연구소소개
-
70
머신러닝으로 가장 안정적인 나노자석의 상태 탐색한다
- KIST-경희대 연구진, '에너지 최소화 변이 오토인코더(E-VAE)' 개발 - 머신러닝 기술을 이용한 최적화 문제 해결방법 제시 최적화 문제란 어떠한 목적을 이루기 위한 가장 적합한 해결책을 찾는 문제를 말한다. 예를 들면, 우리가 일상생활에서 접할 수 있는 ‘서울에서 부산까지 가장 빠른 경로 찾기’도 최적화 문제이다. 간단한 문제라면 모든 경우의 수를 조사해서 가장 적합한 답을 찾을 수 있으나, 문제가 복잡해지면 셀 수 없이 많은 경우의 수를 가지게 되므로 최적화 문제는 여러 연구 분야에서 대표적인 난제로 취급된다. 이러한 최적화 문제는 차세대 반도체 연구 분야에서도 등장한다. 예를 들어, ‘전류가 가장 잘 흐르게 하려면 어떤 소재로 반도체를 설계해야 하는지’, ‘그 소재의 가장 안정적인 상태는 무엇인지’는 모두 최적화 문제이다. 특히, 현재 사용되고 있는 실리콘 반도체의 집적도 한계를 극복하고 초저전력, 고성능 차세대 반도체를 개발하기 위한 스핀트로닉스 연구에서는 그 소재로 사용되는 나노 자석의 가장 안정적인 상태를 규명하고 그 특성을 면밀히 파악하지 않으면 스핀 소자의 정확한 동작 특성 및 범위를 설계할 수 없다. 한국과학기술연구원(KIST, 원장 윤석진) 스핀융합연구단 권희영, 최준우 박사, 경희대학교 원창연 교수 연구팀은 주어진 나노 자석의 가장 안정적인 상태, 즉 기저 상태(Ground State)에서 나타나는 스핀 구조를 추정하는 생성적 머신러닝 모델인 “에너지 최소화 변이 오토인코더(Energy-minimization Variational Autoencoder, E-VAE)”를 개발했다고 밝혔다. 생성적 머신러닝 기법은 주어진 데이터를 학습하여 그 데이터가 가지는 특성을 추출하고, 재조합하여 새로운 데이터를 생성하기 위해 사용된다. 이러한 생성적 머신러닝 모델들은 흑백사진을 컬러사진으로 변환하거나 비정상 데이터를 검출하는 등 다양한 분야에서 활용되고 있다. 연구진은 기존의 생성적 머신러닝 모델을 나노자석에 적용할 경우 국소적 노이즈 및 흐림 효과 등이 발생, 물리법칙에 어긋나는 상태가 생성됨을 확인하였다. 또한, 기존 모델에서는 입력된 상태보다 새롭게 생성된 상태의 에너지를 낮게 하는 과정이 포함되어 있지 않아 나노 자석의 기저 상태를 탐색하는 데 사용하기 어려웠다. 연구진은 기존 생성적 머신러닝 모델의 하나인 변이 오토인코더(Variational Autoencoder, VAE)에 생성된 상태들의 에너지를 최소화하는 과정을 포함한 “에너지 최소화 변이 오토인코더(E-VAE)”를 개발하고, 이를 통해 나노 자석의 스핀구조가 가질 수 있는 최적의 상태를 효율적으로 찾아내는 데 성공했다. 이는 기존에 사용되어 온 시뮬레이티드 어닐링 기법(Simulated annealing, SA)과 비교했을 때 최적의 상태를 찾는 문제에 있어서 뛰어난 효율과 정확성을 보여주었다. ? KIST 권희영 박사는 “머신러닝 기술을 기반으로 주어진 물리적 시스템의 가장 낮은 에너지 상태를 조사할 수 있는 전산적 접근법을 제시했다”고 이번 연구의 의의를 밝혔다. 또한 “최적화 문제는 순수과학이나 반도체 연구뿐만 아니라 수학 및 컴퓨터 사이언스 분야에서도 중요한 연구 주제로 다뤄지는 만큼, 본 연구에서 개발된 머신러닝 기반의 혁신적인 최적화 기법은 다양한 분야에서 높은 학술적 가치를 가질 것으로 기대된다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 임혜숙) 지원 KIST 주요사업, 교육부(장관 유은혜) 지원 학문후속세대양성사업으로 수행되었다. 연구 결과는 국제 저널 ‘Advanced Science’ (IF: 16.806) 6월호에 게재되었다. *(논문명) Magnetic State Generation using Hamiltonian Guided Variational Autoencoder with Spin Structure Stabilization - (제 1저자, 교신저자) 한국과학기술연구원 권희영 박사후연구원 - (공저자) 한국과학기술연구원 최준우 책임연구원 - (교신저자) 경희대학교 원창연 교수 그림 설명 [그림 1] 생성적 모델을 통한 자성 기저 상태 추정에 관한 개념도 2차원 자성 시스템에서 나타나는 준 안정상태에 있는 자성 스커미온 스핀 상태를 입력하면 생성적 모델 내 일련의 과정을 거쳐 그 시스템의 기저 상태인 스커미온 레티스 구조(자성 스커미온들이 육각 격자를 이루는 상태)가 생성되는 개념도.
