연구소소개
-
40
국내 최고 연구진들의 협업연구로 미래형 첨단 양자컴퓨터 구현 및 검증 방법 해결한다
- 개방형 연구사업을 통한 융합연구로 양자물리학의 고정관념 깬 검증방법 개발 - 향후 대규모(Large-scale) 양자컴퓨터 구현 및 검증 적용에 기여할 것으로 기대 전 세계적으로 수퍼컴퓨터의 한계를 뛰어넘는 양자컴퓨터(Quantum Computer)의 구현에 높은 관심이 모아지고 있다. 최근 국내 최고 수준의 연구진들이 협업 연구를 통해 양자물리학 법칙에 의해 작동하는 ‘미래형 첨단 컴퓨터’인 양자컴퓨터의 구현 및 검증 방법을 해결했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 양자정보연구단 조영욱 박사팀은 새로운 융합연구 형태인 개방형 연구사업(ORP, Open Research Program)의 일환으로 「KIST Joint Research Lab」 포항공대 김윤호 교수팀(POSTECH)과 공동연구를 통해 양자컴퓨터의 연산과정을 효율적으로 검증할 수 있는 새로운 방법을 구현하였다고 밝혔다. KIST는 국가적으로 중요한 미래성장 동력 확보를 위한 개방형 융합연구 형태인 ORP 사업을 통해 양자정보 분야의 국내외 최고 수준의 전문가들로 컨소시움을 구성하고 4차 산업혁명을 이끌 차세대 최첨단 컴퓨터인 양자컴퓨팅 연구를 수행하고 있다. 본 연구 결과는 KIST 양자컴퓨팅 개방형 융합연구사업(ORP)을 통해 구성된 국내 연구진만으로 수행된 결과로 큰 의의를 가진다. 이번 연구 결과는 양립할 수 없는 두 관측량을 동시에 측정할 수 없다는 양자물리학의 고정관념을 깨고 두 관측량을 동시에 측정 가능함을 보이고 이를 활용하여 양자연산 과정을 효율적으로 검증할 수 있는 방법을 보인 것이다. 양자역학에서 잘 알려진 불확정성 원리에 따르면 서로 양립할 수 없는 관측량들이 존재한다. 대표적인 예로 어떤 입자의 위치와 운동량 성분의 경우 둘 모두를 동시에 측정할 수 없다는 뜻이다. 이는 ‘양자측정’의 행위가 양자상태를 붕괴시키기 때문인데, 이번 연구에서는 가장 일반화된 양자측정 방법에서 허용되는 약한(weak) 양자측정기법을 통해 양자상태를 완전히 붕괴시키지 않음으로써 양립할 수 없는 관측량들을 동시에 측정하는데 성공하였다. 또한, 이러한 양자측정방법을 이용하여 양자컴퓨터의 연산과정을 효율적으로 검증할 수 있는 새로운 기법이 가능함을 보이고 이를 단일광자 큐비트(qubit)*를 이용하여 실험적으로 규명하였다. **큐비트(qubit) : 양자정보기술에서 기본 정보단위로 현대 정보기술의 디지털 비트(bit)에 해당 KIST 조영욱 박사는 “최근 최첨단 미래기술 중 하나인 양자정보기술은 전 세계적으로 관심이 증대되고 있다.”고 말하면서, “본 연구결과는 양자컴퓨터 개발을 위한 기초과학 성격의 연구 결과로, 양자물리학의 근본원리를 직접 응용하는 양자정보기술 전반에 활용될 것으로 전망하며, 양자컴퓨팅 연구 기반 확보에 큰 도움이 될 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 KIST 개방형 연구사업(ORP, Open Research Program), 한국연구재단 중견연구자 지원사업으로 수행되었으며, 연구결과는 자연과학분야의 국제학술지인 ‘Nature Communications’ (IF:12.124, JCR 상위분야 4.69%) 1월 15일(월)자 온라인에 게재되었다. <그림설명> <그림 1> 양자연산과정을 검증하기 위한 양자회로도 <그림 2> 양자연산과정 검증 예시
- 39
- 작성자양자정보연구단 조영욱 박사팀
- 작성일2018.01.23
- 조회수20694
-
38
전기자동차 급속 충전, 배터리 성능 저하의 원인 찾았다
- 급속 충·방전 중 수반되는 전극 소재 열화 메커니즘 분석 플랫폼 구축 - 전기자동차용 차세대 배터리 소재 설계를 위한 발판 마련 리튬이온전지(LIB, Lithium-ion battery)는 1990년대 소니(SONY)에 의해 최초로 상용화되어 현재 휴대폰, 노트북의 소형 전원에서 에너지저장시스템(ESS, Energy Storage Systems)등의 대용량 전원까지 활용되는 추세다. 특히 최근 들어 전기자동차가 주목받으면서 동력원인 리튬전지의 용량을 키우고 충전시간을 줄이는 것에 높은 관심이 모아졌다. 즉 빠른 충전 속도를 유지하면서도 전지의 성능(에너지밀도) 저하가 없는 고출력, 장수명의 전지를 개발하는 것이 핵심이다. 최근 국내 연구진이 리튬이온전지의 급속 충·방전 시 전극 소재의 변형, 즉 열화로 인한 전극 내부구조에서 일어나는 변화를 다양한 범위에서 한 눈에 확인할 수 있는 전지 소재의 열화 분석 플랫폼을 확립하고, 이를 통해 전지 소재의 열화 메커니즘을 규명하여 주목받고 있다. 한국과학기술연구원(KIST, 원장 이병권) 에너지융합연구단 장원영 박사, 전북분원 탄소융합소재연구센터 김승민 박사 공동연구팀은 최근 전기자동차용 고용량 양극(+) 소재의 후보물질로 각광받고 있는 3원계(Ni, Co, Mn) 양극 물질(NCM, LiNixCoyMnzO2) 소재의 충·방전 과정을 투과전자현미경(transmission electron microscopy)을 이용해 분석했다. 연구진은 충·방전 시 리튬이온의 이동속도 변화에 따른 전극소재의 열화 정도 차이를 각각 표면 및 벌크 구조별로 다중 길이 범위(multi length scale)에서 규명할 수 있는 플랫폼을 구축했다고 밝혔다. 