검색결과
게시물 키워드""에 대한 9487개의 검색결과를 찾았습니다.
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발 - 뇌의 산성도 및 활동을 시각적으로 측정할 수 있는 형광전압센서 개발 - 억제성 신경세포의 상호작용 원리를 규명 인체의 면역계가 정상적으로 작용하기 위해서는 적정수준의 pH(산성도)가 유지되어야 하며, 특히, 뇌 속 산성도의 변화는 암이나 신경질환 등의 질병과 연관성이 높다고 알려져 있다. 외국인 유치과학자가 주축이 된 국내 연구진이 뇌 속 신경세포의 전기적 활동은 물론 pH(산성도) 조절 및 관찰이 가능한 형광전압센서 단백질의 개발에 성공하였다. 해당 단백질을 통해 세계 최초로 신경세포내의 pH농도 조절 및 상호작용을 시각적으로 관찰할 수 있게 되었다. 한국과학기술연구원(KIST) 뇌과학연구소 기능커넥토믹스연구단 브래들리 베이커(Bradley J. Baker) 박사 연구팀은 빛을 통해 뇌 활동을 측정하여 실시간으로 산성도(pH)도 조절이 가능한 바이오 센서를 개발하였다. 이번 연구는 권위 있는 해외 학술지인 ‘Scientific Reports’ 4월 4일자 온라인판에 게재되었다. 2011년 미래창조과학부(장관 최양희)의 세계적 수준의 연구센터(WCI, World Class Institute)사업의 유치 과학자로 초빙되어 현재 KIST 정규직 연구원으로 재직 중인 브래들리 베이커 박사는 위와 같은 센서의 이름을 우리말 ‘파도, Pado’로 정하였는데, 센서를 통해 측정된 산성도와 전압 활동 신호가 파도치는 형상에서 모티브를 얻었다. 브래들리 베이커 박사는 2015년 뇌 속 신경활동의 시각적 관찰이 가능한 제 1호 탐침 ‘봉우리, Bongwoori’(*용어설명)에 이어, 두 번째로 ‘파도, Pado’개발에 성공한 것으로 과학기술연합대학원대학교(UST) 학생과의 독자적인 연구를 통해 이루어진 성과이기에 그 의미가 더욱 깊다. 브래들리 베이커 박사 연구팀은 수소이온통로 단백질과 뇌에서 발현 가능한 형광물질을 이용하여 형광단백질 센서 ‘파도’를 개발하였고, 이를 배양이 용이하여 일반적으로 생물학 실험에 사용되는 HEK 293세포(인간배아신장유래세포)에 발현시켜 pH에 변화에 따라 연결된 다른 세포가 연동됨을 증명하였다. 이 연구결과는 HEK 293세포와 유사하게 전기적으로 연결되어 있는 억제성 뉴런은 물론이고 심장, 신장 등의 연구에도 적용이 가능하며, 추후 ‘파도, Pado’를 이용한 산성도 변화관찰은 물론 산성도 조절을 통해 뇌 세포간의 상호작용 및 다양한 연구 진행이 가능할 것으로 보인다. 또한, ‘파도’는 기존의 ‘봉우리’에서 관찰이 가능하였던 전압과 빛의 세기와의 연관성을 실험적으로 증명할 수 있었는데, 이러한 원리규명을 통하여 그 기능이 향상된 3호 탐침이 개발 중이다. 베이커 박사는 “본 연구로, 신경세포부터 면역세포에 이르기까지 건강상태와 질병상태에서 pH의 역할을 파악할 수 있었고, 향후 파킨슨병과 같이 억제성 뉴런의 이상으로 발생되는 뇌질환의 근본적인 원인을 규명하는데 일조할 것으로 예상된다.”고 밝혔다. * (논문명) Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions - (제1저자) Bok Eum Kang - (교신저자) Bradley J. Baker <그림자료> <그림 1> 형광단백질센서 ‘파도, Pado’의 구조 S1-S4는 전압을 감지하며, 수소이온농도를 조절하는 수소이온통로의 역할을 가지며, SE A227D는 수소이온통로의 변화 혹은 S1-S4에서 감지되는 전압변화에 따라 형광세기를 변화시키는 역할을 한다. <그림 2> 왼쪽사진은 파도를 발현하는 HEK293 세포사진이고, 빨간선은 전기적 활동과 pH농도변화에 따른 형광세기 변화를 파란선은 수소이온이 세포막을 통과하면서 발생하는 전류의 변화를 나타냄. 수소이온이 통과하면서 발생하는 전류 1nA(전류의 단위; 암페어(ampere)의 10억분의 1)당 형광신호 변화량이 약 15% 변화하는 것을 관찰할 수 있음. <그림 3> ‘파도’로 관찰한 전압과 pH이미지 전압은 파란색, pH는 빨간색을 보여줌. 세포는 전압의 변화를 보여주며 파란색으로 시작한다. 3670번 사진에서 세포의 왼쪽 아래 코너에서 pH변화가 보이기 시작하고, 4090사진에서 위쪽 오른쪽 세포의 코너에서 pH가 변화하는 것을 관찰할 수 있다. 4450사진에서는 pH의 움직임이 세포 전역에서 파도처럼 퍼져있다. 각 사진번호는 밀리세컨드(1000분의 1초)를 나타내며, 이 과정은 대략 1초가 소요된다. <그림 4> ‘파도’를 억제성 뉴런에 적용한 예상도 초록색으로 표기된 파도가 발현함에 따라 한 억제성 뉴런(Inhibitory Neuron)에서의 변화가 다른 억제성 뉴런(Inhibitory Neuron)로 이동하는 것을 볼 수 있다.