- 69
- 작성자스핀융합연구단 권희영, 최준우 박사팀
- 작성일2021.08.25
- 조회수55496
-
68
뇌신경세포망 모사 인공섬유소자 개발
- 신경세포와 같은 섬유형태를 가지면서 시냅스 네트워크 구현 가능한 소자 - 섬유형 네트워크로 지능형 웨어러블, 로보틱스 분야 활용 가능 인공지능 기술이 발전하면서 컴퓨터가 처리해야 할 데이터의 양도 기하급수적으로 늘어나고 있다. 기존의 연산방식은 데이터를 순차적으로 처리하기 때문에 방대한 양을 처리하기 위해서는 많은 시간과 막대한 전력이 소모된다는 문제점을 안고 있다. 이를 극복하기 위해서는 새로운 연산 패러다임으로의 전환이 필요한데, 많은 연구자가 생물의 뇌 작동방식과 구조를 모방해 적은 에너지로도 많은 양의 연산이 가능한 저전력 뉴로몰픽 컴퓨팅과 이를 위한 하드웨어 개발을 위해 노력하고 있다. 이런 가운데, 한국과학기술연구원(KIST, 원장 윤석진)은 광전소재연구단 임정아, 주현수 박사 연구팀이 뉴런과 유사한 형태와 기능을 갖고, 뇌의 신경세포망과 같은 기능을 구현할 수 있는 인공신경섬유 소자 개발에 성공했다고 밝혔다. 컴퓨터 연산을 뇌와 같은 방식으로 처리하기 위해 뇌의 뉴런 및 시냅스의 역할을 할 수 있는 소자에 대한 연구가 필요한데, 기존의 연구들이 뉴런 혹은 시냅스 동작에 대한 소자를 각각 개발해오던 것과 달리 KIST 연구진은 두 가지 동작 특성을 모두 갖는 개별 소자인 인공신경섬유를 개발했다. 이 소자들을 연결하면 간단히 신경망 네트워크 시스템을 제작할 수 있게 된다. 뇌의 신경세포는 끝이 여러 가닥으로 갈라져 여러 자극을 한 번에 받아들일 수 있는 섬유 구조를 가지며 전기자극에 의한 이온의 이동으로 신호전달이 이루어지는데, 연구진은 이와 동일한 구조로 2019년 개발한 섬유형 트랜지스터 소자를 활용해 인공신경섬유로 발전시켰다. 섬유형 트랜지스터의 전극으로 들어오는 전기적 자극에 따라 반도체 소재와 절연막에 존재하는 이온 사이에 산화환원 반응이 일어나도록 설계해 시냅스처럼 전기신호의 강도를 기억하여 전달할 수 있는 메모리 트랜지스터를 개발한 것이다. 개발된 인공신경섬유는 여러 개의 전극에서 다발적으로 들어오는 전기적 신호가 자연스럽게 하나의 소자에서 통합되는 뉴런과 동일한 특징을 보여, 이는 생물의 신경세포 동작 특성과 매우 유사한 것이다. 연구팀은 개발한 인공신경섬유를 엮어 100개 시냅스로 구성된 인공신경망을 제작, 안정적인 소자 특성을 확인하였다. 제작된 인공신경섬유 소자들을 이용하여 음성인식 학습을 진행 시킨 결과 88.9%의 인식률을 달성했다. 연구개발을 주도한 KIST 주현수, 임정아 박사는 “개발된 인공신경섬유 소자는 실제 뇌신경망과 유사한 대규모, 저전력(~2pJ/신호), 고신뢰성 인공신경망을 실현할 수 있는 원천기술이다.”라고 밝혔으며, ”인공신경섬유소자의 유연한 특성을 바탕으로 인공지능 반도체소자의 웨어러블, 로보틱스 등의 활용으로 이어질 수 있는 연구결과”라고 전망했다. 본 연구는 과학기술정보통신부(장관 임혜숙)의 지원을 받아 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 국제 학술지인 「Advanced Materials」 (IF : 27.34, JCR 분야 상위 1.61%) 최신 호에 게재되었다. * (논문명) Dendritic Network Implementable Organic Neurofiber Transistors with Enhanced Memory Cyclic Endurance for Spatiotemporal Iterative Learning - (제 1저자) 한국과학기술연구원 김수진 학생연구원 - (제 1저자) 한국과학기술연구원 정재승 학생연구원 - (교신저자) 한국과학기술연구원 임정아 책임연구원 - (교신저자) 한국과학기술연구원 주현수 책임연구원 <그림설명> [그림 1] 왼쪽은 생물의 신경세포 구조, 오른쪽은 본 연구진이 개발한 꼬아진 전극을 기반으로 하는 인공신경섬유소자의 구조를 비교 설명한 그림. 인공신경섬유소자 그림의 아래는 실제 소자의 사진. [그림 2] 왼쪽은 뉴런의 신호처리 방법, 오른쪽은 본 연구진이 개발한 인공신경섬유소자에 신호가 들어왔을 때 뉴런 동작 특성을 보이는 그래프. [그림 3] 왼쪽은 인공신경섬유의 게이트로 구분된 다중 시냅스의 구조를 보여주는 그림. 오른쪽 그래프는 각각의 시냅스를 게이트를 이용하여 특성을 변화시킬 수 있고, 구별되어 작동되는 것을 보임으로써 인공신경섬유의 독립적으로 구분된 시냅스 특성을 보이는 그래프. 마지막 그래프는 시냅스 특성과 뉴런의 특성을 통합하여 동작하는 인공신경섬유소자의 특성을 보여주는 그래프. [그림 4] 왼쪽은 생물의 신경망과 인공신경망의 비교그림으로 인공신경섬유소자의 게이트로 구분된 다중 시냅스의 구조를 보여주는 그림. 가운데는 개발, 제작한 인공신경망의 사진. 마지막은 인공신경망을 구성하고 있는 인공신경섬유소자들의 동작 특성. [그림 5] 왼쪽은 본 연구에서 개발된 인공신경섬유소자에서의 음성인식 (TI-46) 학습 및 동작 과정 그림, 오른쪽은 실제 음성인식.
- 67
- 작성자광전소재연구단 임정아 박사팀
- 작성일2021.06.03
- 조회수11747
-
66
스마트폰 카메라로 체온 체크한다
- 열영상센서 저가화 기술 개발, 100℃ 에서도 물체의 온도 식별 가능 - 휴대폰 및 자율주행 자동차용 열영상센서 분야 적극 활용 기대 인체나 물체의 온도를 검지하여 영상화하는 열영상센서는 최근 코로나19로 인해 수많은 건물의 출입구에서 비접촉식으로 얼굴의 온도를 체크하는 열영상 온도계로 이용되고 있다. 이러한 상황에서 스마트폰 업계에서는 열영상센서를 휴대용 센서로 적용하여 실시간으로 온도를 측정할 수 있는 부가 기능 만드는 것을 적극적으로 고려하고 있다. 또한, 이를 자율주행 자동차에 적용하여 활용하면 더 안전한 자율주행이 가능할 것으로 보인다. 한국과학기술연구원(KIST, 원장 윤석진)은 광전소재연구단 최원준 박사팀이 전자재료연구단 백승협 박사팀, 성균관대학교 백정민 교수 연구팀과의 융합연구를 통해 기존의 가격과 작동온도 문제를 극복한 열영상센서 소자를 개발했다고 밝혔다. 개발한 열영상센서는 100℃에서도 냉각소자 없이도 동작할 수 있어 기존 센서의 가격 문제를 극복하고, 스마트폰과 자율주행 자동차에 적용할 수 있을 것으로 보인다. 스마트폰 및 자율주행 자동차의 부품으로 사용되기 위해서는 각각 85℃ 및 125℃의 고온에서도 문제없이 안정적으로 동작해야만 한다. 