리튬이온전지는 충전 과정에서 리튬 이온이 내부의 전해질을 통해서 양극에서 음극으로 이동하게 된다. 리튬이온전지의 충전 속도를 급속으로 하게 되면, 리튬이온이 전극 및 전해질을 거쳐 전달되는 속도가 충분히 빠르지 못하여 전지의 용량과 수명이 급격히 감소되는 단점이 있다. 즉, 완속 충전량에 비해 훨씬 적은 용량만 충전할 수 있고, 또한 반복되는 급속 충전으로 리튬이온전지의 수명이 크게 감소하게 된다. 이러한 문제점은 전기자동차의 시장 확대에 큰 걸림돌이 되어왔다. 현재까지는 주로 전지의 성능 지표를 높이기 위해 전지 용량과 직결되어 있는 전극 소재의 벌크 구조 분석에 대한 연구가 집중되어 왔다. 하지만 KIST 연구진은 실제로 유기용매 전해액과 맞닿아 있는 전극의 표면에서 전지의 열화나 열 폭주 현상이 시작하는 것에 주목하고, 수년간의 연구를 통해 배터리의 전극 표면을 효과적으로 분석할 수 있는 전자현미경(나노스케일) 기반 전지 소재 열화 분석 플랫폼을 구축했다. 연구진은 다양한 투과전자현미경 분석기법(고 분해능 이미징 기법, 전자에너지 분광 분석법, 전자 회절 분석법 등)을 활용하여 전이 금속 간 함량 차이를 가지는 3원계 양극소재(NCM)에서 급속 충·방전 시 발생하는 열화 메카니즘을 규명하였다. 충전 속도에 따라 전극 물질 표면에서의 내부구조 변형의 정도가 다르게 나타나고, 내부구조 변형의 회복 정도 역시 방전 속도에 따라 다르게 나타나는 것을 확인하였다. 즉, 불완전하게 회복된 전극 물질의 내부 변형이 결국 전지 용량의 감소와 수명 단축을 야기한다는 것이다. KIST 장원영 박사는 “전지의 안전성이 무엇보다도 강조되는 중대형 이차전지 개발에 있어서 이번 연구가 전극 소재의 설계 인자를 찾아가는 고도 분석 연구의 발판이 되길 바란다.”고 말하며, “특히 이번 분석 플랫폼을 통해 전기자동차용 차세대 배터리 소재 설계를 위한 연구에 매진할 계획이다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 한국연구재단 기후변화대응기술개발사업을 통해 수행되었으며, 연구결과는 국제학술지 ‘The Journal of Physical Chemistry Letters’(IF:9.353, JCR 분야 상위 2.78%)에 11월 8일(수) 온라인 게재되었다. <그림자료> <그림 1> NCM 양극재의 니켈 함량이 각각 40% 및 80% 일때의 완속 및 100배 고속 방전 시 전지 용량 감소 변화 및 고속 방전 시 각 소재별 표면 및 벌크 내부 구조 변화 도식도
- 37
- 작성자에너지융합연구단 장원영 박사, 탄소융합소재연구센터 김승민 박사팀
- 작성일2017.11.28
- 조회수28666
-
36
하이브리드 광다이오드 소자로 차세대 나노 반도체 기반 이미지 센서 개발
- 1, 2차원 반도체 혼합 구조의 하이브리드 광다이오드 소자 개발 - 개발한 광다이오드 소자로 차세대 나노반도체 기반 이미지 센서 구현 일반적으로 광다이오드 소자는 우리가 일상생활에 사용하는 디지털 카메라 또는 휴대폰 카메라의 이미지 센서 픽셀을 구성하는 필수 요소 중의 하나이다. 카메라에 사용되는 이미지 센서의 경우 광다이오드 소자에서 가시광의 빛을 감지하여 전기 신호로 변환하고 구동회로 칩을 통해 이러한 신호를 처리하는 방식으로 이루어져있으며, 최종적으로 우리가 촬영하는 사진이나 동영상을 디스플레이를 통해 볼 수 있게 해준다. 최근 국내 연구진이 2개의 차원을 혼합한 하이브리드 광다이오드 소자를 개발하여 차세대 나노 반도체 기반 이미지 센서를 구현했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 광전소재연구단 박민철, 황도경 박사팀은 연세대학교 물리학과 임성일 교수 연구팀과의 공동연구를 통해 2차원 텅스텐 디셀레나이드*(Tungsten diselenide, WSe2) 나노시트 반도체와 1차원 산화아연 (ZnO) 산화물 나노선 반도체의 차원 혼합 이중 접합 구조를 제작하고, 이를 이용하여 자외선에부터 근적외선까지 빛을 감지할 수 있는 광다이오드 소자 개발에 성공하였다. *텅스텐 디셀레나이드 : 텅스텐 디셀레나이드(Tungsten diselenide, WSe2)는 칼코겐화물의 일종이며 다양한 표면에 코팅되어서 저전력 소자, 저렴하고 유연한 디스플레이, 센서, 유연 전자소자에 사용가능한 2차원 적층 결정 구조를 가지고 있는 나노 반도체 소재 저차원 나노 반도체 소재는 차세대 반도체 시대를 준비하는 미래 반도체 소재의 유력한 후보군으로서 이를 적용한 소자 연구에 대한 관심이 급증하고 있다. 특히 2차원 원자막 반도체 소재의 경우 단일층 또는 다층형태의 나노시트를 구성할 수 있어 흥미로운 물리·화학적 특성을 구현해 낼 수 있다. 또한 결함이 없는 표면을 형성하기 때문에 기존 벌크 소재나 박막 소재로는 구현이 어려운 차원 혼합을 통한 이종 접합 구조를 용이하게 구현할 수 있어 다양한 전자 소자 및 광소자로써의 응용이 가능하다. KIST 연구진이 사용한 2차원 소재(텅스텐 디셀레나이드(WSe2))의 경우 광응답 특성이 우수하며 홀 이동도가 우수한 p형 반도체 소재이며, 1차원 산화아연(ZnO) 나노선은 현재 가장 유망한 1차원 나노 반도체 중 하나로 우수한 전자 이동도를 가지고 있어 고성능 전자 소자 응용이 가능한 n형 반도체 소재이다. 