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발 - 뇌의 산성도 및 활동을 시각적으로 측정할 수 있는 형광전압센서 개발 - 억제성 신경세포의 상호작용 원리를 규명 인체의 면역계가 정상적으로 작용하기 위해서는 적정수준의 pH(산성도)가 유지되어야 하며, 특히, 뇌 속 산성도의 변화는 암이나 신경질환 등의 질병과 연관성이 높다고 알려져 있다. 외국인 유치과학자가 주축이 된 국내 연구진이 뇌 속 신경세포의 전기적 활동은 물론 pH(산성도) 조절 및 관찰이 가능한 형광전압센서 단백질의 개발에 성공하였다. 해당 단백질을 통해 세계 최초로 신경세포내의 pH농도 조절 및 상호작용을 시각적으로 관찰할 수 있게 되었다. 한국과학기술연구원(KIST) 뇌과학연구소 기능커넥토믹스연구단 브래들리 베이커(Bradley J. Baker) 박사 연구팀은 빛을 통해 뇌 활동을 측정하여 실시간으로 산성도(pH)도 조절이 가능한 바이오 센서를 개발하였다. 이번 연구는 권위 있는 해외 학술지인 ‘Scientific Reports’ 4월 4일자 온라인판에 게재되었다. 2011년 미래창조과학부(장관 최양희)의 세계적 수준의 연구센터(WCI, World Class Institute)사업의 유치 과학자로 초빙되어 현재 KIST 정규직 연구원으로 재직 중인 브래들리 베이커 박사는 위와 같은 센서의 이름을 우리말 ‘파도, Pado’로 정하였는데, 센서를 통해 측정된 산성도와 전압 활동 신호가 파도치는 형상에서 모티브를 얻었다. 브래들리 베이커 박사는 2015년 뇌 속 신경활동의 시각적 관찰이 가능한 제 1호 탐침 ‘봉우리, Bongwoori’(*용어설명)에 이어, 두 번째로 ‘파도, Pado’개발에 성공한 것으로 과학기술연합대학원대학교(UST) 학생과의 독자적인 연구를 통해 이루어진 성과이기에 그 의미가 더욱 깊다. 브래들리 베이커 박사 연구팀은 수소이온통로 단백질과 뇌에서 발현 가능한 형광물질을 이용하여 형광단백질 센서 ‘파도’를 개발하였고, 이를 배양이 용이하여 일반적으로 생물학 실험에 사용되는 HEK 293세포(인간배아신장유래세포)에 발현시켜 pH에 변화에 따라 연결된 다른 세포가 연동됨을 증명하였다. 이 연구결과는 HEK 293세포와 유사하게 전기적으로 연결되어 있는 억제성 뉴런은 물론이고 심장, 신장 등의 연구에도 적용이 가능하며, 추후 ‘파도, Pado’를 이용한 산성도 변화관찰은 물론 산성도 조절을 통해 뇌 세포간의 상호작용 및 다양한 연구 진행이 가능할 것으로 보인다. 또한, ‘파도’는 기존의 ‘봉우리’에서 관찰이 가능하였던 전압과 빛의 세기와의 연관성을 실험적으로 증명할 수 있었는데, 이러한 원리규명을 통하여 그 기능이 향상된 3호 탐침이 개발 중이다. 베이커 박사는 “본 연구로, 신경세포부터 면역세포에 이르기까지 건강상태와 질병상태에서 pH의 역할을 파악할 수 있었고, 향후 파킨슨병과 같이 억제성 뉴런의 이상으로 발생되는 뇌질환의 근본적인 원인을 규명하는데 일조할 것으로 예상된다.”고 밝혔다. * (논문명) Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions - (제1저자) Bok Eum Kang - (교신저자) Bradley J. Baker <그림자료> <그림 1> 형광단백질센서 ‘파도, Pado’의 구조 S1-S4는 전압을 감지하며, 수소이온농도를 조절하는 수소이온통로의 역할을 가지며, SE A227D는 수소이온통로의 변화 혹은 S1-S4에서 감지되는 전압변화에 따라 형광세기를 변화시키는 역할을 한다. <그림 2> 왼쪽사진은 파도를 발현하는 HEK293 세포사진이고, 빨간선은 전기적 활동과 pH농도변화에 따른 형광세기 변화를 파란선은 수소이온이 세포막을 통과하면서 발생하는 전류의 변화를 나타냄. 수소이온이 통과하면서 발생하는 전류 1nA(전류의 단위; 암페어(ampere)의 10억분의 1)당 형광신호 변화량이 약 15% 변화하는 것을 관찰할 수 있음. <그림 3> ‘파도’로 관찰한 전압과 pH이미지 전압은 파란색, pH는 빨간색을 보여줌. 세포는 전압의 변화를 보여주며 파란색으로 시작한다. 3670번 사진에서 세포의 왼쪽 아래 코너에서 pH변화가 보이기 시작하고, 4090사진에서 위쪽 오른쪽 세포의 코너에서 pH가 변화하는 것을 관찰할 수 있다. 4450사진에서는 pH의 움직임이 세포 전역에서 파도처럼 퍼져있다. 각 사진번호는 밀리세컨드(1000분의 1초)를 나타내며, 이 과정은 대략 1초가 소요된다. <그림 4> ‘파도’를 억제성 뉴런에 적용한 예상도 초록색으로 표기된 파도가 발현함에 따라 한 억제성 뉴런(Inhibitory Neuron)에서의 변화가 다른 억제성 뉴런(Inhibitory Neuron)로 이동하는 것을 볼 수 있다.