이를 위해 기존의 열영상센서는 별도의 냉각소자가 필수적이어서 고사양 소자의 경우 가격이 이백만 원을 넘고, 냉각소자가 있어도 85℃ 이상에서는 작동하지 못하기 때문에 이들 분야에 적용되지 못하고 있었다. KIST-성균관대학교 공동 연구진은 열영상센서 원가의 10% 이상을 차지하고, 전력소모가 큰 냉각소자를 없애기 위해 100℃ 이상에서도 안정적인 이산화바나듐(VO2)-B 박막을 이용하여 열에서 발생하는 적외선을 감지하여 전기신호로 바꾸는 소자를 제작했다. 제작된 소자는 100℃에서도 상온에서와 동일한 수준으로 적외선 신호를 얻을 수 있었다. 또한, 외부의 원적외선을 최대한 흡수할 수 있는 흡수체를 제작해서 함께 사용한 결과 물체의 열을 3배 더 민감하게 감지하여 전기신호로 변환할 수 있었다. 특히 응답속도는 기존 초당 30~40프레임 수준을 뛰어넘어 100프레임의 화상의 촬영이 가능하여 자율주행 자동차 부품으로 사용할 수 있을 것으로 보인다. KIST 최원준 박사는 “융합연구를 통해 개발한 소자 기술로 열영상센서의 제작가격을 획기적으로 낮출 원천기술을 확보했을 뿐만 아니라 기존 소자보다 민감도 및 동작 속도가 우수하다.”라고 말하며, “앞으로 열영상을 이용하는 군수용 산업 및 향후 전개될 열영상센서의 스마트폰 및 자율주행 자동차용 센서로의 활용이 가속화될 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원을 받은 KIST 주요사업과 KIST-UNIST-울산시가 공동으로 지원하는 융합신소재연구센터사업으로 수행되었으며, 연구결과는 박막 분야의 저널인 ‘Applied Surface Science’(JCR 분야 상위 2.38%) 최신 호에 게재되었다. * (논문명) Wide-temperature (up to 100℃) operation of thermostable vanadium oxide based microbolometers with Ti/MgF2 infrared absorbing layer for longwavelength infrared (LWIR) detection - (제 1저자) 한국과학기술연구원 이혜진 학생연구원 - (제 1저자) 한국과학기술연구원 왕다솜 학생연구원 - (교신저자) 한국과학기술연구원 최원준 책임연구원 - (교신저자) 성균관대학교 백정민 교수 <그림설명> [그림 1] 연구진이 개발한 볼로메터 소자의 주사전자현미경 이미지(좌)와 모식도(우)?
- 65
- 작성자광전소재연구단 최원준 박사팀
- 작성일2021.04.15
- 조회수12374
-
64
10배 더 안정적으로 정보 저장 가능한 차세대 반도체 소재 특성 발견
- 2차원 소재인 반데르발스 자성체만의 자성 특성 발견 - 교환 바이어스 특성 10배, 스핀 반도체의 획기적 성능 개선 기대 전 세계 반도체 기업과 연구소는 양산되고 있는 실리콘 반도체의 효율 향상에 한계를 느끼고, 이를 뛰어넘을 수 있는 스핀 메모리를 주목하고 있다. 스핀 메모리의 작동원리에 대한 연구는 상당 부분 진전이 있었고 최근에는 적합한 소재를 찾기 위한 노력이 한창인데, 국내 연구진이 스핀 메모리의 소재 후보로 주목받고 있는 반데르발스 자성체의 정보저장 안정성이 다른 소재보다 10배 이상 높다는 연구 결과를 내 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 최준우 박사팀이 반데르발스 자성체가 정보를 저장할 수 있는 안정성을 나타내는 ‘교환 바이어스’ 특성이 일반 자성체보다 10배 이상 크고, 근본적으로 다른 물성을 가짐을 규명했다고 밝혔다. 반데르발스(van der Waals) 자성체란 물질의 층과 층 사이가 결합력이 약한 ‘반데르발스’ 결합으로 이루어진 자성체로, 3차원의 입체 구조를 갖는 일반 물질과는 달리 층간 결합력이 약해 단일 원자층으로 쉽게 분리시킬 수 있어 평면 형태로도 만들 수 있어 2차원 물질이라고도 불린다. 2017년에는 반데르발스 물질 중 외부의 자성을 유지하려는 특성인 강자성을 나타내는 물질들이 새로이 발견되어 이를 활용하여 자성의 스핀 방향을 정보로 저장하는 차세대 스핀 반도체 연구가 활발히 진행되고 있다. 하지만 활발한 연구에도 불구하고 반데르발스 자성체들은 철, 코발트 등의 기존 자성체와 비교해 원자층 단위로 분리된다는 구조적 특성 외에 눈에 띄게 다른 자성 특성을 발견하지는 못했었다. 최준우 박사 연구팀은 대표적 반데르발스 자성체인 ‘Fe3GeTe2’의 특성을 분석한 결과 두께가 두꺼워 짐에 따라 교환 바이어스의 크기가 약해지는 기존 자성체들과는 달리 두께에 영향을 거의 받지 않으며, 그 교환 바이어스의 크기(정보저장 안정성)가 10배 이상 클 수 있음을 찾아냈다. 또한, 이러한 특이한 자성 특성이 반데르발스 물질이 갖는 내재적 성질인 약한 층간 상호작용 때문인 것을 밝혔다. 교환 바이어스는 2018년부터 양산되고 있는 차세대 스핀 메모리의 핵심 동작 원리로, 스핀 정보의 안정적인 저장에 결정적 역할을 한다. 따라서 이번 연구결과는 큰 교환 바이어스를 갖는 반데르발스 자성체를 활용해 차세대 스핀 메모리의 정보 저장 안정성을 크게 향상시킬 수 있음을 시사한다. KIST 최준우 박사는 “본 연구결과를 토대로 향후 반데르발스 자성체와 다른 성질의 반데르발스 물질들의 접합구조를 활용해 우수한 성능을 가진 스핀 반도체 신소재 개발이 가능해질 것으로 기대된다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형융합연구사업, 선도연구센터지원사업으로 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Exchange Bias in Weakly Interlayer-Coupled van der Waals Magnet Fe3GeTe2 - (제 1저자) 한국과학기술연구원 권형근 박사후연구원(現, 삼성전자) - (교신저자) 한국과학기술연구원 최준우 책임연구원 <그림설명> [그림 1] KIST 최준우 박사팀이 개발한 반데르발스 자성체를 활용한 스핀소자의 모습 [그림 2] 층상구조를 가진 Fe3GeTe2 반데르발스 자성체와 반강자성체의 접합구조 [그림 3] 반데르발스 자성체와 일반적인 자성체에서 나타나는 두께에 따른 교환 바이어스 크기 변화. 일반적인 자성체에는 교환 바이어스가 두께에 반비례하여 급격히 감소하는 반면, 반데르발스 자성체에서는 두께 의존성이 작아서, 교환 바이어스가 훨씬 큼.