연구진은 단결정 벌크에서 박리한 2차원 나노시트와 화학기상증착법으로 합성된 1차원 ZnO 나노선 소재와의 차원 혼합 이종 접합 구조(pn형)를 형성하여 광다이오드 소자를 개발하였다. 연구진은 제작된 하이브리드 광다이오드 소자를 이미지 센서 픽셀로 사용하여, “뽀로로” 관련 내용이 기사에 인용될 경우, 반드시 ㈜아이코닉스의 사전 승인 부분을 언급해 주시기 바랍니다. 국내 인기 어린이 애니메이션의 “뽀로로” 캐릭터 이미지를 ㈜아이코닉스의 사전승인과 협조를 받아 이미지화하는데 성공하였다. KIST 황도경 박사는 “이번 연구를 통해 1, 2차원 저차원 반도체 소재의 하이브리드 소자를 개발하여 자외선에서 근적외선에 이르는 빛을 감지하는 광다이오드 기본 소자를 구현했다.”고 말했으며, 박민철 박사는 “이번 연구는 새로 개발한 소자를 이용, 성공적인 2차원 이미지화를 구현하였으며, 향후 나노 스케일의 반도체 픽셀을 기반으로 하는 차세대 이미지 센서 소자의 상용화에 기여할 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)의 지원으로 KIST 기관고유사업, 중견연구자지원사업, Giga KOREA 사업으로 수행되었으며, 국제학술지 ‘Advanced Functional Materials’(IF : 12.124)에 11월 3일(금)자 온라인 게재되었다. <그림자료> <그림> 1차원 나노선-2차원 나노시트 하이브리드 광다이오드 이미지 센서 소자 (a) 완성된 하이브리드 광다이오드 소자의 모식도 (b) 광다이오드 소자의 청색광 응답 특성 (c) 하이브리드 광다이오드 이미지 센서 구현 모식도 및 실제로 얻어진 애니메이션 캐릭터 ‘뽀로로’ 이미지
- 35
- 작성자광전소재연구단 박민철, 황도경 박사팀
- 작성일2017.11.15
- 조회수20170
-
34
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발
단층의 ‘순정’ 그래핀을 손쉽게 검증하는 분석법 개발 - 라만 스펙트럼의 특정 피크(Peak)로 단층의 순수 그래핀을 쉽게 판별 - 실체 있는 연구 유도로 그래핀의 실용화 앞당길 것으로 기대 ‘꿈의 신소재’로 각광받고 있는 ‘그래핀(Graphene)’은 흑연*의 구성단위이며 탄소원자가 육각형 모양을 이루는 원자두께(0.4 nm(나노미터))를 지닌 2차원 물질이다. 2010년 노벨물리학상을 수상케 한 그래핀은, 강철보다 100배 강하지만 유연하고, 뛰어난 물리적 특성으로 차세대 소재로 주목받고 있다. *흑연 : 층상구조를 갖는 탄소재료로, 2층 이상의 그래핀이 평면적으로 적층된 상태를 말한다. 하지만 그래핀은 두께가 원자 단위로 얇아 분석이 어렵고, 소재의 순수성에 대한 검증을 보인 연구사례가 극소수이어서 순수한 그래핀의 사용여부에 대한 불분명함이 있었다. 이러한 점이 2004년 그래핀의 첫 등장 이후, 많은 연구가 이루어졌음에도 불구하고 아직 뚜렷한 실용화 사례가 없다는 것에 대한 원인 중 하나로 꼽힌다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 광전소재연구단 이재갑 박사팀은 한국기초과학지원연구원(KBSI, 원장 이광식) 김진규 박사팀 및 연세대학교(총장 김용학) 신소재공학과 이우영 교수팀과의 공동연구를 통해 라만(Raman)분광분석**에서 낮은 에너지 영역에서 나오는 미세하지만 재현성이 있는 ‘특정 피크(peak)’로 단층의 순수한 그래핀을 확인할 수 있는 방법을 개발하였다. 이 분석법을 이용하면 그래핀 소재의 파괴없이 저비용으로 불과 수 분내의 빠른 시간에 분석할 수 있다. **라만(Raman)분광분석: 광학을 이용한 재료의 비파괴적 분자구조 및 결정성 분석법으로 수 분 내에 분석이 가능하여 널리 사용되는 방법임. 공동연구팀은 단층의 순수 그래핀 또는 2층 그래핀을 수백 nm2 이상의 면적으로 성장시키고 이를 고해상도투과전자현미경(HRTEM)***으로 관찰했을 때 이들 소재의 끝이 구부러지는 현상을 확인하였다(그림 1a,b). 이 그래핀 끝 구부러짐이 만드는 곡면의 직경이 1~2 nm일 때 라만 스펙트럼의 낮은 에너지 영역에서 특유의 피크가 나타남을 실제 라만분석과 시뮬레이션을 통해 확인함으로써(그림 1d, 2d), 라만스펙트럼 분석만으로 단층 그래핀 검증이 가능함을 보였다. ***고해상도투과전자현미경(HRTEM: High Resolution Transmission Electron Microscopy) : 그래핀을 분석하는 확실한 방법으로 알려진 장치, 통상 나노두께 물체를 투과시키며 관찰하는 장치로 고비용, 장시간이 소요되고 시료를 회수할 수 없는 단점이 있다. 이번 연구진이 개발한 분석법은 널리 사용되는 라만분석만으로 순수한 그래핀을 검증할 수 있어, 우수한 물성이 검증된 그래핀 소재의 대량 제조법 개발 및 실용화에 기여할 것으로 보인다. KIST 이재갑 박사는 “2004년 그래핀의 첫 보고 이후 단층의 순수 그래핀을 보여준 경우는 손에 꼽을 수 있는 극소수이다. 분석의 어려움 때문에 그래핀 연구에 혼란이 있었는데, 이 그래핀 검증법의 개발로 그래핀 소재의 옥석이 가려져 그래핀 연구의 새장이 열릴 것이다”고 밝혔다. 