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발 - 뇌의 산성도 및 활동을 시각적으로 측정할 수 있는 형광전압센서 개발 - 억제성 신경세포의 상호작용 원리를 규명 인체의 면역계가 정상적으로 작용하기 위해서는 적정수준의 pH(산성도)가 유지되어야 하며, 특히, 뇌 속 산성도의 변화는 암이나 신경질환 등의 질병과 연관성이 높다고 알려져 있다. 외국인 유치과학자가 주축이 된 국내 연구진이 뇌 속 신경세포의 전기적 활동은 물론 pH(산성도) 조절 및 관찰이 가능한 형광전압센서 단백질의 개발에 성공하였다. 해당 단백질을 통해 세계 최초로 신경세포내의 pH농도 조절 및 상호작용을 시각적으로 관찰할 수 있게 되었다. 한국과학기술연구원(KIST) 뇌과학연구소 기능커넥토믹스연구단 브래들리 베이커(Bradley J. Baker) 박사 연구팀은 빛을 통해 뇌 활동을 측정하여 실시간으로 산성도(pH)도 조절이 가능한 바이오 센서를 개발하였다. 이번 연구는 권위 있는 해외 학술지인 ‘Scientific Reports’ 4월 4일자 온라인판에 게재되었다. 2011년 미래창조과학부(장관 최양희)의 세계적 수준의 연구센터(WCI, World Class Institute)사업의 유치 과학자로 초빙되어 현재 KIST 정규직 연구원으로 재직 중인 브래들리 베이커 박사는 위와 같은 센서의 이름을 우리말 ‘파도, Pado’로 정하였는데, 센서를 통해 측정된 산성도와 전압 활동 신호가 파도치는 형상에서 모티브를 얻었다. 브래들리 베이커 박사는 2015년 뇌 속 신경활동의 시각적 관찰이 가능한 제 1호 탐침 ‘봉우리, Bongwoori’(*용어설명)에 이어, 두 번째로 ‘파도, Pado’개발에 성공한 것으로 과학기술연합대학원대학교(UST) 학생과의 독자적인 연구를 통해 이루어진 성과이기에 그 의미가 더욱 깊다. 브래들리 베이커 박사 연구팀은 수소이온통로 단백질과 뇌에서 발현 가능한 형광물질을 이용하여 형광단백질 센서 ‘파도’를 개발하였고, 이를 배양이 용이하여 일반적으로 생물학 실험에 사용되는 HEK 293세포(인간배아신장유래세포)에 발현시켜 pH에 변화에 따라 연결된 다른 세포가 연동됨을 증명하였다. 이 연구결과는 HEK 293세포와 유사하게 전기적으로 연결되어 있는 억제성 뉴런은 물론이고 심장, 신장 등의 연구에도 적용이 가능하며, 추후 ‘파도, Pado’를 이용한 산성도 변화관찰은 물론 산성도 조절을 통해 뇌 세포간의 상호작용 및 다양한 연구 진행이 가능할 것으로 보인다. 또한, ‘파도’는 기존의 ‘봉우리’에서 관찰이 가능하였던 전압과 빛의 세기와의 연관성을 실험적으로 증명할 수 있었는데, 이러한 원리규명을 통하여 그 기능이 향상된 3호 탐침이 개발 중이다. 베이커 박사는 “본 연구로, 신경세포부터 면역세포에 이르기까지 건강상태와 질병상태에서 pH의 역할을 파악할 수 있었고, 향후 파킨슨병과 같이 억제성 뉴런의 이상으로 발생되는 뇌질환의 근본적인 원인을 규명하는데 일조할 것으로 예상된다.”고 밝혔다. * (논문명) Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions - (제1저자) Bok Eum Kang - (교신저자) Bradley J. Baker <그림자료> <그림 1> 형광단백질센서 ‘파도, Pado’의 구조 S1-S4는 전압을 감지하며, 수소이온농도를 조절하는 수소이온통로의 역할을 가지며, SE A227D는 수소이온통로의 변화 혹은 S1-S4에서 감지되는 전압변화에 따라 형광세기를 변화시키는 역할을 한다. <그림 2> 왼쪽사진은 파도를 발현하는 HEK293 세포사진이고, 빨간선은 전기적 활동과 pH농도변화에 따른 형광세기 변화를 파란선은 수소이온이 세포막을 통과하면서 발생하는 전류의 변화를 나타냄. 수소이온이 통과하면서 발생하는 전류 1nA(전류의 단위; 암페어(ampere)의 10억분의 1)당 형광신호 변화량이 약 15% 변화하는 것을 관찰할 수 있음. <그림 3> ‘파도’로 관찰한 전압과 pH이미지 전압은 파란색, pH는 빨간색을 보여줌. 세포는 전압의 변화를 보여주며 파란색으로 시작한다. 3670번 사진에서 세포의 왼쪽 아래 코너에서 pH변화가 보이기 시작하고, 4090사진에서 위쪽 오른쪽 세포의 코너에서 pH가 변화하는 것을 관찰할 수 있다. 4450사진에서는 pH의 움직임이 세포 전역에서 파도처럼 퍼져있다. 각 사진번호는 밀리세컨드(1000분의 1초)를 나타내며, 이 과정은 대략 1초가 소요된다. <그림 4> ‘파도’를 억제성 뉴런에 적용한 예상도 초록색으로 표기된 파도가 발현함에 따라 한 억제성 뉴런(Inhibitory Neuron)에서의 변화가 다른 억제성 뉴런(Inhibitory Neuron)로 이동하는 것을 볼 수 있다.