- 63
- 작성자스핀융합연구단 최준우 박사팀
- 작성일2021.04.04
- 조회수12871
-
62
심박수 측정도 가능한 부드럽고 편안한 전자섬유 나온다
- 원하는 모양의 전극을 실에 말아 섬유형 광전자소자 성능 향상 - 섬유형 광다이오드를 천에 삽입하여 손 끝에서 심박수 측정 가능 입을 수 있는 소자(웨어러블 디바이스)의 발전과 더불어 가볍고 편안한 섬유와 스마트 전자소자를 융합한 전자섬유(E-textile) 기술이 차세대 신기술로 주목받고 있다. 특히 섬유 고유의 특성을 유지하면서 전기적 특성을 가지는 섬유형 전자소자(Fiber electronic device)는 전자섬유를 구현하기 위한 핵심 소자 중 하나이다. 일반적으로 반도체와 전극, 절연막 등의 층으로 구성된 광전자소자는 전극의 크기와 구조에 따라 소자의 성능이 크게 달라진다. 섬유형 전자소자를 만들기 위해서는 쉽게 휘어지는 데다가 얇은 실 위에 소자를 형성시켜야 하기 때문에 소자의 크기를 마이크로미터 단위인 실의 두께보다 크게 만들 수 없어 소자의 성능을 향상시키는데 한계가 있었다. 이런 가운데, 국내 연구진이 이러한 한계를 뛰어넘어 성능을 향상시키는 기술을 개발해 화제다. 한국과학기술연구원(KIST, 원장 윤석진) 차세대반도체연구소 이현정 박사, 임정아 박사 연구팀은 원하는 전극을 잉크젯 프린터로 프린팅하여 제작하고 그 위에 반도체가 코팅된 전극 실을 굴려주기만 하면, 원하는 전극 구조가 돌돌 말려져있는 트랜지스터, 광다이오드와 같은 섬유형 전자소자를 제작할 수 있는 기술을 개발했다고 밝혔다. 이현정 박사 연구팀은 2019년 탄소나노튜브(CNT, Carbon Nanotube) 잉크를 물을 머금고 있는 고분자인 하이드로젤 기판에 프린트한 후 전사 (transfer) 하여 원하는 표면에 전극을 구성할 수 있는 기술을 개발한 바 있다.(Nano Letters 2019, 19, 3684-3691) 하이드로젤 위에 프린팅된 CNT 전극은 마치 물에 떠 있는 것과 같아 그 위에 섬유를 굴리면 전극구조의 손상 없이 쉽게 섬유의 표면으로 옮겨질 수 있을 것이라 예상하고 임정아 박사 연구팀과 함께 연구한 결과 실제 반도체층과 CNT 전극의 손상 없이 고성능 섬유형 소자를 제작해냈다. 개발한 CNT 전극이 감싸진 섬유형 트랜지스터는 1.75mm 구부림 반경까지 크게 구부려도 80% 이상의 성능이 안정적으로 유지되었다. 또한 CNT 전극의 반투명한 특성을 활용, 빛을 흡수하여 전류를 발생시킬 수 있는 반도체층이 코팅된 전극 실을 CNT 전극으로 감싸 빛을 감지할 수 있는 섬유형 광다이오드를 제작하는데 성공하였다. 제작된 섬유형 광다이오드는 넓은 가시광선 영역의 빛을 감지할 수 있으며 평면형 소자에 뒤떨어지지 않는 우수한 감도를 보였다. 연구팀이 개발한 섬유형 광다이오드를 LED 소자와 함께 천에 삽입하여 장갑처럼 끼면, 손끝에서 흐르는 혈액양의 변화에 따라 바뀌는 LED 빛의 반사 세기를 섬유형 광다이오드가 감지하여 사용자의 맥박을 측정 빛을 혈관에 비춰 혈액의 양에 다라 달라지는 빛의 세기를 광센서를 이용하여 측정하는 심장박동 측정 방법인 광혈류측정(photoplethysmogram; PPG)을 활용함할 수 있었다. KIST 임정아 박사는 “개발한 손가락장갑형 심박수 측정기는 집게형 심박수 측정기를 대체하여 편안하고 부드러운 느낌으로 측정자에게 쉽게 다가갈 수 있으며, 언제나 어디서나 실시간으로 심박수를 측정할 수 있는 장점이 있다.”라고 말했다. 공동 연구책임자인 이현정 박사는 “이번 연구는 섬유형 소자 개발에 있어 과제로 남아있는 전극 형성 기술에 대한 새로운 접근법을 제시하는 것으로, 섬유형 광전자소자의 성능 향상에서부터 복잡한 회로를 가지는 섬유형 전자소자의 개발을 앞당길 수 있을 것이라 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원 아래 KIST 주요사업 및 한국연구재단 중견후속연구 및 나노소재원천기술개발사업으로 수행되었으며, 나노소재 분야의 국제학술지 ‘ACS Nano’ (IF: 14.588, JCR 분야 상위 5.255%) 최신 호에 게재되었다. * (논문명) Spirally Wrapped Carbon Nanotube Microelectrodes for Fiber Optoelectronic Devices beyond Geometrical Limitations toward Smart Wearable E Textile Applications - (제 1저자) 한국과학기술연구원 김형준 학생연구원 - (제 1저자) 한국과학기술연구원 강태형 박사후연구원 - (교신저자) 한국과학기술연구원 이현정 책임연구원 - (교신저자) 한국과학기술연구원 임정아 책임연구원 <그림설명> [그림 1] CNT 전극 전사를 통한 인체 신호 모니터링용 광전소자 구현 전략에 관한 모식도 전극을 하이드로젤에 프린팅하고 섬유를 전극 위로 굴려서 전극이 전사된 모습(왼쪽), 전사 공정을 통해 제작한 광다이오드를 섬유에 삽입하여 손 끝에서 광혈류측정에 응용되는 모식도와 실제 심박 측정 특성(오른쪽). [그림 2] (a) 본 연구진이 개발한 섬유형 소자 구현을 위한 CNT 전극 전사 공정 (b) 본 연구진이 개발한 기술을 이용하여 원하는 크기의 전극이 실을 감싸서 전사된 사진 [그림 3] (a) 본 연구진이 구현한 섬유형 트랜지스터의 소자 구조, 사용된 물질의 분자구조와 각 구성 요소에 대한 명명 (b) CNT 전극이 전사된 섬유형 트랜지스터의 모습을 보여주는 사진(왼쪽), CNT 전극과 유기반도체 채널 모습을 보여주는 주사현미경 사진(오른쪽) (c) 전극을 전사하는 길이에 따라 채널 폭을 순차적으로 증가시켰을 때 섬유형 트랜지스터의 출력특성(output curve) 비교 그래프 (d) 채널 폭이 증가함에 따라 선형적으로 증가하는 전류 그래프 (e) 소자를 구부렸을 때 섬유형 