본 연구는 미래창조과학부의 지원으로 KIST 기관고유사업으로 수행되었으며, 연구결과는 물리화학분야 권위지인 ‘The Journal of Physical Chemistry Letters(IF : 8.539)’에 6월 5일자로 게재되었다. 본 연구의 핵심내용은 특허출원 중에 있다. (*발명명: 그래핀포함 자유형 이차원 소재의 검증법, 2016-0105722). <그림설명> <그림 1> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 단층(1) 및 2층(2) 그래핀이 보이는데(b), 가장자리에 각각 단층 또는 2층의 단면 선이 보이는 것으로부터 소재의 끝이 휘어져 일어나 있음을 알 수 있음(a 모식도). 라만스펙트럼에서 118 cm-1에서 나타나는 픽은 나노곡률을 갖는 2층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. e,f는 곡률 및 모양에 따른 그래핀의 라만 픽 위치를 나타낸 시뮬레이션 결과임. <그림 2> 그래핀의 고해상도투과전자현미경사진(a-c) 및 라만 스펙트럼(d). 그래핀은 직류전원플라즈마화학장치로 시드성장되었음. 단층(1) 및 2층(2) 그래핀이 보이고(b), 육각형 원자격자로부터 그래핀임을 확인할 수 있음(c). 라만스펙트럼에서 118 및 175 cm-1에서 나타나는 픽은 각각 나노곡률을 갖는 이층 및 단층 그래핀에서 나타나는 것이고, 165~325 cm-1 및 325~500 cm-1는 각각 나노곡률을 갖는 단층/2층의 그래핀 및 단층 그래핀에서 나타나는 것임. <그림 3> 곡면 그래핀이 라만분석시 ‘원주방향 모드(radial mode: RM)’를 나타내는 원리를 설명한 모식도(a, b) 및 곡면 그래핀이 라만분석시 각각 191과 166 cm-1에서 픽을 나타냄을 보인 시뮬레이션 결과임(d, e). 본 연구에서 제안한 RM 이론은 단일벽탄소나노튜브의 것으로 잘 알려진 RBM 이론을 포함함(c).
- 33
- 작성자광전소재연구단 이재갑 박사팀
- 작성일2017.06.16
- 조회수25995
-
32
스핀 트랜지스터, 이제 상온에서 작동한다
스핀 트랜지스터, 이제 상온에서 작동한다 - 저온에서만 작동하는 스핀 트랜지스터의 한계를 극복한 핵심기술 개발 - 반도체 나노선 이용하여 상온에서 높은 스핀 주입률 달성 최근 국내 연구진이 차세대 반도체 소재로 주목 받고 있는 ‘반도체 나노선’*을 이용하여 상온에서 고효율로 스핀을 주입하고 검출 성능을 획기적으로 높일 수 있는 기술을 개발했다. 연구진은 기존에 저온에서만 작동하던 한계를 극복한 상온에서 구동하는 스핀 트랜지스터 개발 가능성을 한층 높였다고 밝혔다. *나노선 : 수십 나노미터 수준의 매우 얇은 폭을 가진 선형 구조체. 전기전자와 화학, 바이오 공학 등 첨단과학 분야에 다양하게 활용됨. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 장준연 소장, 스핀융합연구단 박태언 박사 연구팀은 질화갈륨(GaN) 반도체 나노선을 이용해 상온에서 10%이상의 높은 스핀 주입률과 주입된 스핀전자가 1 마이크로미터(㎛, 100만분의 1m)이상을 이동해도 스핀정보의 큰 손실 없이 반도체 채널을 이동할 수 있다는 것을 실험적으로 증명하였다. 또한 연구진은 반도체 나노선에 의해 형성된 서로 다른 결정면의 방향을 이용하여 스핀 주입신호를 제어할 수 있는 획기적 방법을 개발하였다. 연구진은 이 요소기술들을 결합하면 ?200 ℃ 이하의 저온에 머물러 있던 스핀 트랜지스터의 동작온도를 상온까지 끌어 올릴 수 있어 실용화 가능성이 한층 높아질 것으로 전망했다. 이러한 연구 결과는 그동안 학계에서 주목해온 스핀 트랜지스터의 상용화를 앞당길 매우 중요한 결과로 평가받고 있다. 기존 실리콘(Si) 반도체가 전자의 전하(-)만을 이용할 수 있었던 데 비해, 스핀 트랜지스터는 전하와 동시에 스핀을 새롭게 이용해 전자소자를 구동하는 신개념 저전력 고성능 기술로, 기존 트랜지스터에 비해 처리속도는 높은 반면 발열량이 낮다. 이 스핀 트랜지스터가 상용화될 경우 기존 반도체의 한계를 극복한 비휘발성의 초고속, 초저전력의 전자소자 개발이 가능해지므로 선진국을 중심으로 많은 연구가 진행되고 있다. 2009년 KIST 연구진에 의해 세계 최초로 스핀 트랜지스터 기술을 선보인 이래, 스핀 트랜지스터의 동작온도를 올리기 위한 많은 연구가 수행되었으나 여전히 저온에서만 작동하는 단점으로 상용화에 큰 걸림돌이 되고 있었다. 상온에서 동작하는 스핀트랜지스터를 개발하기 위해서는 10%이상의 높은 스핀 주입률과 주입된 스핀이 500 나노미터(nm) 이상의 스핀완화거리를 가져야하는데, 이번 연구진의 연구결과는 상온에서 구동이 가능한 스핀 트랜지스터의 한계를 극복하게 되었다는 의미가 있다. KIST 장준연 박사는 “반도체 스핀 트랜지스터를 개발하는데 가장 중요한 요소인 동작온도를 획기적으로 개선할 수 있는 새로운 방법을 제시한 것”이라고 전하며, “본 연구결과를 통해 입증하였듯이 저차원 나노소재를 활용한 새로운 기술은 스핀 트랜지스터의 동작온도 뿐만 아니라 소자성능 및 집적도를 극적으로 높일 것으로 예상되며, 향후 스핀트로닉스 기술 발전에 큰 기여를 할 수 있을 것”이라 밝혔다. 본 연구는 미래창조과학부 나노소재개발사업, KIST 기관고유사업, 국가과학기술연구회 창의융합연구사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션 (Nature Communications)’ 6월 2일자(금)에 온라인 게재되었다. <그림설명> <그림 1> 질화갈륨 반도체 나노선에 제작된 스핀주입소자 (a): 본 연구에 사용한 질화갈륨 나노선 기반 스핀 밸브소자와 측정방법을 나타낸 개략도 (b): 질화갈륨 나노선과 강자성체 전극간의 계면을 나타내는 개략적 단면도