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발 - 뇌의 산성도 및 활동을 시각적으로 측정할 수 있는 형광전압센서 개발 - 억제성 신경세포의 상호작용 원리를 규명 인체의 면역계가 정상적으로 작용하기 위해서는 적정수준의 pH(산성도)가 유지되어야 하며, 특히, 뇌 속 산성도의 변화는 암이나 신경질환 등의 질병과 연관성이 높다고 알려져 있다. 외국인 유치과학자가 주축이 된 국내 연구진이 뇌 속 신경세포의 전기적 활동은 물론 pH(산성도) 조절 및 관찰이 가능한 형광전압센서 단백질의 개발에 성공하였다. 해당 단백질을 통해 세계 최초로 신경세포내의 pH농도 조절 및 상호작용을 시각적으로 관찰할 수 있게 되었다. 한국과학기술연구원(KIST) 뇌과학연구소 기능커넥토믹스연구단 브래들리 베이커(Bradley J. Baker) 박사 연구팀은 빛을 통해 뇌 활동을 측정하여 실시간으로 산성도(pH)도 조절이 가능한 바이오 센서를 개발하였다. 이번 연구는 권위 있는 해외 학술지인 ‘Scientific Reports’ 4월 4일자 온라인판에 게재되었다. 2011년 미래창조과학부(장관 최양희)의 세계적 수준의 연구센터(WCI, World Class Institute)사업의 유치 과학자로 초빙되어 현재 KIST 정규직 연구원으로 재직 중인 브래들리 베이커 박사는 위와 같은 센서의 이름을 우리말 ‘파도, Pado’로 정하였는데, 센서를 통해 측정된 산성도와 전압 활동 신호가 파도치는 형상에서 모티브를 얻었다. 브래들리 베이커 박사는 2015년 뇌 속 신경활동의 시각적 관찰이 가능한 제 1호 탐침 ‘봉우리, Bongwoori’(*용어설명)에 이어, 두 번째로 ‘파도, Pado’개발에 성공한 것으로 과학기술연합대학원대학교(UST) 학생과의 독자적인 연구를 통해 이루어진 성과이기에 그 의미가 더욱 깊다. 브래들리 베이커 박사 연구팀은 수소이온통로 단백질과 뇌에서 발현 가능한 형광물질을 이용하여 형광단백질 센서 ‘파도’를 개발하였고, 이를 배양이 용이하여 일반적으로 생물학 실험에 사용되는 HEK 293세포(인간배아신장유래세포)에 발현시켜 pH에 변화에 따라 연결된 다른 세포가 연동됨을 증명하였다. 이 연구결과는 HEK 293세포와 유사하게 전기적으로 연결되어 있는 억제성 뉴런은 물론이고 심장, 신장 등의 연구에도 적용이 가능하며, 추후 ‘파도, Pado’를 이용한 산성도 변화관찰은 물론 산성도 조절을 통해 뇌 세포간의 상호작용 및 다양한 연구 진행이 가능할 것으로 보인다. 또한, ‘파도’는 기존의 ‘봉우리’에서 관찰이 가능하였던 전압과 빛의 세기와의 연관성을 실험적으로 증명할 수 있었는데, 이러한 원리규명을 통하여 그 기능이 향상된 3호 탐침이 개발 중이다. 베이커 박사는 “본 연구로, 신경세포부터 면역세포에 이르기까지 건강상태와 질병상태에서 pH의 역할을 파악할 수 있었고, 향후 파킨슨병과 같이 억제성 뉴런의 이상으로 발생되는 뇌질환의 근본적인 원인을 규명하는데 일조할 것으로 예상된다.”고 밝혔다. * (논문명) Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions - (제1저자) Bok Eum Kang - (교신저자) Bradley J. Baker <그림자료> <그림 1> 형광단백질센서 ‘파도, Pado’의 구조 S1-S4는 전압을 감지하며, 수소이온농도를 조절하는 수소이온통로의 역할을 가지며, SE A227D는 수소이온통로의 변화 혹은 S1-S4에서 감지되는 전압변화에 따라 형광세기를 변화시키는 역할을 한다. <그림 2> 왼쪽사진은 파도를 발현하는 HEK293 세포사진이고, 빨간선은 전기적 활동과 pH농도변화에 따른 형광세기 변화를 파란선은 수소이온이 세포막을 통과하면서 발생하는 전류의 변화를 나타냄. 수소이온이 통과하면서 발생하는 전류 1nA(전류의 단위; 암페어(ampere)의 10억분의 1)당 형광신호 변화량이 약 15% 변화하는 것을 관찰할 수 있음. <그림 3> ‘파도’로 관찰한 전압과 pH이미지 전압은 파란색, pH는 빨간색을 보여줌. 세포는 전압의 변화를 보여주며 파란색으로 시작한다. 3670번 사진에서 세포의 왼쪽 아래 코너에서 pH변화가 보이기 시작하고, 4090사진에서 위쪽 오른쪽 세포의 코너에서 pH가 변화하는 것을 관찰할 수 있다. 4450사진에서는 pH의 움직임이 세포 전역에서 파도처럼 퍼져있다. 각 사진번호는 밀리세컨드(1000분의 1초)를 나타내며, 이 과정은 대략 1초가 소요된다. <그림 4> ‘파도’를 억제성 뉴런에 적용한 예상도 초록색으로 표기된 파도가 발현함에 따라 한 억제성 뉴런(Inhibitory Neuron)에서의 변화가 다른 억제성 뉴런(Inhibitory Neuron)로 이동하는 것을 볼 수 있다.
