안 함께 관찰하였다. 뇌파 중에서도 뇌 손상이 일어난 부위에 비정상적으로 증가하는 뇌파인 델타파(1-4 Hz)의 변화를 병변쪽 뇌와 정상인 반대쪽 뇌에서 분석하였다. KIST 연구진이 개발한 치료법을 통해 뇌졸중이 일어난 쥐의 소뇌 심부에 3일간 초음파 자극을 준 결과, 첫날에 비해 운동 기능이 3배 이상 회복되었고 4일 째에도 유지되었다. 이 실험 동안 델타파의 변화를 관찰하였는데, 뇌졸중에 의해 최고 3배나 증가한 델타파가 초음파 자극 그룹에서는 양쪽 뇌의 델타파 균형이 대칭에 가깝고, 정상 수준에서 안정적으로 유지됨을 확인하였다. 위 결과를 통해 초음파 자극에 의해 델타파가 억제될 수 있으며, 이러한 변화가 운동기능 향상을 반영하고 있는 뇌신경 변화 현상임을 알게 되었다. 향후 뇌파를 모니터링하여 맞춤형 자극 기술을 개발하면 동물실험에서 실제 환자 치료로 발전 될 수 있을 것으로 기대한다. KIST 김형민 박사는 “초음파 뇌 자극 기술의 놀랍도록 빠른 발전 속도와 다양한 뇌 질환에서 연구되고 있는 현재 상황을 볼 때, 앞으로 초음파 뇌 자극이 안전하고 효과적인 뇌졸중 치료법으로 사용될 날이 멀지 않았다.”라고 전하면서, “이를 위해 여러 자극 조건과 장기간 추적 관찰의 안정성 검증이 매우 중요할 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 국가과학기술연구회 창의형융합연구사업으로 수행되었으며, 이번 연구결과는 재활분야 국제 저널인 ‘IEEE Transactions on Neural Systems & Rehabilitation Engineering’ 최신 호에 게재되었다. * (논문명) Deep Cerebellar Low-intensity Focused Ultrasound Stimulation Restores Interhemispheric Balance after Ischemic Stroke in Mice - (제 1저자) 한국과학기술연구원 백홍채 박사 (現, Washington Univ. 박사후연구원) - (제 1저자) 한국과학기술연구원 Anvar Sariev 박사과정 - (교신저자) 한국과학기술연구원 김형민 책임연구원 <그림설명> [그림 1] 초음파 자극 그룹과 비 자극 그룹에서 델타파의 변화 초음파 뇌 자극 그룹에서 신경세포 손상에 의한 델타파 증가가 subacute II (뇌졸중 후 72 시간) 기간까지 억제됨을 보이고 있으며, 양쪽 뇌에서의 델타파 균형은 뇌 자극이 없었던 chronic (뇌졸중 후 96 시간) 시간까지 정상범위로 유지됨을 보임. [그림 2] 운동신경 회복과 델타파의 상관 관계 및 안정성 검증 뇌졸중에 의한 뇌신경 손상으로 증가한 델타파가 초음파 뇌 자극에 의하여 감소되었고, 이러한 델타파의 감소 정도가 높을수록 운동 재활 효과가 증가함을 보임.
- 35
- 작성자바이오닉스연구단 김형민 박사팀
- 작성일2020.07.23
- 조회수11214
-
34
KIST, 새로운 항암면역치료 전략 개발 암세포에‘표적 신호’를 이식
- 암세포의 표적신호 강화를 통한 체내 면역세포 활성화로 획기적인 암 치료 기대 - 엑소좀을 활용한 암세포 이질화(xenogenization) 기술로 항암면역치료의 한계 극복 체내 면역세포로 하여금 암세포 제거를 유도하는 ‘면역항암제’의 등장 이후 세계 암 치료 전략의 트렌드가 빠르게 변하고 있다. 항암 면역치료는 암 특이적 면역 형성을 통해 암에 효과적으로 대응하는 치료법으로, 기존 항암 치료(화학요법, 외과적 수술, 방사선 요법 등)의 부작용과 한계점을 해결함과 동시에 임상에서 놀라운 효과를 보이고 있다. 그러나 암세포는 면역세포로부터 자신을 숨길 수 있는 회피능력이 있기 때문에, 이런 면역항암제조차 일부 암 환자에게만 효능을 보인다. 최근 국내 연구진이 몇 가지의 국한된 종양이 아닌 다양한 종양에서 활약할 수 있는 항암면역치료 기술을 개발하여 주목을 받고 있다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 테라그노시스연구단 김인산, 양유수 박사 연구팀이 다양한 암종에서 체내 면역세포를 효과적으로 활성화 시킬 수 있는 나노입자 개발에 성공했다고 밝혔다. 이 항암면역 나노입자는 특이적으로 암세포와 융합하여 암세포 표면에 위험한 표지인 ‘표적 신호’를 전달(이식)시킬 수 있다. 이 ‘표적 신호’가 노출된 암세포는 우리 몸의 면역세포로부터 더이상 숨지 못하게 되고, 면역세포는 암세포를 ‘적’으로 인식하여 쉽게 잡아먹게 된다. 이렇게 활성화된 체내 면역세포는 암에 대한 면역반응을 증폭하여 효과적으로 암을 제거할 수 있다. KIST 연구진은 세포가 방출하는 나노 크기의 입자인 엑소좀을 이용하여 종양 환경이 산성일 때, 특이적으로 암세포 표면에 ‘표적 신호’ 단백질을 전달하는 기술을 개발하였다. 이 단백질이 이식되면, 암이 원래 가지고 있는 면역 회피능력이 무력화되었다. 