- 31
- 작성자스핀융합연구단 박태언 박사 연구팀
- 작성일2017.06.07
- 조회수20621
-
30
가볍고, 휘어지는 연료전지 나온다
가볍고, 휘어지는 연료전지 나온다 - KIST-서울대 공동연구팀, 초경량에 형상 변형 가능한 연료전지 기술 개발 - 차세대 드론용 에너지원으로 각광, 체공시간 획기적으로 늘릴 핵심 기술 ‘연료전지’는 연료로 수소와 공기를 사용하며, 전기를 발생하고 나오는 부산물로 기존의 내연기관과 다르게 ‘물’ 만을 발생해 친환경 재생에너지로 각광받고 있다. 최근 국내 연구진이 친환경 미래 에너지원으로 주목받는 연료전지에 초경량적 설계와 유연성을 접목한 기술을 개발했다. 현재에도 상용화를 위한 기술개발이 꾸준히 이루어지고 있는 시점에서 또 하나의 기술적 장벽을 뛰어넘은 것으로 평가받고 있다. 한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종 박사팀은 서울대학교 멀티스케일 에너지시스템연구단 최만수 교수(단장), 차석원 교수와의 공동연구를 통해 초경량의 유연한(Flexible) 연료전지 스택*을 개발하고 실제 작동 시연에 성공했다고 밝혔다. *스택(Stack) : 여러 개의 연료전지를 직렬로 배열하여 전압을 높이는 연료전지의 구조. 최근 전자기기 업체들은 점차 기기들에 유연성을 부여하여 형상을 자유롭게 변형 가능하게 하며, 변형에 따른 기기의 성능 감소를 최소화하는 추세이다. 그러나 이러한 유연 전자기기들이 모두 웨어러블 전자기기**나 피부이식형 전자기기와 같은 휴대용 전자기기에 활용되려면 전력공급원 또한 유연성을 지녀야 활용성이 높아진다. 따라서 현재 가장 많이 쓰이는 리튬이온배터리에 유연성을 부여하려는 연구가 있었으나 리튬이온배터리는 열역학적으로 더 이상의 동 부피 대비 에너지 저장량을 늘리기는데 한계가 있어 근본적인 대체 에너지원의 개발이 필요했다. **웨어러블(Wearable) 전자기기: 차세대 미래 전자기기 기술로 착용가능한 의류, 액세서리등을 전자기기로 만든 형태. 의류 내부로 설치될 전자기기 또한 유연해야 하며, 이미 군용 등에 본 기술이 적용되고 있음. 본 연구를 주도한 KIST 유성종 박사는 “현재 체공시간에 많은 한계를 지닌 드론에 본 초경량 유연 연료전지 스택을 적용할 경우, 기존 배터리 무게 기준 체공시간의 세 배 이상 늘어날 것”이라고 말했다. 또한 서울대학교 차석원 교수는 “연료전지는 친환경성 뿐만 아니라 에너지 저장량에서도 여타 에너지 저장기기에 비해 많은 장점을 지닌다”며 “연료전지 분야의 미래를 대한민국이 선도할 수 있는 초석이 될 것”이라 말했다. 서울대학교 최만수 교수는 “다양한 분야의 연구자들이 모여 분야융합을 통해 이뤄낸 값진 결과”라고 밝혔다. 본 연구에는 KIST 박사후연구원 박태현, 강윤식, 서울대학교 장세근 박사과정 학생이 공동 1저자로 참여하였다. 본 연구는 미래창조과학부의 글로벌프론티어사업과 KIST 기관고유사업, 한국연구재단 중견연구자지원사업으로 수행되었으며, 네이처 자매지인 ‘NPG 아시아 머터리얼즈(NPG Asia Materials, IF : 8.772)’에 5월 26일(금) 온라인 판에 게재되었다. <그림설명> <그림 1> 유연성을 활용한 원통형 연료전지 스택 및 이의 실제 작동 사진
- 29
- 작성자연료전지연구센터 유성종 박사팀
- 작성일2017.06.01
- 조회수19771
-
28
열전소자 장착한 고효율 태양전지 나온다
열전소자 장착한 고효율 태양전지 나온다 - 고성능 집광형 태양전지와 열전모듈을 융합한 고효율 융합 전지 개발 - 태양광과 발생하는 열을 동시에 전기로 바꿔 클린 에너지 분야 활용 기대 갈륨아세나이드(GaAs) 기반 집광형 태양전지*는 현재 가장 효율이 높은 태양전지 기술로 알려져 있다. 이 태양전지는 태양광을 전기로 바꿔주는 광변환 효율이 실리콘 태양전지보다 두 배 이상 높으며, 렌즈나 거울 등을 사용하게 되면 광변환 효율은 더욱 높아진다. 그러나, 집광정도가 높아질수록 많은 열이 발생하게 되는데, 이는 태양전지의 효율을 급격하게 저하시키게 된다. 이러한 현상은 집광형 태양전지의 효율 증가를 가로막는 가장 큰 장벽이 되어왔다. *집광형 태양전지(CPV, Concentrator photovotaic) : 3족과 5족 화합물계를 결합한 갈륨아세나이드를 기반으로 기존 위성용을 벗어난 태양광을 모아서 발전하자는 새로운 컨셉을 적용한 태양전지 한국과학기술연구원(KIST, 원장 이병권) 광전소재연구단 최원준 박사는 갈륨 아세나이드 화합물 반도체를 이용한 고효율 집광형 태양전지기술을 연구해 왔으며, KIST 전자재료연구단 백승협 박사는 비스무스 텔루라이드(Bi2Te3)** 열전반도체를 이용하여 버리게 되는 열을 이용한 발전 소자 연구를 수행해 왔다. 