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발 - 뇌의 산성도 및 활동을 시각적으로 측정할 수 있는 형광전압센서 개발 - 억제성 신경세포의 상호작용 원리를 규명 인체의 면역계가 정상적으로 작용하기 위해서는 적정수준의 pH(산성도)가 유지되어야 하며, 특히, 뇌 속 산성도의 변화는 암이나 신경질환 등의 질병과 연관성이 높다고 알려져 있다. 외국인 유치과학자가 주축이 된 국내 연구진이 뇌 속 신경세포의 전기적 활동은 물론 pH(산성도) 조절 및 관찰이 가능한 형광전압센서 단백질의 개발에 성공하였다. 해당 단백질을 통해 세계 최초로 신경세포내의 pH농도 조절 및 상호작용을 시각적으로 관찰할 수 있게 되었다. 한국과학기술연구원(KIST) 뇌과학연구소 기능커넥토믹스연구단 브래들리 베이커(Bradley J. Baker) 박사 연구팀은 빛을 통해 뇌 활동을 측정하여 실시간으로 산성도(pH)도 조절이 가능한 바이오 센서를 개발하였다. 이번 연구는 권위 있는 해외 학술지인 ‘Scientific Reports’ 4월 4일자 온라인판에 게재되었다. 2011년 미래창조과학부(장관 최양희)의 세계적 수준의 연구센터(WCI, World Class Institute)사업의 유치 과학자로 초빙되어 현재 KIST 정규직 연구원으로 재직 중인 브래들리 베이커 박사는 위와 같은 센서의 이름을 우리말 ‘파도, Pado’로 정하였는데, 센서를 통해 측정된 산성도와 전압 활동 신호가 파도치는 형상에서 모티브를 얻었다. 브래들리 베이커 박사는 2015년 뇌 속 신경활동의 시각적 관찰이 가능한 제 1호 탐침 ‘봉우리, Bongwoori’(*용어설명)에 이어, 두 번째로 ‘파도, Pado’개발에 성공한 것으로 과학기술연합대학원대학교(UST) 학생과의 독자적인 연구를 통해 이루어진 성과이기에 그 의미가 더욱 깊다. 브래들리 베이커 박사 연구팀은 수소이온통로 단백질과 뇌에서 발현 가능한 형광물질을 이용하여 형광단백질 센서 ‘파도’를 개발하였고, 이를 배양이 용이하여 일반적으로 생물학 실험에 사용되는 HEK 293세포(인간배아신장유래세포)에 발현시켜 pH에 변화에 따라 연결된 다른 세포가 연동됨을 증명하였다. 이 연구결과는 HEK 293세포와 유사하게 전기적으로 연결되어 있는 억제성 뉴런은 물론이고 심장, 신장 등의 연구에도 적용이 가능하며, 추후 ‘파도, Pado’를 이용한 산성도 변화관찰은 물론 산성도 조절을 통해 뇌 세포간의 상호작용 및 다양한 연구 진행이 가능할 것으로 보인다. 또한, ‘파도’는 기존의 ‘봉우리’에서 관찰이 가능하였던 전압과 빛의 세기와의 연관성을 실험적으로 증명할 수 있었는데, 이러한 원리규명을 통하여 그 기능이 향상된 3호 탐침이 개발 중이다. 베이커 박사는 “본 연구로, 신경세포부터 면역세포에 이르기까지 건강상태와 질병상태에서 pH의 역할을 파악할 수 있었고, 향후 파킨슨병과 같이 억제성 뉴런의 이상으로 발생되는 뇌질환의 근본적인 원인을 규명하는데 일조할 것으로 예상된다.”고 밝혔다. * (논문명) Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions - (제1저자) Bok Eum Kang - (교신저자) Bradley J. Baker <그림자료> <그림 1> 형광단백질센서 ‘파도, Pado’의 구조 S1-S4는 전압을 감지하며, 수소이온농도를 조절하는 수소이온통로의 역할을 가지며, SE A227D는 수소이온통로의 변화 혹은 S1-S4에서 감지되는 전압변화에 따라 형광세기를 변화시키는 역할을 한다. <그림 2> 왼쪽사진은 파도를 발현하는 HEK293 세포사진이고, 빨간선은 전기적 활동과 pH농도변화에 따른 형광세기 변화를 파란선은 수소이온이 세포막을 통과하면서 발생하는 전류의 변화를 나타냄. 수소이온이 통과하면서 발생하는 전류 1nA(전류의 단위; 암페어(ampere)의 10억분의 1)당 형광신호 변화량이 약 15% 변화하는 것을 관찰할 수 있음. <그림 3> ‘파도’로 관찰한 전압과 pH이미지 전압은 파란색, pH는 빨간색을 보여줌. 세포는 전압의 변화를 보여주며 파란색으로 시작한다. 3670번 사진에서 세포의 왼쪽 아래 코너에서 pH변화가 보이기 시작하고, 4090사진에서 위쪽 오른쪽 세포의 코너에서 pH가 변화하는 것을 관찰할 수 있다. 4450사진에서는 pH의 움직임이 세포 전역에서 파도처럼 퍼져있다. 각 사진번호는 밀리세컨드(1000분의 1초)를 나타내며, 이 과정은 대략 1초가 소요된다. <그림 4> ‘파도’를 억제성 뉴런에 적용한 예상도 초록색으로 표기된 파도가 발현함에 따라 한 억제성 뉴런(Inhibitory Neuron)에서의 변화가 다른 억제성 뉴런(Inhibitory Neuron)로 이동하는 것을 볼 수 있다.