트랜지스터의 전달특성(transfer curve) 그래프 diF-TESADT: 본 연구에서 사용한 단분자 유기 반도체, 2,8-Difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene PMMA : 본 연구에서 사용한 절연성 고분자, Poly(methacrylic acid methyl ester) [그림 4] (a) 본 연구진이 구현한 섬유형 광다이오드의 소자 구조, 사용된 물질의 분자구조와 각 구성 요소에 대한 명명 (b) 광 활성층의 광흡수 스펙트럼과 제작한 소자의 에너지 밴드 다이어그램 (c) 638nm 파장대 빛의 세기별 제작한 소자의 전류밀도-전압 특성 (d) 인체 신호를 모니터링 하기 위해 제작한 소자를 섬유에 삽입하고 LED와 함께 광혈류측정을 할 수 있음을 보여주는 사진 (e) 투과 및 반사된 서로 다른 두 파장대의 빛을 섬유에 삽입된 소자로 확인한 광혈류측정(PPG) 데이터 PTB7-Th : 본 연구에서 사용한 p-type 반도체 donor 물질, Poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) PC71BM : 본 연구에서 사용한 n-type 반도체 acceptor 물질, [6,6]-Phenyl C71 butyric acid methyl ester PPG : 빛을 활용하여 맥파를 측정하는 광혈류측정, photoplethysmogram
- 61
- 작성자광전소재연구단 임정아, 스핀융합연구단 이현정 박사팀
- 작성일2021.01.24
- 조회수13211
-
60
광(光) 데이터 전송 속도 10,000배 이상 높인다
- 그래핀이 포함된 공진기를 삽입하여 펄스 레이저의 반복 속도 57.8GHz 달성 - 일반 구리 전선에 그래핀을 직접 합성하여 제조 공정 한계 극복 펄스 레이저는 깜빡이듯 빛이 아주 짧은 시간 동안 반복되는 출력 형태의 레이저를 말한다. 시간에 따라 세기가 일정하게 지속되는 연속 레이저보다 에너지를 크게 집속시킬 수 있는 장점이 있는데, 여기에 디지털 신호를 실으면 개개의 펄스가 1비트(bit)의 데이터를 저장할 수 있어 펄스가 반복되는 속도가 빠를수록 더 많은 데이터를 전송할 수 있다. 그러나, 기존의 일반적인 광섬유 기반 펄스 레이저는 초당 펄스의 개수를 MHz 수준 이상으로 높이는 데 한계가 있었다. 한국과학기술연구원(KIST, 원장 윤석진)은 광전소재연구단 송용원 박사팀이 펨토초로(10-15초) 동작하는 광섬유 펄스 레이저 발진기에 그래핀이 포함된 추가의 공진기를 삽입하여, 펄스를 기존보다 10,000배 이상 빠르게 발생시킬 수 있게 만들었다고 밝혔다. 이를 데이터 통신에 적용하면 데이터의 전송 및 처리 속도가 크게 늘어날 것으로 기대된다. KIST 연구진은 레이저 빛의 파장과 세기가 시간에 따라 변화하는 특성이 상관관계(푸리에변환)로 엮인 것에 주목했다. 레이저 내에 공진기를 삽입하면 펄스 레이저의 파장을 주기적으로 필터링하고, 이를 통해 레이저 세기 변화의 양상을 바꿀 수 있다. 여기에 송용원 박사는 세기가 약한 빛은 흡수하여 사라지게 하고 강한 빛만 통과시켜 세기를 증폭시키는 특성이 있는 그래핀을 공진기에 융합하여, 레이저 세기 변화를 매우 빠른속도로 정확하게 조절되게 하여 펄스의 반복속도를 높게 만들 수 있었다. 또한 일반적으로 그래핀은 촉매금속 표면에서 합성한 후 이것을 분리하여 원하는 기판의 표면으로 옮기게 되는데, 이 과정에서 그래핀이 손상되거나 이물질이 유입되는 문제가 있었다. 이에 KIST 연구진은 구하기 쉬운 구리 전선 표면에 직접 그래핀을 형성시키고, 광섬유를 감아 공진기로 사용함으로써 제조 공정에서 발생하는 효율 저하의 문제점을 해결했다. 그 결과 기존 MHz 수준의 반복 속도를 보이던 펄스 레이저의 한계를 극복하여 57.8GHz의 반복 속도를 얻을 수 있었다. 또한, 레이저를 흡수하면 열이 국소적으로 발생하는 그래핀의 특성을 이용해 추가의 레이저를 소자에 가해주어 그래핀 공진기의 특성을 튜닝할 수 있게 만들었다. KIST 이성재 연구원은 “데이터 트래픽에 대한 수요가 계속 폭발적으로 증가하고 있는 현시점에서 초고속으로 동작하고 특성을 튜닝할 수 있는 극초단 펄스 레이저는 급변하는 데이터 처리 환경에 적응할 수 있는 새로운 방안을 제시할 수 있을 것”라고 말했다. 본 연구를 주도한 송용원 박사는 “공진기와 그래핀 기반의 초고속 펄스 레이저 개발로 나노소재 기반의 광정보 소자분야의 기술 선도와 시장 선점을 가능하게 할 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기초연구사업으로 수행되었으며, 이번 연구 결과는 나노기술 분야 국제 저널인 ‘ACS Nano’ (IF: 14.588, JCR 분야 상위 5.255%) 최신 호에 게재되었다. * (논문명) Graphene Self-Phase-Lockers Formed around a Cu Wire Hub for Ring Resonators Incorporated into 57.8 Gigahertz Fiber Pulsed Lasers - (제 1저자) 한국과학기술연구원 이성재 학생연구원 - (교신저자) 한국과학기술연구원 송용원 책임연구원 <그림설명> [그림 1] 그래핀과 링 공진기가 융합된 소자를 이용한 고반복률 레이저 펄스 형성의 모식도. 일반적인 모드 잠금 레이저의 파장 성분을 제어하여 반복률을 극적으로 향상시킴 [그림 2] 그래핀과 링 공진기의 융합 소자를 이용한 고반복률 레이저 펄스의 형성 원리 설명과 출력 펄스의 실험적 특성 [그림 3] 그래핀의 광-온 효과(photo-thermal effect : 빛을 받으면 국소적으로 열을 내는 특성)를 이용한 펄스 반복률 튜닝 설명 모식도와 튜닝 실험 데이터
- 59
- 작성자광전소재연구단 송용원 박사팀
- 작성일2020.12.03
- 조회수11640
-
58