본 나노입자는 유방암, 대장암, 림프종 등 다양한 종양에서 뛰어난 항암 면역을 일으켜 암을 제거할 수 있었다. 또한, 기존 면역항암제와 함께 치료 시 암에 대한 기억 면역을 유도하여 암의 재발까지 막을 수 있음을 규명하였다. KIST 김인산 박사는 “체내 면역세포에 대한 암세포의 ‘적’신호 강화를 유도할 수 있는 본 나노입자의 개발은, 기존 항암 면역치료법이 가지고 있는 한계를 극복할 수 있는 차세대 항암 면역 치료제로 활용이 가능할 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 리더연구자 및 중견연구자 지원사업으로 이루어졌으며, 연구결과는 국제학술지인 ‘Science Advances’ (IF : 12.80, JCR 분야 상위 5.07%)에 최신호에 게재되었다. * (논문명) - Xenogenization of tumor cells by fusogenic exosomes in tumor microenvironment ignites and propagates anti-tumor immunity - (제 1저자) 한국과학기술연구원 김기범 학생연구원 - (제 1저자) 한국과학기술연구원 남기훈 위촉연구원 - (교신저자) 한국과학기술연구원 김인산 책임연구원 - (교신저자) 한국과학기술연구원 양유수 선임연구원 <그림설명> [그림 1] KIST 연구진이 엑소좀을 이용하여 암세포 표면에 “표적”신호를 전달하고(A), 적신호가 이식된 암세포가 면역세포를 활성화시켜(B-C), 암을 효과적으로 제거할 수 있다는 내용을 그린 모식도.
- 33
- 작성자테라그노시스연구단 양유수 박사팀
- 작성일2020.07.07
- 조회수11428
-
32
K-진단, 더 빠르고 정확하게 다중 PCR 진단 기술개발
- 바이러스 RNA와 마이크로 RNA에 적용하여 한 번에 유전자 20종까지 검사 가능 - 핵산 증폭을 위한 스마트한 다공성 입자로 역전사와 PCR 빠르고 간편하게 국내 연구진이 바이러스 진단기술인 실시간 PCR(polymerase chain reaction, 중합효소 연쇄반응)의 정확성을 높이고 비용과 시간을 획기적으로 줄이는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 분자인식연구센터 김상경 박사팀은 실시간 PCR을 수 차례 하지않고 한 번에 수십 종까지 간편하게 검출하는 기술을 개발했다고 밝혔다. COVID-19 등의 고위험 바이러스는 RNA를 DNA로 만드는 과정인 ‘역전사’를 하고, ‘실시간 PCR’을 진행하는 ‘RT qPCR’로 검출하는 것이 세계적인 표준이다. 코로나 19의 팬데믹 이후에 한국의 진단기술, K-진단은 역전사와 PCR을 one-step에 진행하고, 이를 4종까지 한 번에 검출하는 제품을 출시하여 높은 정확도로 진단의 우수성과 경쟁력을 전 세계에 증명하였다. 여기에 기술적 우위를 더 강화할 수 있는 원천기술을 축적하여 향후 지속적이고 장기적인 성장을 이끄는 것이 새로운 숙제이다. 이제까지의 RT qPCR은 3~4종의 유전자의 신호를 각각 다른 형광색을 내도록 하여 구분하였다. 그런데 5종 유전자 이상의 광범위한 다중분석은 기술적으로 한계에 부딪힌 상황이다. 이를 돌파할 수 있는 전략으로, KIST 연구진은 역전사와 PCR을 모두 수행할 수 있는 직경 500㎛의 다공성 미세입자를 개발하고 각 입자에 식별할 수 있는 패턴을 새겨 넣었다. 이런 미세입자 여러 개를 한 번에 넣고 신호를 읽으면 입자의 수만큼 광범위한 동시 분석이 가능하게 된다. KIST 김상경 박사팀은 인플루엔자 등의 6종 유전자를 동시에 분석하였고 20종 이상 한 번에 검출하는 칩도 개발한 바 있다. (Adv. Healthcare Materials 2020, 9, 1900790.) KIST 연구진은 위 연구에 이어서, 단백질 생산을 조절하는 새로운 유전 물질인 마이크로 RNA(miRNA) 분석에 최적화된 미세입자를 개발하였다. miRNA는 화학적으로 RNA와 같은 성질을 가지지만 그 길이가 매우 짧아서 기존 방식으로 RT qPCR을 설계할 수 없다. KIST 정승원 박사는 짧은 RNA에 특화된 고리 형태의 프라이머를 입자내에 고정하여 역전사한 후, 그 입자에서 PCR 반응까지 완료하는 형태를 고안하였다. 이를 통하여 miRNA 분석의 복잡한 단계를 줄이고 소요 시간을 1시간 이내로 단축하였다. 이 경우에도 포함된 입자수에 따라 여러 가지 miRNA의 양을 동시에 확인할 수 있어서, 향후에는 일반적인 RNA 분석에서 처럼 one-step 으로 수십 종까지 검출할 수 있을 것으로 기대된다. 연구책임자인 김상경 박사는 “본 연구는 입자 기반의 진단기술(qPCR) 방식이 여러 개의 유전자 정보를 통하여 진단의 정확성과 효율을 높이는데 돌파구가 될 수 있음을 보여주었다. 특히 RNA 분석에 기술적 우위를 점하는데 기여할 것이다.”