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발 - 뇌의 산성도 및 활동을 시각적으로 측정할 수 있는 형광전압센서 개발 - 억제성 신경세포의 상호작용 원리를 규명 인체의 면역계가 정상적으로 작용하기 위해서는 적정수준의 pH(산성도)가 유지되어야 하며, 특히, 뇌 속 산성도의 변화는 암이나 신경질환 등의 질병과 연관성이 높다고 알려져 있다. 외국인 유치과학자가 주축이 된 국내 연구진이 뇌 속 신경세포의 전기적 활동은 물론 pH(산성도) 조절 및 관찰이 가능한 형광전압센서 단백질의 개발에 성공하였다. 해당 단백질을 통해 세계 최초로 신경세포내의 pH농도 조절 및 상호작용을 시각적으로 관찰할 수 있게 되었다. 한국과학기술연구원(KIST) 뇌과학연구소 기능커넥토믹스연구단 브래들리 베이커(Bradley J. Baker) 박사 연구팀은 빛을 통해 뇌 활동을 측정하여 실시간으로 산성도(pH)도 조절이 가능한 바이오 센서를 개발하였다. 이번 연구는 권위 있는 해외 학술지인 ‘Scientific Reports’ 4월 4일자 온라인판에 게재되었다. 2011년 미래창조과학부(장관 최양희)의 세계적 수준의 연구센터(WCI, World Class Institute)사업의 유치 과학자로 초빙되어 현재 KIST 정규직 연구원으로 재직 중인 브래들리 베이커 박사는 위와 같은 센서의 이름을 우리말 ‘파도, Pado’로 정하였는데, 센서를 통해 측정된 산성도와 전압 활동 신호가 파도치는 형상에서 모티브를 얻었다. 브래들리 베이커 박사는 2015년 뇌 속 신경활동의 시각적 관찰이 가능한 제 1호 탐침 ‘봉우리, Bongwoori’(*용어설명)에 이어, 두 번째로 ‘파도, Pado’개발에 성공한 것으로 과학기술연합대학원대학교(UST) 학생과의 독자적인 연구를 통해 이루어진 성과이기에 그 의미가 더욱 깊다. 브래들리 베이커 박사 연구팀은 수소이온통로 단백질과 뇌에서 발현 가능한 형광물질을 이용하여 형광단백질 센서 ‘파도’를 개발하였고, 이를 배양이 용이하여 일반적으로 생물학 실험에 사용되는 HEK 293세포(인간배아신장유래세포)에 발현시켜 pH에 변화에 따라 연결된 다른 세포가 연동됨을 증명하였다. 이 연구결과는 HEK 293세포와 유사하게 전기적으로 연결되어 있는 억제성 뉴런은 물론이고 심장, 신장 등의 연구에도 적용이 가능하며, 추후 ‘파도, Pado’를 이용한 산성도 변화관찰은 물론 산성도 조절을 통해 뇌 세포간의 상호작용 및 다양한 연구 진행이 가능할 것으로 보인다. 또한, ‘파도’는 기존의 ‘봉우리’에서 관찰이 가능하였던 전압과 빛의 세기와의 연관성을 실험적으로 증명할 수 있었는데, 이러한 원리규명을 통하여 그 기능이 향상된 3호 탐침이 개발 중이다. 베이커 박사는 “본 연구로, 신경세포부터 면역세포에 이르기까지 건강상태와 질병상태에서 pH의 역할을 파악할 수 있었고, 향후 파킨슨병과 같이 억제성 뉴런의 이상으로 발생되는 뇌질환의 근본적인 원인을 규명하는데 일조할 것으로 예상된다.”고 밝혔다. * (논문명) Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions - (제1저자) Bok Eum Kang - (교신저자) Bradley J. Baker <그림자료> <그림 1> 형광단백질센서 ‘파도, Pado’의 구조 S1-S4는 전압을 감지하며, 수소이온농도를 조절하는 수소이온통로의 역할을 가지며, SE A227D는 수소이온통로의 변화 혹은 S1-S4에서 감지되는 전압변화에 따라 형광세기를 변화시키는 역할을 한다. <그림 2> 왼쪽사진은 파도를 발현하는 HEK293 세포사진이고, 빨간선은 전기적 활동과 pH농도변화에 따른 형광세기 변화를 파란선은 수소이온이 세포막을 통과하면서 발생하는 전류의 변화를 나타냄. 수소이온이 통과하면서 발생하는 전류 1nA(전류의 단위; 암페어(ampere)의 10억분의 1)당 형광신호 변화량이 약 15% 변화하는 것을 관찰할 수 있음. <그림 3> ‘파도’로 관찰한 전압과 pH이미지 전압은 파란색, pH는 빨간색을 보여줌. 세포는 전압의 변화를 보여주며 파란색으로 시작한다. 3670번 사진에서 세포의 왼쪽 아래 코너에서 pH변화가 보이기 시작하고, 4090사진에서 위쪽 오른쪽 세포의 코너에서 pH가 변화하는 것을 관찰할 수 있다. 4450사진에서는 pH의 움직임이 세포 전역에서 파도처럼 퍼져있다. 각 사진번호는 밀리세컨드(1000분의 1초)를 나타내며, 이 과정은 대략 1초가 소요된다. <그림 4> ‘파도’를 억제성 뉴런에 적용한 예상도 초록색으로 표기된 파도가 발현함에 따라 한 억제성 뉴런(Inhibitory Neuron)에서의 변화가 다른 억제성 뉴런(Inhibitory Neuron)로 이동하는 것을 볼 수 있다.
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발