본 연구진은 울산과학기술연구원(UNIST)의 이기석 교수와 백정민 교수 연구팀의 이론적인 지원을 받아, 이 두 가 상이한 분야의 융합연구를 통해 기존의 집광형 태양전지 기술이 갖고 있는 한계를 극복한 고효율 융합전지를 개발했다. **비스무스 텔루라이드(Bi2Te3) : 상온에서 가장 높은 열전 변환 계수(효율)를 가지고 있는 열전반도체 소재. 이 소재는 현재 냉매를 사용하지 않는 냉각시스템에 열전소자로 널리 활용 KIST 공동연구팀은 비스무스 텔루라이드 열전반도체가 열을 전기로, 전기를 열로 바꾸는 열전현상(thermoelectricity)이 매우 탁월한 것에 주목했다. 이 열전 반도체는 냉매를 이용하지 않는 전자냉각 시스템이나 자동차 등 버리는 열을 이용한 전기생산 시스템에 응용 가능한 기술이다. 현재 실생활에서는 와인 냉장고, 자동차 시트 쿨러, 순간냉각정수기 등에 이 기술이 사용되고 있고, 폐열을 이용한 발전시스템 개발에 대한 연구가 활발하게 진행 중이다. 본 KIST-UNIST 공동연구진은 기존의 집광형 태양전지가 발생하는 열 때문에 효율이 저하되는 문제를 해결하기 위해서, 열을 전기를 바꿀 수 있는 열전 소자를 집광형 태양전지와 융합하는 기술에 관한 아이디어를 구상하고 이를 융합전지로 구현하였다. 집광형 태양전지에서 고집광시 발생하는 열은 태양전지의 효율을 저하시키는 주요한 원인으로 작용하는데, 이때 발생하는 열을 이용해 열전모듈이 전기 에너지를 추가적으로 생산하므로 융합전지의 효율은 단일 태양전지 효율에 비해 크게 향상될 수 있으며, 기존 집광형 태양전지의 집광한계를 극복할 수 있다. KIST 최원준, 백승협 박사는 “융합연구를 통해 기존의 집광형 태양전지의 고집광시 발생하는 태양전지 효율저하 문제를 극복하는 집광형 광전·열전 융합전지의 가능성을 확인했다.”라고 말하며, “앞으로 고효율 클린 에너지 발전 산업에 크게 기여할 것으로 기대된다.”고 밝혔다. 본 연구는 KIST-UNIST-울산시가 공동으로 지원하는 융합신소재연구센터의 지원으로 수행되었으며, 연구결과는 에너지 분야의 권위지인 ‘Nano energy’(IF : 11.53)에 5월 19일(금) 온라인 게재되었다. <그림설명> <그림 1> 광전·열전 융합 전지의 모식도
- 27
- 작성자광전소재연구단 최원준 박사팀
- 작성일2017.05.30
- 조회수23180
-
26
스커미온 기반의 초고효율 차세대 통신소자 핵심기술 개발
스커미온 기반의 초고효율 차세대 통신소자 핵심기술 개발 - KIST-DGIST 공동연구팀, 이론으로만 제시된 스커미온의 호흡운동 규명 - 향후 스커미온 기반의 초저전력-초고주파 차세대 통신소자 개발 기대 2009년 발견된 소용돌이 모양으로 배열된 스핀들의 구조체인 ‘스커미온 (Skyrmion)’*은 특유의 위상학적 안정성과 작은 크기, 효율적인 움직임 등으로 인해 초고밀도, 고속력 차세대 메모리 소자의 기본 단위로 학계에서 매우 큰 주목을 받고 있다. 최근 국내 연구진이 독특한 스핀 구조체인 스커미온을 사용하여 차세대 초저전력-초고주파 통신 소자에 적용 가능한 기술을 개발했다고 밝혔다. *스커미온(Skyrmion) : 소용돌이 모양으로 스핀들이 배열되어 형성되는 스핀 구조체 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 우성훈 박사팀은 대구경북과학기술원(DGIST, 총장 손상혁) DGIST-LBNL 신물질연구센터 홍정일 센터장(신물질과학전공 교수)팀과의 공동연구를 통해 스커미온 스핀 구조체를 사용하여 기존에 제시된 바 없는 전혀 새로운 형태의 차세대 광대역 통신 소자에 적용 가능한 물리적 현상을 규명했다고 밝혔다. 최근에는 이러한 스커미온이 보이는 독특한 동역학적 움직임인 ‘스커미온 호흡운동(Skyrmion Breathing)’**현상을 사용할 때, 메모리 소자를 넘어 스커미온 기반의 차세대 고주파 발진기 소자의 구현도 가능하다는 이론적인 예측이 있어 왔다. 하지만 스커미온의 매우 작은 크기와 빠른 운동 속도로 인하여, 스커미온 호흡운동을 실제 관측하는 연구는 현재까지 이뤄지지 못했었다. **스커미온 호흡운동 : 외부의 신호에 반응하여, 스커미온의 크기가 커졌다-작아졌다를 반복하며 새로운 고주파 신호를 발생시키는 독특한 자성 동역학적 움직임. 이번 연구 결과는 기존에 이론으로만 제시되었던 ‘스커미온의 호흡운동’을 세계 최초로 구현한 것으로, KIST-DGIST 공동연구팀은 우수한 시공간 분해능(Resolving Power)***을 가지는 X-선 촬영기법을 이용하여, 외부 신호에 반응하는 스커미온의 미세 호흡운동을 1 나노 초(ns, 10억분의 1초) 단위로 관측하는데 성공하였다. 뿐만 아니라, 본 연구 과정을 통하여 외부 전류를 이용한 스커미온의 효율적인 생성 기법 또한 개발하였다. 이러한 연구 결과는 그동안 학계에서 주목해온 메모리 소자로의 적용을 넘어 미래 전자기기 전 분야에 스커미온이 큰 역할을 할 수 있음을 제시하는 매우 중요한 결과라 할 수 있다. **분해능(分解能) : 현미경 등의 광학기기에서 관찰하는 대상의 세부를 상(像)으로 판별하는 능력. 분리능 또는 해상력이라고 한다. 본 연구를 주도한 KIST 우성훈 박사는 “기존에 이론으로만 제시되었던 스커미온 기반의 고효율 차세대 통신소자가 실제 가능하다는 연구 결과이며, 향후 미래 고성능 전자기기들의 효율적인 통신을 위한 차세대 통신소자 개발을 앞당기는데 기여할 것”이라고 말했다. 또한 DGIST 홍정일 센터장은 “본 연구결과가 제시하는 ‘스커미온’을 활용한 새로운 접근법은 전반적인 소자의 작동 메커니즘을 새롭게 제시할 수 있어 기존의 연구 흐름에 시사하는 바가 크다”고 밝혔다. 또한 본 연구 논문에는 KIST 연수생 송경미 박사과정(숙명여자대학교 물리학과) 학생이 공동 1저자로 참여하였다. 본 연구는 미래창조과학부 지원으로 KIST 기관고유사업, 창의형 융합연구사업 및 미래소재디스커버리사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 24일(수) 온라인 판에 게재되었다. <그림설명> <그림 1> 외부 전류 자극에 의해 시간에 따라 변하는 스커미온 호흡운동에 대한 모식도