라며 “또한, 여러 개의 유전자 마커로 단일질환의 진단 정확성을 높이는 것뿐만 아니라, 증상이 유사한 여러 감염병이 유행할 때 감염원을 정확히 감별하는 데에도 효율적으로 적용될 수 있다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 한국연구재단 중견연구자지원사업과 국가과학기술연구회(NST) 창의형융합연구사업으로 수행되었으며 분석과학 분야 국제학술지인 Biosensors & Bioelectronics(IF : 9.518, JCR 분야 상위 0.595%) 최신호에 게재되었다. * (논문명) In-particle stem-loop RT-qPCR for specific and multiplex microRNA profiling (Biosensors and Bioelectronics, 163, 112301, 2020) - (제 1저자) 한국과학기술연구원 정승원 박사후연구원(現, University of Michigan 연구원) - (교신저자) 한국과학기술연구원 김상경 책임연구원 <그림설명> [그림1] 개념도
- 31
- 작성자분자인식연구센터 김상경 책임연구원
- 작성일2020.06.16
- 조회수13286
-
30
KIST, 줄기세포를 이용한 중증하지허혈 치료제 임상 승인
- 3차원 미세조직체 형성 플랫폼 기술을 이용한 차세대 세포치료제 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 생체재료연구단 김상헌 박사팀은 식품의약품안전처로부터 심혈관 질환중 하나인 ‘ 중증하지허혈(CLI, Critical Limb Ischemia) : 하지혈관의 협착, 폐색 또는 폐쇄로 인한 혈류의 감소로 점진적인 하지허혈이 발생하고 심한 허혈성 통증을 유발, 조직의 괴사 등을 일으키는 질병으로서 동맥경화성 말초동맥 질환의 가상 심한 임상양상 중 하나이며, 치료가 지연될 시 6개월 내 주요 사지를 절단하는 상황을 초래 할 수도 있다. 일반적인 관상동맥 질환과 마찬가지로 40세 이후 발병하기 시작하여 나이가 들수록 증가하며, 특히 당뇨병 환자에게서 많이 발생하는 것으로 알려져 있다. 현재 우리나라에서도 인구의 고령화와 위험인자 (당뇨, 흡연, 고지혈증, 고혈압 등)의 증가로 인해 향후 말초동맥질환의 환자군은 더욱 증가할 것으로 예상되고 있다. 중증하지허혈(CLI, Critical Limb Ischemia)’ 세포치료제의 임상시험을 승인 받았다고 밝혔다. KIST 김상헌 박사는 과학기술정보통신부(장관 최기영) 줄기세포사업의 일환으로 ‘3차원 세포 배양 및 그 응용 기술’을 개발하여 3차원 세포조직화기술을 이용한 피부성형재건, 말초동맥폐색질환 치료제의 원천 및 응용기술을, 세포치료제 산업화 기업인 ㈜에스바이오메딕스(대표이사 강세일)에 기술이전한 바 있다.(2016년 4월) 중증하지허혈은 허벅지·종아리·발 등 하지 부분에 혈액을 공급해주는 주요 혈관이 막혀 발병하는 말초동맥질환의 심각한 단계를 지칭한다. 말초동맥질환은 흡연, 고혈압, 당뇨 등 다양한 원인에 의해 악화하며 궤양이나 발끝이 썩어 들어가는 중증하지허혈로 발전하게 된다. 현재 중증하지허혈과 같은 말초동맥폐색질환 치료제는 거의 없다. 이러한 질환의 치료를 위해서는 동맥우회술과 경피적 혈관성형술이 있으나, 수술의 위험성 및 치료효율의 감소 등의 문제점이 있다. 현행 치료기술의 한계를 극복하고, 허혈증상을 개선할 수 있는 줄기세포 3차원 미세조직체 기술은 기존 세포치료기술과의 차별성 및 독창성을 지니고 있다. KIST 김상헌 박사팀은 중증하지허혈 세포치료제를 개발하기 위해, 줄기세포가 접착할 수 있는 새로운 생리활성 단백질을 개발하고, 이 단백질을 시판되는 배양접시에 간편하게 코팅하여 줄기세포를 3차원 스페로이드(Spheroid) : 다수의 세포가 덩어리 형태로 뭉친 세포 원형 집합체 스페로이드로 배양시켰다. 배양된 스페로이드를 주사제와 혼합하여 중증하지허혈 질환자의 환부에 주사하면 염증 억제 및 혈관 생성을 통해 환부의 통증 및 괴사를 억제하여 치료할 수 있다. 연구진은 후보 줄기세포치료제를 혈관이 완전히 제거된 실험용 쥐에 투여하여 다양한 재생효과를 검증한 결과, 기존의 방법에 비해 생체 내에서 주입한 줄기세포의 높은 생착율 및 혈관신생능력 뿐만 아니라, 염증에 의한 섬유화가 억제되어 우수한 조직재생 능력을 확인하였다. KIST 김상헌 박사는 “개발한 줄기세포 3차원 미세조직체는 간단한 제조공정과 세포 생착율 및 혈관신생이 우수하고, 허가가 다소 쉬운 성체줄기세포를 활용한 것으로 치료제로서 상용화에 가장 근접해 있다고 할 수 있다.” 그리고 “본 기술은 성체줄기세포뿐만 아니라 역분화/배아줄기세포 유래의 다양한 세포에도 응용할 수 있고, 적응증도 넓힐 수 있는 원천기술로써 활용할 수 있다”라고 밝혔다. 이번 성과는 보건복지부(장관 박능후) 첨단의료기술개발사업 지원으로 KIST와 ㈜에스바이오메딕스가 공동연구를 통해 개발한 ‘스페로이드 형태의 성체줄기세포 집합체’를 이용한 중증하지허혈 세포치료제 이며, 임상시험 승인은 국내에서 첫 번째 사례이다. 이번 임상시험은 말초동맥 협착 및 폐색 질환에 의한 중증하지허혈 환자를 대상으로 24주간 안전성 및 유효성을 평가하기 위한 연구로 삼성서울병원 혈관외과에서 올해 상반기부터 시행될 계획이다. <그림설명> [그림 1] KIST에서 개발한 기능 강화 줄기세포 스페로이드 배양법 및 줄기세포치료제의 치료 모식도