KIST 외국인 유치과학자, 뇌 활동을 시각적으로 측정하는 형광전압센서 ‘파도’ 개발 - 뇌의 산성도 및 활동을 시각적으로 측정할 수 있는 형광전압센서 개발 - 억제성 신경세포의 상호작용 원리를 규명 인체의 면역계가 정상적으로 작용하기 위해서는 적정수준의 pH(산성도)가 유지되어야 하며, 특히, 뇌 속 산성도의 변화는 암이나 신경질환 등의 질병과 연관성이 높다고 알려져 있다. 외국인 유치과학자가 주축이 된 국내 연구진이 뇌 속 신경세포의 전기적 활동은 물론 pH(산성도) 조절 및 관찰이 가능한 형광전압센서 단백질의 개발에 성공하였다. 해당 단백질을 통해 세계 최초로 신경세포내의 pH농도 조절 및 상호작용을 시각적으로 관찰할 수 있게 되었다. 한국과학기술연구원(KIST) 뇌과학연구소 기능커넥토믹스연구단 브래들리 베이커(Bradley J. Baker) 박사 연구팀은 빛을 통해 뇌 활동을 측정하여 실시간으로 산성도(pH)도 조절이 가능한 바이오 센서를 개발하였다. 이번 연구는 권위 있는 해외 학술지인 ‘Scientific Reports’ 4월 4일자 온라인판에 게재되었다. 2011년 미래창조과학부(장관 최양희)의 세계적 수준의 연구센터(WCI, World Class Institute)사업의 유치 과학자로 초빙되어 현재 KIST 정규직 연구원으로 재직 중인 브래들리 베이커 박사는 위와 같은 센서의 이름을 우리말 ‘파도, Pado’로 정하였는데, 센서를 통해 측정된 산성도와 전압 활동 신호가 파도치는 형상에서 모티브를 얻었다. 브래들리 베이커 박사는 2015년 뇌 속 신경활동의 시각적 관찰이 가능한 제 1호 탐침 ‘봉우리, Bongwoori’(*용어설명)에 이어, 두 번째로 ‘파도, Pado’개발에 성공한 것으로 과학기술연합대학원대학교(UST) 학생과의 독자적인 연구를 통해 이루어진 성과이기에 그 의미가 더욱 깊다. 브래들리 베이커 박사 연구팀은 수소이온통로 단백질과 뇌에서 발현 가능한 형광물질을 이용하여 형광단백질 센서 ‘파도’를 개발하였고, 이를 배양이 용이하여 일반적으로 생물학 실험에 사용되는 HEK 293세포(인간배아신장유래세포)에 발현시켜 pH에 변화에 따라 연결된 다른 세포가 연동됨을 증명하였다. 이 연구결과는 HEK 293세포와 유사하게 전기적으로 연결되어 있는 억제성 뉴런은 물론이고 심장, 신장 등의 연구에도 적용이 가능하며, 추후 ‘파도, Pado’를 이용한 산성도 변화관찰은 물론 산성도 조절을 통해 뇌 세포간의 상호작용 및 다양한 연구 진행이 가능할 것으로 보인다. 또한, ‘파도’는 기존의 ‘봉우리’에서 관찰이 가능하였던 전압과 빛의 세기와의 연관성을 실험적으로 증명할 수 있었는데, 이러한 원리규명을 통하여 그 기능이 향상된 3호 탐침이 개발 중이다. 베이커 박사는 “본 연구로, 신경세포부터 면역세포에 이르기까지 건강상태와 질병상태에서 pH의 역할을 파악할 수 있었고, 향후 파킨슨병과 같이 억제성 뉴런의 이상으로 발생되는 뇌질환의 근본적인 원인을 규명하는데 일조할 것으로 예상된다.”고 밝혔다. * (논문명) Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions - (제1저자) Bok Eum Kang - (교신저자) Bradley J. Baker <그림자료> <그림 1> 형광단백질센서 ‘파도, Pado’의 구조 S1-S4는 전압을 감지하며, 수소이온농도를 조절하는 수소이온통로의 역할을 가지며, SE A227D는 수소이온통로의 변화 혹은 S1-S4에서 감지되는 전압변화에 따라 형광세기를 변화시키는 역할을 한다. <그림 2> 왼쪽사진은 파도를 발현하는 HEK293 세포사진이고, 빨간선은 전기적 활동과 pH농도변화에 따른 형광세기 변화를 파란선은 수소이온이 세포막을 통과하면서 발생하는 전류의 변화를 나타냄. 수소이온이 통과하면서 발생하는 전류 1nA(전류의 단위; 암페어(ampere)의 10억분의 1)당 형광신호 변화량이 약 15% 변화하는 것을 관찰할 수 있음. <그림 3> ‘파도’로 관찰한 전압과 pH이미지 전압은 파란색, pH는 빨간색을 보여줌. 세포는 전압의 변화를 보여주며 파란색으로 시작한다. 3670번 사진에서 세포의 왼쪽 아래 코너에서 pH변화가 보이기 시작하고, 4090사진에서 위쪽 오른쪽 세포의 코너에서 pH가 변화하는 것을 관찰할 수 있다. 4450사진에서는 pH의 움직임이 세포 전역에서 파도처럼 퍼져있다. 각 사진번호는 밀리세컨드(1000분의 1초)를 나타내며, 이 과정은 대략 1초가 소요된다. <그림 4> ‘파도’를 억제성 뉴런에 적용한 예상도 초록색으로 표기된 파도가 발현함에 따라 한 억제성 뉴런(Inhibitory Neuron)에서의 변화가 다른 억제성 뉴런(Inhibitory Neuron)로 이동하는 것을 볼 수 있다.
KIST 우성훈 박사, 美 포브스(Forbes) 발표한 ‘아시아의 영향력 있는 젊은 리더 30인’에 선정
- 미(美) Forbes 발표, ‘30 Under 30 Asia’ Healthcare & Science 부문에 선정 - KIST 우성훈 박사(28세), 차세대 초저전력·초고속 스핀 전자소자 연구로 주목 한국과학기술연구원(KIST, 원장 이병권)은 27일(화, 한국시간) 미국의 3대 경제잡지 중 하나인 ‘포브스(Forbes)’가 발표한 ‘2018 아시아의 영향력 있는 30세 이하 리더 30인 (2018 Forbes 30 Under 30 Asia)’ 헬스케어 & 과학 부문에서 KIST 스핀융합연구단 우성훈 박사가 선정됐다고 밝혔다. 포브스는 우성훈 박사를 아시아에서 영향력 있는 젊은 리더로 선정한 이유에 대해 “세계 최초로 무(無)전력에 가까운 초저전력을 사용하여 전자소자를 구동할 수 있는 원리를 찾아내었다”고 밝히며 “우성훈 박사의 연구 성과는 향후 스핀트로닉스 기술 및 나노물질을 기반으로 한 스핀소자가 기존 전자소자를 대체하는데 큰 기여를 할 것으로 예상된다.”고 전했다. 현재 KIST 차세대반도체연구소(소장, 장준연) 스핀융합연구단 선임연구원으로 재직 중인 우성훈 박사는 전자의 ‘스핀’을 이용하여 기존 실리콘 기반의 전자소자를 대체하기 위한 스핀-전자소자에 대한 원천기술을 연구해 왔다. 