차세대 메모리 반도체 개발 패러다임이 바뀐다
- 외부 스핀 없이 전류를 걸어 스스로 스핀 방향을 바꾸는 나노 자석 원리 제시 - 기존 스핀 메모리 소자의 패러다임 변화로 상용화 앞당길 것으로 기대 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 김경환 박사팀이 차세대 메모리 소자인 스핀 메모리 소자에 관한 새로운 원리를 제시함으로써, 기존 패러다임과는 다른 새로운 응용 가능성을 제시했다고 밝혔다. 기존의 메모리 소자들은 RAM과 같이 빠르게 정보를 읽고 쓸 수 있는 휘발성 메모리와 하드디스크처럼 전력을 차단해도 정보가 유지되지는 비휘발성 메모리로 나뉜다. 최근 관련 학계 및 업계에서는 이들의 장점을 결합하여 빠른 속도를 가지면서 전력을 차단해도 정보가 유지되는 차세대 메모리의 개발을 서두르고 있다. 스핀 메모리 소자는 아주 작은 나노 자석의 N극과 S극의 방향으로 0과 1의 정보를 저장하는 소자이다. 전력이 차단되어도 N극과 S극의 방향은 유지되기 때문에 이미 하드디스크 등에서도 널리 응용되고 있다. 이 나노 자석의 N극과 S극의 방향을 따라서 얼마나 빠르고 쉽게 제어할 수 있는지가 차세대 스핀 메모리의 상용화 여부를 결정한다고 볼 수 있다. 그동안은 외부에서 스핀을 주입하여 나노 자석의 N극과 S극의 방향을 제어해왔다. 여기서 스핀이란 더 이상 자를 수 없는 자석의 기본 단위로, 같은 N극과 S극의 방향을 갖는 무수히 많은 스핀이 한데 모여 하나의 자석을 구성한다고 할 수 있다. 그러므로 외부에서 나노 자석에 많은 스핀을 주입하면 나노 자석의 N극과 S극의 방향을 제어할 수 있다. 하지만 외부의 스핀을 생성하고, 주입하는 효율이 좋지 않아 전력의 소모가 커 상용화에 큰 어려움이 따르고 있었다. 최근 나노 자석에 전류를 걸면 나노 자석 내부에 스핀이 형성된다는 것은 알려진 바 있으나, 이렇게 형성된 스핀의 거동을 분석하는 이론이 정립되지 않아 이들이 어떤 물리적 결과를 가져오는지 연구된 바는 없었다. KIST 김경환 박사는 자성체 내의 스핀 전도 현상을 기술하는 스핀 확산 방정식을 개발하여 이론 체계를 확립하였다. 그 결과, 전류에 의해 형성된 스핀이 외부로 발산될 때 외부에서 주입해주던 스핀과 부호만 반대이고 나머지는 같은 효과를 준다는 사실을 알게 되었다. 그러므로 외부의 스핀 주입이 없이도 나노 자석 스스로 N극과 S극의 방향을 제어할 수 있으며, 기존의 스핀 소자보다 최대 60%가량 전력 소모를 감소시킬 수 있음을 규명했다. 또한, 기존의 외부 스핀을 주입하기 위한 구조물이 필요 없게 되어 간단한 구조로 메모리를 개발할 수 있게 됐다. 김경환 박사는 “본 연구는 자성체 내에서의 스핀 전도 현상에 대한 학술적인 기초를 제공하였을 뿐 아니라, 새로운 패러다임을 통해 차세대 스핀 소자 구현에 가장 큰 걸림돌이었던 전력 소모, 생산 수율 등의 최적화 문제 해결에 큰 기여를 할 것으로 기대된다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 신진연구지원사업 등으로 수행되었으며, 이번 연구결과는 물리학 분야 저널인 ‘Physical Review Letters‘ (IF: 8.385) 최신 호에 게재되었다. * (논문명) Generalized Spin Drift-Diffusion Formalism in Presence of Spin-Orbit Interaction of Ferromagnets - (제 1저자, 교신저자) KIST 김경환 선임연구원 - (교신저자) 고려대학교 신소재공학부 이경진 교수 (現 KAIST 물리학과) <그림설명> [그림 1] 기존 외부 스핀 주입 방식과 자가생성 스핀 방식의 비교
- 57
- 작성자스핀융합연구단 김경환 박사팀
- 작성일2020.11.24
- 조회수13531
-
56
인공지능으로 반도체 소재 분석한다
- 전자현미경 사진으로 순식간에 자성체 물성 분석완료 - KIST-경희대 연구진, 딥러닝 기술을 이용한 자성체 특성 연구 현재 사용되고 있는 실리콘 반도체의 집적도 한계를 극복하고 초저전력, 고성능 차세대 반도체 개발을 위해 전자의 ‘스핀(spin)’과 ‘전자공학(electronics)’을 함께 연구하는 스핀트로닉스(spintronics)에 관한 연구가 활발하다. 자성 메모리(MRAM) 등의 스핀트로닉스 소자를 개발하기 위해서는 자성을 띠는 물질인 자성체를 이용하는데, 이 자성체들의 온도에 대한 안정성, 변화에 대응하는 속도 등의 물성들을 정확히 파악해야 소자 개발에 이용할 수 있다. 이를 위해 국내 연구진이 스핀트로닉스의 소재인 자성체의 물성을 순식간에 분석하는 인공지능을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 권희영, 최준우 박사팀이 경희대학교 원창연 교수 연구팀과의 공동연구를 통해 인공지능 기술을 활용하여 자성체의 스핀구조 이미지로부터 자기적 물성을 추정하는 기술을 개발했다고 밝혔다. 개발한 인공지능은 딥러닝 기술로, 기존에는 수십 시간까지 걸리던 소재 분석을 순식간에 해결할 수 있다. 자성체는 물질을 구성하는 미세단위 자석인 스핀이 같은 방향으로 정렬된 영역인 ‘자성 도메인’들을 갖고 있는데, 이러한 자성 도메인들이 형성되고 변화함에 따라 다양한 자기적 현상들이 나타나는 것으로 알려져 있다. 그동안은 자성 도메인의 특성을 좀 더 정확하고 깊게 이해하기 위해 다양한 실험을 통해 직접 물성을 측정해왔으며, 이를 위해 많은 시간과 자원을 쏟아야 했다. KIST-경희대학교 공동연구진은 딥러닝 기술을 활용하여 위와 같은 한계를 극복했다. 인공지능에 기계학습 알고리즘을 적용하여 기존 자성 도메인 이미지들을 학습시키고, 새로운 자성 도메인 이미지를 보면 그 물질의 자기적 물성을 추정하도록 했다. 그 결과 자성체의 전자현미경 이미지를 입력하고 실시간으로 해당 자성체의 자기적 물성을 추정할 수 있게 됐다. 