- 25
- 작성자스핀융합연구단 우성훈 박사팀
- 작성일2017.05.30
- 조회수18258
-
24
전자의 스핀을 이용하여 저전력 논리 소자 개발
전자의 스핀을 이용하여 저전력 논리 소자 개발 - N형, P형 반도체 기능을 모두 수행하는 스핀 트랜지스터 개발 - 반도체 공정을 획기적으로 줄이면서 비메모리 반도체 분야에 응용 가능 국제전기전자기술자협회(IEEE)를 주축으로 이뤄진 국제 디바이스·시스템(IRDS) 로드맵이 발간한 기술 백서에 따르면 현재 반도체 생산에 활용되고 있는 상보성 금속산화막 반도체(Complementary Metal?Oxide Semiconductor, CMOS*) 공정기술은 2024년을 기점으로 더 이상 발전이 없을 것으로 예상됐다. 따라서 포스트 CMOS와 ‘모어 무어(More Moore)’시대를 열기 위한 연구가 대두되고 있는데, 최근 국내 연구진이 전자의 스핀을 이용하여 현재 반도체 집적회로인 CMOS를 대체할 수 있는 방법을 개발했다고 밝혔다. *CMOS(상보성 금속산화막 반도체) : 집적 회로의 한 종류로, 마이크로프로세서나 SRAM 등의 디지털 회로를 구성하는 데에 이용된다. 양(+)의 전하를 이용하는 P형 트랜지스터(p-MOS)와 음(-)의 전하를 이용하는 N형 트랜지스터(n-MOS)를 동일 칩에 넣어 양자가 상보적으로 동작하도록 하여 전력소모를 낮추는 방식 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 구현철 박사팀은 기존 반도체 기술인 CMOS에서 반드시 필요했던 N형, P형 트랜지스터의 별도 제작 없이, 전자의 스핀특성을 이용하여 두 가지 기능을 모두 수행하는 트랜지스터를 구현하였다. 그동안 스핀트랜지스터는 상당한 잠재력을 가지고 있었지만 CMOS 로직 소자로의 동작을 보여주지 못했었다. 연구진은 전자의 스핀이 가지고 있는 평행/반평행 성질을 이용하여 CMOS 로직 소자 동작을 구현하였으며 관련 특허를 국내외에 출원했다. 이번 연구성과는 과학저널인 ‘사이언티픽 리포트(Scientific Reports)’ 紙에 4월 21일(한국시간)자로 온라인 게재되었다. 스핀트랜지스터 기술은 그동안 반도체가 전자의 전하만을 이용할 수 있었던 것에 비해, 전하와 동시에 전자의 스핀을 이용하여 정보를 저장 또는 처리하는 신기술로서, 기존 반도체의 한계를 극복한 비휘발성의 초고속, 초저전력의 전자소자 개발이 가능해진다. 본 연구진에 의해 최초로(2009년 Science紙 게재**) 제안된 이 트랜지스터는, 그러나 실제 회로에 응용하기 위해서 N형, P형 트랜지스터를 모두 구현해야하는 여러 가지 어려움이 있었다. **Control of Spin Precession in a Spin-Injected Field Effect Transistor (Science紙, 2009년 9월 18일) 트랜지스터를 컴퓨터 중앙처리 장치와 같이 실제 로직소자에 응용하기 위해서는 N형(-), P형(+) 트랜지스터를 모두 이용해야하는데 제작과정에 많은 공정과 비용이 필요하다. 특히 스핀트랜지스터는 제작에도 많은 노하우가 필요할 뿐 아니라 N형, P형을 별도로 제작하는 연구는 전무했다. 이번 연구결과는 트랜지스터의 입력부와 출력부를 서로 같은 자화 방향으로 만들거나 서로 반대의 자화 방향으로 만들어 각각 N형과 P형의 기능을 모두 구현함으로써 특별한 도핑과정 없이 두 가지 역할을 모두 수행하는 트랜지스터를 개발한 것이다. 이러한 기술은 향후 상용화가 된다면 세계 수준인 반도체 메모리 기술에 비해 취약한 국내 시스템 반도체(비메모리) 분야에 다양하게 이용될 수 있으며 이 기술이 가진 초고속, 초절전 특성으로 인해 다양한 전자기기, 특히 모바일 기기에 응용될 것으로 기대된다. KIST 구현철 박사는 “현재 스핀트랜지스터 기술은 시작하는 단계에 있지만 이를 이용한 로직소자가 개발되면 전력손실이 거의 없고 초고속으로 작동할 것이다.”라며, “향후 정보처리 소자는 물론 메모리와 로직을 융합한 모바일용 소자에도 응용이 가능할 것이다” 라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유사업과 연구재단 중견연구사업으로 수행되었다. <그림 설명> <그림 1> CMOS 동작을 위한 평행형 (N형기능), 반평행형(P형기능) 스핀 트랜지스터 <그림 2> 스핀 트랜지스터를 이용한 CMOS 소자 (좌) 및 신호 (우). P-형 트랜지스터(우 상단)와 N-형 트랜지스터(우 하단)의 기능을 전자의 스핀을 이용하여 보여주고 있다.