- 29
- 작성자생체재료연구단 김상헌 박사팀
- 작성일2020.04.20
- 조회수11649
-
28
KIST, 치매 원인 물질(베타-아밀로이드)만 빨아들여 제거하는 나노 청소기 개발
- 알츠하이머 주요 원인 물질인 베타-아밀로이드를 선택적으로 흡입, 제거 - 응용범위 확장 후 다양한 질병 치료에 적용 가능 베타-아밀로이드 단백질은 뇌 속에 비정상적으로 축적되어 알츠하이머병의 주요 원인이 되는 것으로 알려져 있다. 최근 KIST 연구진이 베타-아밀로이드 단백질만을 선택적으로 흡입하여 제거하는 나노 구조체를 개발하여 주목받고 있다. 한국과학기술연구원(KIST, 원장 이병권)은 분자인식연구센터 이준석 박사팀이 한국과학기술원(KAIST, 총장 신성철) 신소재공학과 박찬범 교수팀, 아르곤 국립연구소와의 공동연구를 통해 치매의 주요 원인 물질로 꼽히는 베타-아밀로이드 단백질을 흡입하여 제거함으로써 알츠하이머 질환의 진행을 예방하는 나노청소기를 개발했다고 밝혔다. 베타-아밀로이드 단백질은 뇌 속에서 응집되는 특성이 있다. 이 단백질이 과도하게 응집되면 신경세포를 사멸시키고 시냅스를 파괴하여 알츠하이머의 진행을 가속시킨다. 이러한 응집을 막기 위해 베타-아밀로이드 단백질의 생성을 차단하거나, 생성된 단백질이 서로 응집되지 않도록 항체 및 저해제를 활용하는 연구가 여러 방면에서 진행되고 있으나 아직 효과적인 치매 치료제는 개발되지 못했다. KIST 이준석 박사팀은 상기 기존 방식이 아닌 생성된 베타-아밀로이드 단백질을 원천적으로 흡입하여 제거하는 새로운 접근법을 통해 독성물질의 생성을 예방하는 전략에 주목하였다. 이와 같은 특정 단백질(베타-아밀로이드)을 효율적으로 제거하기 위해서는 항체와 같은 베타-아밀로이드를 선택성을 가진 물질이 필요하다. 하지만 기존의 항체는 체내에서 안정성이 떨어지고 체내 다른 분자와도 결합할 수 있어 그 효율성이 떨어진다. 이러한 한계점을 극복하기 위해 거대한 구멍을 갖는 나노입자를 디자인하여 넓은 표면적을 갖는 나노 구조체를 제작했다. 연구진은 이 구조체에 표적 물질에 대한 선택성은 높으면서도 보통의 항체보다 작아 더 높은 효율로 흡입할 수 있는 미니항체(scFv)를 부착하여 표적 물질인 베타-아밀로이드 단백질을 선별하여 흡착하도록 하였다. KIST 연구진이 개발한 나노청소기는 베타-아밀로이드 단백질을 효과적으로 흡착하여 베타-아밀로이드 단백질의 비정상적 응집을 80% 이상 차단하여 신경독성을 완화하였다. 또한, 연구진은 동물실험을 통해 그 효과를 입증하여 미래 항-아밀로이드성 억제제로서의 가능성을 입증하였다. 본 연구를 주도한 KIST 이준석 박사는 “나노청소기를 이용해 베타-아밀로이드나 타우 단백질에 대한 흡입을 통해 신경독성 물질의 응집저해가 가능할 뿐만 아니라, 응용 범위를 확장하면 체내 다양한 유해물질을 선택적으로 제거할 수 있는 나노청소기로써 질병 예방 및 건강증진에 기여할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 국가과학기술연구회 창의형융합연구사업으로 수행되었으며, 이번 연구결과는 ‘Advanced functional Materials’(IF: 15.621, JCR 분야 상위 3.041%) 표지논문(Front Cover)으로 선정되어 게재될 예정이다. * (논문명) Silica Nanodepletors: Targeting and Clearing Alzheimer’s β?Amyloid Plaques - (제1저자) 한국과학기술연구원 정희진 석사과정 - (제1저자) 한국과학기술원 정유정 박사과정 - (제1저자) 한국과학기술연구원 이창헌 박사 - (제1저자) 미국 아르곤 국립연구소 Rosemarie Wilton 박사 - (교신저자) 한국과학기술연구원 이준석 선임연구원 - (교신저자) 한국과학기술원 박찬범 교수 - (교신저자) 미국 아르곤 국립연구소 Elena A. Rozhkova 박사 <그림설명> [그림 1] 표지논문 이미지 [그림 2] 특정 물질을 타겟팅하여 빨아들이는 나노청소기의 구성 및 작용 개략도 미니항체가 접합된 다공성 실리카 나노구조체는 특정 타겟 물질을 선택적으로 표적화하고 흡수한다. 그림1의 경우 베타-아밀로이드를 대상으로 진행하였으며, 베타-아밀로이드의 자가 조립을 억제하여 플라크의 침착으로 이어지는 일련의 과정을 차단하였다.