뿐만 아니라 실제 관측한 데이터와 인공지능이 추정한 값을 비교했더니 그 오차가 1% 내외로 추정 정확도가 매우 높았다. KIST 권희영 박사는 “인공지능 기술들이 자성 도메인의 특성을 분석하기 위해 어떻게 활용될 수 있는지에 관한 새로운 길을 제시하였다.”라고 말하면서, “이러한 인공지능 기술을 활용해 자성 시스템을 분석하는 새로운 연구 방법은 실험과 이론의 연결을 강화하고, 나아가 인공지능 기술과 순수과학 연구의 융합이라는 새로운 연구 분야의 확장이 이루어질 수 있을 것으로 기대한다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)지원의 KIST 주요사업, 교육부(장관 유은혜)지원의 학문후속세대양성사업 등으로 수행되었다. 연구 결과는 과학분야의 국제 저널인 ‘Science Advances’ (IF: 13.116, JCR 분야 상위 4.93%) 최신 호에 게재되었다, * (논문명) Magnetic Hamiltonian parameter estimation using deep learning techniques - (제 1저자, 교신저자) 한국과학기술연구원 권희영 박사후연구원 - (공저자) 한국과학기술연구원 최준우 선임연구원 - (교신저자) 경희대학교 원창연 교수 <그림설명> [그림 1] 깊은 인공신경망을 통한 자성 물성 추정에 관한 개념도
- 55
- 작성자스핀융합연구단 최준우 박사팀
- 작성일2020.11.17
- 조회수12628
-
54
반도체에 빛으로 지문 만들어 해킹 막는다
- 회전하며 직진하는 빛의 특성을 이용한 근적외선 광트랜지스터 개발 - 고성능·저비용 암호화 소자 개발로 복제·도감청 원천 차단 스마트폰과 가전, 드론, 무인자동차 등이 실시간으로 데이터를 주고받는 사물인터넷(IoT) 기술은 이용자와 자산의 안전에 직결되는 만큼 더욱 강력한 보안 솔루션이 필요하다. 이에 따라 해킹에 노출되기 쉬운 소프트웨어 기반의 키 방식을 보완할 ‘물리적 복제 방지 기능(Physical Unclonable Function, PUF)’이 주목받고 있다. 하드웨어 기반의 PUF 반도체 칩은 인간의 홍채나 지문처럼 고유의 물리적 코드를 갖고 있다. 제조공정에서 생성되는 미세구조의 편차를 키 값으로 갖기 때문에 PUF로 생성되는 보안 키는 랜덤하게 생성되어 고유성을 지니며 복제가 불가능하다. 하지만 더 높은 수준의 안전성을 위해 키가 생성되는 조합의 수를 늘리려면 하드웨어의 구조도 바꿔야 하는 한계가 노출된 바 있다. 이런 가운데, 한국과학기술연구원(KIST, 원장 윤석진) 광전소재연구단 임정아, 주현수 박사팀은 부산대학교 고분자공학과 안석균 교수팀과 공동연구를 통해 하드웨어 구조 변경 없이도 빛의 회전(편광) 특성을 이용해 PUF의 보안성능을 크게 강화할 수 있는 암호화 소자를 개발했다고 밝혔다. 빛이 전파될 때는 전후좌우 다양한 방향으로 진동하면서 나아가게 되는데, 연구진은 원을 그리며 나선형으로 나아가는 빛인 원편광(Circularly polarized light) : 시계방향 또는 반시계 방향으로 회전하면서 진행하는 빛 원편광을 암호화에 활용했다. 원편광을 활용하기 위해, 빛의 회전 방향에 따라 소자에 도달하는 빛의 양이 조절되는 콜레스테릭 액정(Cholesteric liquid crystal) : 액정분자가 나선 축을 따라 꼬이면서 주기적인 층을 이루며 배열한 나선구조의 액정 콜레스테릭 액정 필름을 근적외선을 감지하는 성능이 우수한 유기 광트랜지스터(Phototransistor) : 전류/전압과 함께 빛의 기본 특성(파장, 강도 등)을 감지하여 신호 증폭 스위치 역할을 하는 소자 광트랜지스터에 결합하였다. 이렇게 결합된 광트랜지스터는 액정 나선구조의 방향과 같은 방향으로 회전하는 빛은 반사시키고, 반대 방향의 빛은 투과시켜 시계방향 또는 반시계 방향으로 진행하는 빛의 회전 방향을 구분해서 감지할 수 있다. 그 결과, 소자의 물리적 크기를 바꾸지 않고도 암호화 키 생성에 사용되는 조합의 수를 증가시켜 해킹과 도·감청 등을 원천 차단할 수 있는 PUF 소자를 제작하는 데 성공했다. 개발한 소자는 근적외선을 흡수하는 고분자반도체의 높은 흡광도와 트랜지스터에 의한 신호 증폭, 그리고 콜레스테릭 액정 필름의 적층으로 인해 생긴 광학적 간섭효과로 인해 기존의 나노패터닝 기반 근적외선 원편광 감응 광트랜지스터보다 최소 30배 이상 우수한 고감도를 보였다. 또한, 기존 가시광선 원편광만을 감지할 수 있던 유기 광트랜지스터 소자들과는 달리 연구진이 개발한 광트랜지스터는 광통신, 양자컴퓨팅 등 차세대 광전소자에 사용되는 근적외선 영역의 원편광을 감지할 수 있어 향후 적용 범위가 넓을 것으로 기대된다. KIST 임정아 박사는 “이번 연구는 원편광 감응 반도체 소자를 이용하여 보안성능이 강화된 암호화 소자를 구현했다는 점에서 그 의의를 찾을 수 있다.”라며 “복잡한 나노패터닝 공정없이 간단한 용액공정으로 고감도 근적외선 원편광 감응 소자의 제작이 가능함을 보였고, 근적외선을 활용했기 때문에 향후 다양한 차세대 광전소자 시스템에 활용될 수 있을 것으로 기대한다.”라고 밝혔다. 부산대학교 안석균 교수는 “이번 결과는 콜레스테릭 액정 고분자 고유의 카이랄 성을 암호화 보안기술에 접목시킨 최초의 연구성과로 액정 고분자의 새로운 응용분야를 제시하였다는 점에서도 중요한 의미가 있다”라고 덧붙였다. 