- 23
- 작성자스핀융합연구단 구현철 박사팀
- 작성일2017.04.28
- 조회수18551
-
22
‘빛’으로 작동하는 초고속 스핀 메모리 원리 규명했다
‘빛’으로 작동하는 초고속 스핀 메모리 원리 규명했다 - 빛의 각운동량으로 인한 자성체의 자화방향을 초고속으로 조절하는 원리 - 기존보다 수천 배 빠른 초고속 스핀 메모리 소자에 응용 기대 스핀 메모리(MRAM)는 메모리 반도체의 패러다임을 바꿀 차세대 반도체로 각광받고 있다. 최근 국내 연구진이 기존의 스핀 메모리 동작 방법인 자기장이나 전류를 공급하여 자화방향을 바꾸는 방법이 아닌, ‘빛’만으로 자화방향을 바꿀 수 있는 기존보다 수천 배 빠른 초고속 스핀 메모리의 동작 원리를 규명했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 최경민 박사는 미국 일리노이 주립대학 안드레 슐리프(Andre Schleife) 교수, 데이비드 케이힐(David Cahill) 교수 연구팀과 3년간의 공동연구를 통해, 편광(偏光, polarization)* 된 빛의 각운동량** 방향에 따라 금속 자성체의 자화(磁化, magnetization) 방향이 움직이는 현상을 발견하고, 물리적 원리를 밝혔다. 또한 연구진은 빛을 통해 자성체의 자화 방향을 피코초(ps, 1조분의 1초)수준의 초고속으로 조절 가능한 것을 실험을 통해 규명했다. *편광 : 편광판을 통과하여 특정한 방향으로만 진동하는 빛 **각운동량 : 회전 운동하는 물체의 운동량 빛의 각운동량과 자성체 자화 사이의 상호 작용은 1845년 영국의 과학자 패러데이(Michael Faraday)가 발견한 현상으로, 빛이 자성체를 통과하면 각운동량이 변하는 것을 발견했고, 이 현상을 ‘패러데이 효과’라고 명명했다. 페러데이 효과는 자화의 방향을 빛으로 알 수 있는 방법을 제시하여 자기광학의 기초이자 현대 전자파 기술의 막을 열었다고 할 수 있다. KIST 최경민 박사는 자화의 방향을 빛으로 읽는 페러데이 효과의 반대개념인 ‘역(逆)패러데이 효과’로 빛의 각운동량의 방향에 따라 금속 자성체의 자화 방향이 반대로 움직이는 것을 최초로 밝혔다. 이러한 빛과 자성체 사이의 상호작용은 스핀 메모리의 새로운 동작원리를 제시한다. 기존 스핀 메모리의 작동을 위한 자화 방향 조절에는 자기장 또는 전류의 공급이 필요했으며, 속도는 나노 초(ns, 10억분의 1초) 수준이었다. 이에 비해 연구진이 규명한 스핀 메모리의 동작원리는 빛을 사용하기 때문에 훨씬 빠른 피코 초(ps, 1조분의 1초) 수준의 속도로 조절 가능하여 초고속 메모리 구동에 대한 응용 연구가 가능할 것으로 기대된다. KIST 최경민 박사는 “자기장이나 전류가 아닌 새로운 방법에 의한 스핀 메모리 동작에 관한 연구가 필요한 시점이다”라고 말하며, “본 연구결과가 제시하는 빛과 자성체의 상호작용은 초고속 스핀메모리에 응용될 수 있다”고 밝혔다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유사업과 국가과학기술연구회(NST) 창의형 융합연구사업으로 수행되었으며, 연구결과는 과학분야 세계적인 권위의 저널인 ‘네이처 커뮤니케이션즈(Nature Communications)’에 4월 18일(화)자 온라인 게재되었다. * (논문명) Optical-helicity-driven magnetization dynamics in metallic ferromagnets - (제1저자) 한국과학기술연구원 최경민 선임연구원 - (교신저자) 한국과학기술연구원 최경민 선임연구원 <그림설명> <그림 1> 빛의 편광에 의한 자성체 자화 방향의 조절에 대한 도식(Schematic) 편광된 빛이 자성체에 입사되면, 역페러데이 효과(Bopt)로 인하여 자성체의 자화(M)에 회전력(torque)을 발생시킨다. <사진 1> KIST 최경민 박사가 빛의 각운동량으로 자성체의 자화방향을 초고속 (피코초, ps)으로 조절하는 원리를 실험하고 있다.
- 21
- 작성자스핀융합연구단 최경민 박사팀
- 작성일2017.04.19
- 조회수19190