- 27
- 작성자분자인식연구센터 이준석 박사팀
- 작성일2020.03.03
- 조회수14454
-
26
관절염, 통풍, 치매 등 염증성 질환 실시간 영상으로 관찰하여 조기 진단한다
- 신개념 효소 표적 형광물질로 몸속의 염증 변화 실시간 추적 - 염증 관련 효소 영상화 기술 및 염증성 질환 치료제 연구에 응용 한국과학기술연구원(KIST, 원장 이병권) 테라그노시스연구단 권익찬 박사팀은 서울대학교 의과대학 조남혁, 김혜선 교수 연구팀과의 공동연구를 통해 암, 치매, 패혈증 등 만병의 원인인 염증을 영상으로 관찰하고 추적할 수 있는 기술을 개발했다고 밝혔다. 이 기술을 활용하면 체내 염증 효소의 변화를 실시간으로 관찰할 수 있어 다양한 염증성 질병의 조기진단이 가능하다. 염증성 질환은 가장 광범위한 질환으로 사망률 1위인 암, 퇴행성 질환인 알츠하이머병, 세균 감염으로 인한 패혈증까지 다양한 질병들이 해당된다. 이들은 모두 염증 반응의 조절이 제대로 이뤄지지 않아 생기는 질병이다. 따라서 염증에 관한 심층 연구는 다양한 질환을 진단하거나 치료하는 데 도움을 줄 수 있다. 관절염, 통풍, 알츠하이머병 등과 같은 염증성 질환들은 공통적으로 특정한 단백질(인플라마좀)이 활성화된다는 사실이 알려지면서 이를 추적하기 위한 많은 연구가 이뤄지고 있다. 그러나 기존의 기술은 체내에서 인플라마좀의 활성화를 시공간적으로만 분석한다는 한계를 가졌다. 몇몇 연구의 경우 유전자 조작을 하여 실시간 관찰을 유도하였으나 유전자 조작이 필요하기 때문에 연구 목적으로만 사용 가능했다. KIST 연구진은 염증성 효소인 캐스페이즈-1을 관찰하기 위해 이 효소에 의해 절단되는 물질을 활용했다. 이 물질에 빛을 발하는 형광물질과 빛을 억제하는 소광물질을 결합하였다. 이를 통해 형광 신호의 노이즈를 줄이고 민감도를 극대화하여 영상화에 활용할 수 있는 형광물질을 만들어 냈다. KIST 연구진은 개발한 형광물질을 알츠하이머병, 대장염, 암 등의 다양한 동물실험에 투여하여 실시간 캐스페이즈-1의 변화 영상을 얻을 수 있었다. 이 기술은 염증 초기에 관여하는 효소를 빠르고 직접적으로 관찰할 수 있으므로 염증성 질환을 조기 진단할 수 있다. 또한, 이 형광물질은 독성이 없고 체내에서 빠르게 분해되어 생체적합성이 높다. KIST 권익찬 박사는 “이 기술을 활용하면 실시간으로 염증 물질을 모니터링하고, 염증성 질환의 조기 진단과 치료제 개발 및 효능을 평가하는데 활용할 수 있을 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 바이오의료기술개발사업 및 분당서울대학교병원의 지원으로 수행되었으며, 연구결과는 생체재료 분야의 국제학술지 ‘Biomaterials’ (IF:10.273, JCR 분야 상위 1.56%) 최신호에 게재되었다. * (논문명) Non-invasive in vivo imaging of caspase-1 activation enables rapid and spatiotemporal detection of acute and chronic inflammatory disorders - (제 1저자) 한국과학기술연구원 고영지 박사 과정 - (제 1저자) 서울대학교 의과대학 이재원 박사 과정 - (제 1저자) 서울대학교 의과대학 양은정 박사 - (교신저자) 한국과학기술연구원 권익찬 책임연구원 - (교신저자) 서울대학교 의과대학 조남혁 교수 - (교신저자) 서울대학교 의과대학 김혜선 교수 <그림설명> [그림 1] 펩타이드 기반 캐스페이즈-1 효소 표적 형광체의 모식도 간편하고 민감도 높은 캐스페이즈-1 효소 검출을 위한 캐스페이즈-1 효소 표적 형광체의 모식도. 캐스페이즈-1 효소에 반응하여 형광을 낼 수 있는 기술로 체내에서 실시간 형광 영상화가 가능한 기술. [그림 2] 다양한 염증성 질환 모델에서 캐스페이즈-1 효소 표적 형광 영상화 기술을 통한 조기 진단 영상 캐스페이즈-1 효소 표적 형광 영상 기술을 이용해 다양한 염증성 질환 (알츠하이머병, 대장염, 암) 모델에서 조기 진단 영상화. 각기 병변이 나타나기 전 캐스페이즈-1 효소 검출에 따른 조기 진단이 가능함을 확인할 수 있었음.