본 연구는 과학기술정보통신부(장관 최기영) 지원 아래 KIST 주요사업 및 한국연구재단 전략과제, 개인기초과제 및 소재융합혁신기술개발사업으로 수행되었으며, 소재 분야의 국제학술지 ‘Advanced Functional Materials’ (IF: 16.836, JCR 분야 상위 4.678%) 최신 호에 연구 결과가 게재되었다. * (논문명) High-Performance Circularly Polarized Light-Sensing Near-Infrared Organic Phototransistors for Optoelectronic Cryptographic Primitives - (제 1저자) 한국과학기술연구원 한혜미 박사후연구원 - (제 1저자) 부산대학교 이유진 학부연구생(現 Texas A&M 대학교 박사과정) - (교신저자) 한국과학기술연구원 임정아 책임연구원 - (교신저자) 한국과학기술연구원 주현수 선임연구원 - (교신저자) 부산대학교 안석균 부교수 <그림설명> [그림 1] (a) 본 연구진이 개발한 카이랄 액정 네트워크 필름이 결합된 근적외선 원편광 감응 광트랜지스터 소자의 모습 (b) 본 연구진이 개발한 카이랄 액정 네트워크 필름을 갖는 물리적 복제 방지 기능 (PUF) 어레이의 POM 사진 [그림 2] (a) 본 연구진이 개발한 근적외선 원편광 감응 광트랜지스터의 소자구조, 사용된 물질의 분자구조와 카이랄 액정 네트워크 필름의 모습(오) (b) 본 연구진이 개발한 카이랄 액정 네트워크 필름 형성에 대한 모식도 [그림 3] 근적외선 원편광 감응 광트랜지스터 개발의 주요 전략에 관한 모식도 근적외선 감응 고이동도의 공액고분자 합성 및 근적외선 원편광 반사 콜레스테릭 액정 네트워크 필름 제조(상단), 근적외선 원편광 감응 광트랜지스터 어레이의 광감응 특성 및 원편광 빛을 사용하는 광전자 암호화 소자로의 응용결과를 보여주는 그림(하단)
- 53
- 작성자광전소재연구단 임정아 박사팀
- 작성일2020.10.20
- 조회수12530
-
52
생활 속 주변 진동으로 전기를 생산, 알아서 공진(共振) 맞추는 에너지 하베스터 개발
- 스스로 공진(共振)을 맞추는 자동 튜닝 기술 탑재된‘에너지 하베스팅’기술 - 사물인터넷(IoT)이나 소형 전자기기의 독립 전원으로 응용 기대 국내 연구진이 스스로 튜닝되며 다양한 진동수의 진동 에너지를 흡수하여 발전하는 에너지 하베스터를 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 전자재료연구단 송현철 박사 연구팀이 설치 환경에 따라 에너지 하베스터가 스스로 고유진동수를 조절하여, 공진을 맞추는 자동 공진 튜닝(Automatic resonance tuning) 에너지 하베스터를 개발했다고 밝혔다. 최근 진동이나 열과 같이 우리 주변에서 버려지는 에너지들을 수확하여 이용하는 에너지 하베스팅(Energy harvesting)기술이 주목받고 있다. 이러한 에너지 하베스팅 기술은 배터리나 전원선 연결 없이 주변 에너지로 자가 발전하는 소자를 가능하게 해준다. 특히, 사물인터넷과 같이 무선으로 동작하는 작은 전자기기에서 배터리대신 독립전원으로 유용하게 활용될 수 있다. 자동차나 기차, 산업현장에서 발생하는 진동 또한 에너지 하베스팅 기술로 전기에너지를 생산할 수 있는데, 이러한 에너지 하베스터는 작은 진동으로부터 최대한의 전기에너지를 생산하여 저장하는 것이 큰 숙제였다. 이를 위해서는 고음의 음악소리에 유리잔이 깨지거나, 산들바람에도 큰 다리를 무너지게도 하는 공진(Resonance) 현상을 활용해야 한다. 그러나 에너지 하베스터는 하나의 고유한 진동수를 갖고 있는 반면, 우리가 이용하려는 주변 진동들은 각각 다른 넓은 범위의 진동수를 가지고 분포하고 있다. 이 때문에 에너지 하베스터를 설치할 때마다 설치 환경에 맞춰 고유진동수를 튜닝(Tuning)시켜 공진을 유도해야 하며, 이는 에너지 하베스터를 활용하는 데 큰 걸림돌이 되어 왔다. 이를 해결하기 위해 모터나 마이크로 콘트롤러를 이용하는 자동 튜닝 에너지 하베스터가 개발되었으나, 튜닝용 모터와 콘트롤러를 구동하기 위한 전기에너지 소모가 적지 않아 발전 효율이 크게 저하되는 문제가 있었다. KIST 연구진은 별도의 전기장치 없이도 주변 진동수에 스스로 튜닝될 수 있는 특별한 구조의 에너지 하베스터를 개발했다. 에너지 하베스터 내부에 자율적으로 움직이는 추를 부착하였고, 주변의 진동을 감지하면 추가 스스로 다른 위치로 이동하게 된다. 추의 위치가 변한 에너지 하베스터는 외부의 진동과 같은 진동수를 갖게 되어 다양한 진동과 공진할 수 있게 되었다. 기존의 하나의 고유진동수를 가지는 소자 보다 공진할 수 있는 주파수 대역을 1400% 이상 향상시키는 결과를 얻었다. 본 연구를 주도한 KIST 송현철 박사는 “이번 연구에서는 간단한 구조를 가지며 추가적인 에너지 소모 없이 자가 튜닝(Self-tuning)을 최초로 구현했다는데 큰 의의가 있으며, 에너지 하베스터를 우리 실생활에 적용하는 시기를 크게 앞당겨 줄 것으로 예상된다.”라며 “향후 4차 산업혁명의 핵심기술 중 하나인 사물인터넷을 비롯하여, 무선 센서 네트워크나 웨어러블 전자기기의 자율독립전원으로써 자가 튜닝 에너지 하베스터가 핵심적 역할을 수행할 수 있을 것으로 보인다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 에너지기술평가원 에너지기술개발사업 및 국가과학기술연구회 창의형융합연구사업으로 수행되었다. 본 연구 결과는 에너지 분야 국제 학술지인 ‘Nano Energy’(IF : 16.602, JCR 4.088%)의 최신 호에 게재되었다. * (논문명) Automatic Resonance Tuning Mechanism for Ultra-wide bandwidth Mechanical Energy Harvesting - (제 1저자) 한국과학기술연구원 전자재료연구단 신윤환 학생연구원 - (교신저자) 한국과학기술연구원 전자재료연구단 송현철 박사 <그림설명> [그림1] 에너지 하베스터의 구조 및 자가 튜닝 원리 (위) 자가 튜닝 에너지 하베스터의 특성을 보여주는 그래프 (아래) [그림2] 자가 튜닝 에너지 하베스터의 구동 원리 분석을 위한 초고속 카메라 사진
- 51
- 작성자전자재료연구단 송현철 박사팀
- 작성일2020.09.07
- 조회수13753