우 박사는 최근 전력소모가 필요 없는 ‘무전력’ 메모리 소자구현을 위한 원천 기술을 발견하여 큰 주목을 받았으며, 또한 미래 메모리/통신소자의 기본 단위로 주목받는 ‘스커미온’(Skyrmion) 입자에 대한 선도적인 연구 결과들을 발표해왔다. KIST 우성훈 박사는 최근 3년간 Nature Materials, Nature Physics, Nature Communications(2편)에 주저자 및 교신저자로 논문을 발표하는 등 왕성한 연구 활동으로 해당 분야를 선도하는 젊은 과학자로 학계에서도 큰 주목을 받아왔으며, 상기 성과는 2016년 포스코 청암 과학 펠로우 선정, 2016년 삼성미래기술육성사업 연구책임자 선정, 2017년 KIST인 대상, 2017년 10대 나노기술 선정, 2017년 출연(연) 10대 성과 수상 등의 대내외 수상으로 그 성과를 인정받은 바 있다. KIST 우성훈 박사는 본 포브스지의 선정에 대해 “제 연구 분야인 ‘스핀트로닉스’라는 연구의 중요성이 인정받은 것 같아 매우 기쁘다. 무엇보다 제가 하고 싶은 연구를 할 수 있는 환경과 물심양면으로 지원해주시는 동료 연구자분들께 진심으로 감사를 표하고 싶다“며, 소감을 말하며, “향후 지속적인 연구를 통해 다가올 4차 산업혁명을 선도할 새로운 초저전력·초고속 스핀-전자소자의 실용화를 위해 연구에 매진하겠다.”라고 포부를 밝혔다. 2016년부터 올해로 세 번째를 맞는 이번 발표(Forbes 30 Under 30 Asia)는 포브스가 매년 10개 분야의 300명의 젊은 혁신가를 선정하여, 산업 분야를 재발명하고 다양한 지역에서 변화를 주도함을 목적으로 시작되었다. 올해는 처음으로 아제르바이잔과 북한을 포함하여 아시아 태평양 전역의 24 개국을 대표하는 수천 명의 온라인 후보로 지명된 이들 중 포브스 기자단이 조사하고, 전문 심사위원 패널을 대상으로 심사를 거쳐 선정된 이들이 이번 권위 있는 목록에 이름을 올리게 된다. - 출처 : Forbes - 링크 : https://www.forbes.com/profile/seonghoon-woo/?list=30under30-asia-healthcare-science
KIST 우수 연구성과 과제 “금요일에 과학터치”대전역 강연 성황(7.4)
2008년도 7월 4일 무더웠던 금요일 밤에 개최된 “금요일에 과학터치”는 대전역에서 성황리에 개최되었다. 매회 100여명 내외의 일반인들이 참석, 열띤 분위기 속에 진행된 이번 강연에는 미래의 과학자가 될 초중등학생부터 전문과정을 공부하는 대학생, 가정주부, 노인들까지 다양한 계층의 참여속에 진행되었으며, 우리원의 과제책임자들은 어려운 과학기술을 재미있고 쉽게 설명함으로써 무더웠지만 청중들의 과학에 대한 관심은 더위를 잊을 만큼 열정적이었다. KIST의 첫 번째 우수 연구성과 과제책임자 박남규 박사는“투명컬러 태양전지”라는 주제로 진행하였다. 각종 태양전지의 구조: 박막 (CIGS, CdTe) 태양전지, 실리콘 벌크 HIT 구조 태양전지, 유기폴리머 (OPV) 태양전지 그리고 염료감응 (DSSC) 태양전지 우리는 지금까지 석유를 주 에너지원으로 사용하고 있다. 석유가 주 에너지원이 된 이유는 값싸고 사용하기 편리하기 때문이라고 생각한다. 인류문명의 급속한 발전에는 석유와 같은 화석연료가 크게 기여한 것은 부인할 수 없지만, 매장량에 따른 가격상승과 환경오염 문제로 인해 대체에너지 개발이 시급하다. 화석연료에 대한 대안으로 태양전지를 생각해 볼 수 있으며, 태양전지는 구성하는 물질에 따라 실리콘, 화합물반도체와 같은 무기소재로 이루어진 태양전지, 유기물질을 포함하고 있는 유기 태양전지 (유기 태양전지는 염료감응형 태양전지 (dye-sensitized solar cell) 와 유기분자접합형(organic D-A) 태양전지 포함)으로 나눌 수 있다. 태양전지를 구성하는 물질에 따른 분류 외에 태양전지 구조에 따른 분류를 할 수 있는데, 이 경우 태양전지는 크게 3가지로 분류될 수 있다: 웨이퍼구조(벌크 실리콘 태양전지); 박막구조 (화합물 태양전지, 유기 폴리머 태양전지 등); 광전기화학구조 (염료감응 태양전지)로 분류되는데 특히 염료감응 태양전지는 나노소재를 이용하여 극대화된 표면적을 갖는 필름의 표면에 광흡수층인 유기염료를 흡착하는 기술을 이용하고 있다. 산화-환원 이온종의 역할 염료감응 태양전지를 구성하는 하는 재료를 나노결정 반도체 산화물 소재를 이용하면 투명한 특성을 나타낼 수 있으며 광감응 염료를 이용하면 다양한 색깔구현이 가능하다. 투명 컬러 태양전지는 기존의 실리콘 태양전지에 비해 가격이 매우 저렴한 장점을 가지고 있지만 에너지 변환효율이 셀 기준으로 약 11% 정도로 실리콘의 반 정도 밖에 되지 않아서 에너지변환 효율을 높이는 등의 기술개발이 필요하다. KIST가 제작한 투명 컬러 염료감응 태양전지 윈도우 강의가 끝난 후 “아파트 규모가 105㎡(32평)에 투명 컬러 태양전지를 창문에 설치하려면 어느 정도 양을 설치하여야 사용이 가능한 지, 투명 컬러 태양전지는 햇빛으로만 전기 생성이 가능한 지” 등의 질문이 이어졌다. 교육과학기술부, 국립중앙과학관 주관으로 진행되고 있는 “금요일에 과학터치”는 주요연구 성과를 국민에게 알리고 일반인들의 과학에 대한 인식제고를 위해 매주 금요일 저녁 서울역, 대전역, 부산역, 광주역, 대구역 등에서 진행되고 있다.