- 25
- 작성자테라그노시스연구단 윤홍열 박사팀
- 작성일2019.12.02
- 조회수10224
-
24
‘변화무쌍’ 줄기세포, 복합영상으로 추적한다
- 체내 이식된 줄기세포 변화 장기간 추적하는 표지 및 영상획득 기술 개발 - 전분화능 유지와 높은 생체적합성으로 새 줄기세포 치료제 개발 기여 전망 최근 줄기세포가 세계 의과학계 최대의 관심사가 되고 있는 이유는 모든 종류의 기관과 조직으로 분화할 수 있는 전분화능(全分化能, pluripotency) 때문이다. 이론상 줄기세포를 이용하면 근육, 뼈, 장기, 뇌 등 어떤 손상 세포와 조직도 재생 가능하다. 하지만 인체에 이식한 줄기세포의 분화 과정을 적절히 제어하기 어렵다는 점이 한계로 작용해왔다. 이를 해결하기 위해서는 먼저 줄기세포의 생존과 이동, 분포 등을 정확히 파악하는 방법이 필요한 가운데, 국내 연구진이 생체 내 줄기세포의 변화상을 정밀하고 안전하게 추적할 수 있는 신기술을 개발해 관심을 끌고 있다. 한국과학기술연구원(KIST, 원장 이병권) 테라그노시스연구단 김광명 박사팀은 동국대학교 일산병원 신경과 김동억 박사팀과의 공동연구로 인체에 이식한 줄기세포를 추적하는 신개념 줄기세포 표지 및 영상화 기술을 개발했다고 밝혔다. 생체 적합성이 높은 조영제 나노입자를 줄기세포에 결합시켜 장기간 형광영상과 자기공명영상(MRI)의 복합영상으로 모니터링 할 수 있는 기술이다. 줄기세포 치료제의 이동과 분포를 관찰하는 표지(labeling) 및 영상화(imaging) 기술은 최근 줄기세포의 체내 이식 후 변화상을 추적하는 기술로도 주목받고 있다. 하지만 기존의 세포 표지기술은 조영제 또는 조영제가 함유된 나노입자를 줄기세포에 직접 표지하거나 유전자 조작을 통해 영상화가 가능한 세포로 전환해야 하기 때문에 줄기세포 고유의 전분화능과 인체 안전성 저하의 우려가 제기되어 왔다. KIST 연구진은 생체 적합성이 높고 줄기세포의 전분화능에도 영향을 주지 않는 신개념 표지 기술 개발을 위해 당대사공학* 및 생물직교성 무동 클릭화학**을 이용했다. 이를 통해 줄기세포 표면에 안전하게 표지할 수 있는 화학수용체를 만드는 한편, 이와 특이적으로 결합하는 산화철 기반의 복합조영제 나노입자를 개발해 줄기세포의 영상신호를 극대화하는 고감도 복합영상 획득에 성공했다. * 당대사공학(metabolic glycoengineering) : 알킨, 티올, 아자이드 등 다양한 화학 반응기를 세포 표면의 당 단백질에 인공적으로 도입할 수 있는 기술. 세포에 존재하는 당 단백질 합성과정을 이용하기 때문에 세포 독성이 없고 표지 가능한 화학 반응기의 양을 인위적으로 조절할 수 있다. ** 생물직교성 무동 클릭화학(Bioorthogonal copper-free click chemistry) : 아자이드와 알킨기가 구리 촉매 없이 특이적으로 결합되는 현상. 독성이 있는 구리 촉매를 사용하지 않기 때문에 세포나 생체 독성이 없고 기존 반응보다 반응속도가 빠르다. 연구팀은 이 기술을 이용한 뇌졸중 동물모델 실험을 통해 근적외선 형광영상 및 MRI 영상을 통해 14일 간에 걸쳐 장기간 안정적으로 관찰할 수 있었다. 이는 새로 개발된 복합조영제 나노입자 및 줄기세포 표지기술이 줄기세포의 전분화능 손실과 세포 독성 발현을 최소화했기 때문에 가능한 것이다. KIST 김광명 박사는 “이번에 개발한 줄기세포 표지 및 추적기술은 뇌에 이식한 줄기세포의 치료 효과를 고감도 복합영상으로 장기간 추적할 수 있게 하는 기술”이라며 “향후 뇌 질환용 줄기세포 치료제 개발과 효능 예측에 폭넓게 활용될 수 있을 것으로 전망된다”고 밝혔다. 한편 본 연구는 과학기술정보통신부(장관 최기영) 글로벌연구실사업 및 KIST 기관고유사업의 지원으로 수행되었으며, 관련 논문은 연구 성과의 파급력을 인정받아 재료·화학 분야 세계적 권위의 학술지 ‘ACS Nano’ (IF:13.903, JCR 분야 상위 6%) 최신호에 게재되었다. * (논문명) Dual-Modal Imaging-Guided Precise Tracking of Bioorthogonally Labeled Mesenchymal Stem Cells in Mouse Brain Stroke - (제1저자) 한국과학기술연구원 임승호 연구원 - (제1저자) 한국과학기술연구원 윤홍열 박사 - (교신저자) 한국과학기술연구원 김광명 박사 - (교신저자) 동국대학교 의과대학 김동억 박사 <그림설명> [그림 1] 복합조영제 나노입자가 표지된 줄기세포의 추적 영상 기술의 모식도 간편하고 안전한 표지를 위해 당대사공학 및 생물직교성 무동 클릭화학을 이용하여 줄기세포 표면에 인공적으로 표적 가능한 화학수용체 형성 및 고감도 형광/자기공명 영상화를 위한 복합조영제 나노입자 표지기술. 이를 뇌졸중 모델의 뇌에 이식 후 줄기세포의 추적 영상화 모식도 [그림 2] 형광/자기공명 복합 영상을 이용한 줄기세포 추적 영상 당대사공학 및 생물직교성 무동 클릭화학을 이용해 표지된 줄기세포의 생체 내 이식 후 형광/자기공명 복합 영상을 이용한 줄기세포 추적 영상. 줄기세포의 이식 후 시간에 따라 뇌졸중 병변으로 줄기세포의 신호가 이동하는 것을 확인할 수 있음.
- 23
- 작성자테라그노시스연구단 윤홍열 박사팀
- 작성일2019.11.08
- 조회수11066
-
22
KIST 연구진이 개발한 단백질 차단막 적용한 바이오센서, 즉각적인 정밀 헬스케어 가능해진다
- 단백질 막 적용한 바이오센서, 혈청의 처리과정 없이 신속하게 질병 진단 - 향후, 환자 스스로 질병 진단하는 스마트 헬스케어 전자기기 활용 기대 한국과학기술연구원(KIST, 원장 이병권) 생체재료연구단 이관희?정영도 박사팀은 고려대학교 강석호 교수 연구팀과 공동연구를 통해 단백질 차단막을 적용한 전자기기 기반의 바이오센서를 제작, 차단막의 표면 전하를 조절해 혈청*에서 불필요한 신호를 억제하는 방법을 최초로 개발했다고 밝혔다. 이 기술을 활용하면 전자기기 기반의 바이오센서를 통해 혈청에서 전·후처리 없이 즉각적으로 질병 인자를 검출할 수 있다. *혈청(Serum) : 혈액을 채취하게 되면 응고를 일으키고, 이것을 원심하면 암적색의 덩어리인 혈병과 담황색의 투명한 액체인 혈청으로 분리됨. 혈액에서 분리해낸 혈청은 많은 생체정보를 가지고 있어 다양한 질병 진단을 할 수 있는 정보를 얻을 수 있다. 그러나 혈청은 높은 염** 농도와 약 20,000종류의 각각 다른 단백질들이 고농도로 함유되어 있어, 검출 신호의 오류가 빈번하고 측정 민감도가 낮다. 현재 의료기관에서는 전문 인력을 통해 혈청의 전처리(여과, 탈염, 희석) 또는 후처리(세척) 후에 진단기기를 이용하여 분석하고 있는 실정이다. **염 : 산의 음이온과 염기의 양이온이 결합하여 생성된 화합물. 스마트 기기를 활용한 헬스케어에 대한 관심이 높아지면서 혈청을 샘플로 하는 전자 기반의 바이오센서들이 속속 개발되고 있다. 그러나 혈청 내 혼합된 수만 종의 단백질들이 비특이적 신호를 일으켜 진단의 정밀성을 떨어뜨린다. 이런 이유로 전자기기 기반의 바이오센서는 검사 결과가 곧바로 확인되는 현장 진단 또는 자가진단용 기기로 개발하기가 어려웠다. KIST 연구진은 이 같은 문제점을 극복하기 위해 혈액에서 분리한 혈청에서 전·후처리 없이 직접 질병인자를 검출하여 질병을 진단할 수 있는 단백질 차단막을 개발, 전자기기 기반 바이오센서에 적용하였다. KIST 정영도·이관희 박사 연구팀은 차단막을 형성하는 단백질 원료가 본래 가진 정전기적 속성을 활용하여, 차단막의 표면 전하를 중성으로 조절하였다. 이를 통해 질병 진단의 정확성을 떨어뜨리는 정전기적 특성에 의한 혈청 단백질의 비특이적 결합과 전하의 불필요한 축적을 방지하였다. 결과적으로 연구진은 개발한 단백질 차단막이 적용된 바이오센서로 전립선암 질병인자를 혈청에서 직접 검출하는데 성공하였다. 이는 기존의 전·후처리를 포함하는 측정결과와 동일한 검출 능력***이다. ***KIST 연구진이 개발한 바이오센서의 측정 검지범위는 수 펨토그램(fg, 10 그램/밀리리터) ~ 수 백 나노그램(ng, 10 그램/밀리리터). 전·후처리 없는 방식은 백 펨토그램/밀리리터에서 수 나노그램/밀리리터으로 측정됨. KIST 정영도 박사는 “기존의 전자기기 기반의 바이오센서가 혈액에서 혈청을 분리하는 휴대용 기기와의 결합 등을 통해 현장 진단 또는 자가진단 센서로 발전할 것으로 기대한다.”라며, “단백질 차단막을 도입하면 향후, 스스로 정밀한 질병 진단이 가능한 스마트 헬스케어 기기가 개발되는데 활용될 수 있을 것으로 기대한다.”라고 말했다. KIST 이관희 박사는 “이번 연구 성과는 국내 연구진이 개발한 전자공학, 재료공학과 화학 분야의 융합 원천 기술로, 향후 의료기관과의 공동연구를 통해 상용화 기술로의 전환을 기획하고 있다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 바이오의료기술개발사업으로 수행되었으며, 연구결과는 ‘Biosensors and Bioelectronics’ (IF : 9.518, JCR 분야 상위 0.595%)에 최신호에 게재되었다. *(논문명) Interfacial charge regulation of protein blocking layers in transistor biosensor for direct measurement in serum - (제 1저자) 한국과학기술연구원 생체재료연구단 박성욱 연구원(박사 과정) - (교신저자) 한국과학기술연구원 생체재료연구단 이관희 책임연구원, 한국과학기술연구원 생체재료연구단 정영도 선임연구원 <그림설명> [그림 1] 전자기기 기반의 바이오센서에 도입된 중성 단백질 차단막은 기존 방식의 바이오센서보다 6배 이상 향상된 검출 신호를 보임. [그림 2] 바이오센서에 도입된 중성 단백질 차단막은 바이오센서의 검출 범위를 넓혀서, 더 낮은 농도의 PSMA (전립선암 진단 인자) 검출이 가능하게 함.
- 21
- 작성자생체재료연구단 이관희, 정영도 박사팀
- 작성일2019.10.31
- 조회수11713
-
20
빛 쪼이면 활성화되는 새로운 항암 나노물질, 독성 없이 주변 암세포까지 제거한다
- 나노기술로 종양에 항암제가 축적, 빛을 쬐면 주변 모든 암세포 제거 - 항암전구체 개발 기술 및 광역학 요법 치료제 분야 연구에 응용 기대 한국과학기술연구원(KIST, 원장 이병권) 테라그노시스연구단 김광명 박사팀은 자가조립 나노물질을 이용하여 정상조직에 영향 없이 암세포만 선택적으로 제거할 수 있는 새로운 기술 개발에 성공했다. 새롭게 개발한 나노 기반 항암전구체*와 레이저 기술을 이용하여 독성 없는 항암 치료가 가능하다고 밝혔다. *항암전구체 : 신체 내에서 항암효능을 나타내는 활성 물질로 전환되는 물질 최근 첨단 레이저기술을 활용하여 종양만을 선택적으로 제거할 수 있는 새로운 항암 치료에서 기술들이 주목받고 있다. 그러나 기존 대부분의 레이저를 활용하는 광역학 치료 기술은 **광과민물질 또는 이를 함유한 인공적인 나노입자들을 직접 종양에 주입하거나 투여한 후 강력한 레이저를 사용해야만 일부의 종양만 제한적으로 치료할 수 있었다. 기존의 광역학 치료 기술은 치료효율이 낮고, 일부 표피 암에만 제한적으로 적용 가능할 뿐만 아니라, 강력한 레이저가 피부를 태우는 등의 안전성 문제가 있었다. **광과민물질(Photosensitizer) : 광역학 치료에 사용되는, 빛에 반응하여 화학적 변화를 일으키는 물질 KIST 김광명 박사팀은 레이저를 조사한 암 부위에서 강력한 항암효능을 나타낼 수 있는 새로운 항암전구체 물질 개발에 성공했다. 이 항암 물질은 스스로 나노구조를 형성하고, 투여 후에 서서히 종양에 축적된다. 그리고 축적된 물질에 레이저를 비추면 이 빛에 반응하여 항암제를 방출하여 강력한 항암효능을 나타낸다. KIST 연구진은 기존 광역학 치료의 문제인 독성을 해결하기 위해 첨단 나노기술과 약물 전구체화 기술을 응용하였다. 종양까지 전달되는 동안은 전구체 상태로 유지되다가, 레이저에 의한 목표 종양에 도착한 후 활성화될 수 있는 새로운 항암 나노물질을 설계하였다. 이렇게 만들어진 물질은 정상 세포에는 독성이 적으면서, 적은 양의 레이저에 활성화되어 암을 완전히 사멸시킬 수 있었다. KIST 연구진이 개발한 이 기술은 레이저기술과 나노기술 그리고 전구체 기술을 활용하여 독성 없이 암을 완전히 사멸시킬 수 있는 첨단 기술로, 향후 종양 특이적인 항암제 개발 연구에 활용될 전망이다. KIST 김광명 박사는 “본 자가조립 항암전구체 기반 광역학 치료 기술은 나노기술로 종양에 축적된 항암전구체를 레이저로 활성화시켜 암을 완전히 사멸시키는 강력한 항암효능을 보일 수 있는 기술로 차세대 항암 치료 기술 및 항암제 신약 개발에 크게 활용될 수 있을 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기초연구사업(중견연구)으로 수행되었으며, 연구결과는 생체재료 분야의 최상위 학술지인 ‘Biomaterials’ (IF : 10.273, JCR 분야 상위 1.56%) 최신호에 게재되었다. * (논문명) Visible light-induced apoptosis activatable nanoparticles of photosensitizer-DEVD-anticancer drug conjugate for targeted cancer therapy - (제1저자) 한국과학기술연구원 박주호 박사 한국과학기술연구원 엄우람 연구원(박사과정) - (교신저자) 한국과학기술연구원 김광명 책임연구원(단장) <그림설명> <그림 1> 신개념 나노 및 전구체 기반 광역학 치료 기술의 모식도 전구체 개발 기술과 나노기술을 이용하여 종양에 축적할 수 있으면서 빛에 의해 활성화되어 증폭되는 강력한 효능을 나타낼 수 있는 항암전구체의 활성화 과정 <그림 2> 나노물질의 특성과 주변으로 증폭되는 항암효능 결과 자가조립 나노물질의 형상과 정맥 투여 후에 종양에 축적되는 모습, 그리고 레이저에 의해 주변으로 증폭되는 항암효능 결과
- 19
- 작성자테라그노시스연구단 박주호 박사팀
- 작성일2019.10.01
- 조회수13115