검색결과
게시물 키워드""에 대한 9493개의 검색결과를 찾았습니다.
KIST, 신규 치매 플랫폼 개발 머릿 속 치매 원인물질을 초기 단계부터 관찰한다
- 비정상적 타우 단백질 응집을 초기 단계부터 관찰할 수 있는 동물 모델 개발 - 타우 표적 치매 치료제 개발 연구 가속화 및 새로운 치매 기전 규명 기대 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 치매DTC융합연구단 김윤경, 임성수 박사 연구팀은 치매 유발 원인으로 알려진 타우 단백질의 응집을 초기 단계부터 관찰할 수 있는 동물모델을 개발했다고 밝혔다. 이 신규 플랫폼을 활용하면 치료제 개발연구를 가속화하고, 새로운 치매 기전을 규명할 수 있을 것으로 기대된다. 가장 흔한 퇴행성 뇌질환인 알츠하이머성 치매는 뇌 속 베타-아밀로이드 단백질이나 타우 단백질이 응집되는 것이 주요 원인으로 여겨지고 있다. 잘 알려진 베타-아밀로이드의 응집은 뇌 기능이 손상되는데 길게는 십 년 이상이 걸리기도 하며 심지어 병변이 나타나지 않는 때도 있어, 최근 신경세포사멸에 직접적인 영향을 미치는 타우 단백질이 치매의 새로운 치료 표적으로 급부상하고 있다. 타우 단백질이 응집되기 시작하면, 단백질이 뭉친 형태인 올리고머 형태가 되는데, 이는 신경세포 독성을 일으키고 알츠하이머성 치매를 비롯한 다양한 퇴행성 뇌 질환을 전이시키는 매개체로써 작용한다. 이에 타우 올리고머를 표적으로 한 치매 치료제 개발이 화두에 오르고 있지만, 신경세포 내 과량으로 존재하는 정상 타우 단백질로부터 응집 초기에 소량으로 존재하는 타우 올리고머를 구분해낼 실험 방법이 부재한 상황이다. KIST 김윤경, 임성수 박사 연구팀은 세포에서 타우 올리고머의 형성을 관찰할 수 있는 플랫폼인 ‘타우-BiFC(Bimolecular Fluorescence Complementation) 플랫폼’을 확립하여 이를 동물모델로 확장한 ‘타우-BiFC 생쥐모델’을 개발하였다. 이 플랫폼은 신경세포 내에서 타우 단백질이 응집하여 올리고머가 형성되면 형광이 켜지는 시스템으로, 타우 응집 초기 올리고머 단계부터 정량적으로 관찰할 수 있다는 장점이 있다. KIST 연구진은 개발한 ‘타우-BiFC 생쥐’를 통해 단계별로 정량적인 모니터링이 가능했다. 생쥐가 어린 나이일 때 타우 올리고머가 생성되어도 세포 자체적으로 분해·제거하는 시스템이 가동되지만, 생쥐가 나이가 들수록 그 기능이 떨어져 타우의 응집이 가속되고 신경이 퇴화하는 특성을 보이는 것을 관찰할 수 있었다. KIST 김윤경 박사는 “타우-BiFC 생쥐모델은 뇌에 쌓이는 타우 단백질의 초기 응집 단계인 올리고머부터 효과적으로 관찰할 수 있는 신규 플랫폼으로, 외국에서 개발된 생쥐모델에 의존하던 기존의 치매 연구를 탈피할 수 있을 것”이라고 말하며, “신경세포 독성 및 전이성을 보이는 타우 응집체의 형성을 파악하고 관찰하는 연구는 알츠하이머성 치매를 포함한 타우 병증의 치료제 개발에 있어 중요한 시작점이라 할 수 있다.”라고 말했다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 미래선도형융합연구단사업과 뇌과학원천기술개발사업 등으로 수행되었으며, 이번 연구결과는 신경과학 분야 국제 저널인 ‘Progress in Neurobiology’ (IF: 10.65, JCR 분야 상위 4.68%) 최신 호에 게재되었다. * (논문명) Visualization of soluble tau oligomers in TauP301L-BiFC transgenic mice demonstrates the progression of tauopathy - (제 1저자) 한국과학기술연구원 신슬기 박사과정 (UST) - (교신저자) 한국과학기술연구원 임성수 선임연구원 - (교신저자) 한국과학기술연구원 김윤경 책임연구원 <그림설명> [그림 1] 타우-BiFC 생쥐모델의 뇌에서 노화에 따른 타우 응집 정도 모니터링
KIST, 신규 치매 플랫폼 개발 머릿 속 치매 원인물질을 초기 단계부터 관찰한다
- 비정상적 타우 단백질 응집을 초기 단계부터 관찰할 수 있는 동물 모델 개발 - 타우 표적 치매 치료제 개발 연구 가속화 및 새로운 치매 기전 규명 기대 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 치매DTC융합연구단 김윤경, 임성수 박사 연구팀은 치매 유발 원인으로 알려진 타우 단백질의 응집을 초기 단계부터 관찰할 수 있는 동물모델을 개발했다고 밝혔다. 이 신규 플랫폼을 활용하면 치료제 개발연구를 가속화하고, 새로운 치매 기전을 규명할 수 있을 것으로 기대된다. 가장 흔한 퇴행성 뇌질환인 알츠하이머성 치매는 뇌 속 베타-아밀로이드 단백질이나 타우 단백질이 응집되는 것이 주요 원인으로 여겨지고 있다. 잘 알려진 베타-아밀로이드의 응집은 뇌 기능이 손상되는데 길게는 십 년 이상이 걸리기도 하며 심지어 병변이 나타나지 않는 때도 있어, 최근 신경세포사멸에 직접적인 영향을 미치는 타우 단백질이 치매의 새로운 치료 표적으로 급부상하고 있다. 타우 단백질이 응집되기 시작하면, 단백질이 뭉친 형태인 올리고머 형태가 되는데, 이는 신경세포 독성을 일으키고 알츠하이머성 치매를 비롯한 다양한 퇴행성 뇌 질환을 전이시키는 매개체로써 작용한다. 이에 타우 올리고머를 표적으로 한 치매 치료제 개발이 화두에 오르고 있지만, 신경세포 내 과량으로 존재하는 정상 타우 단백질로부터 응집 초기에 소량으로 존재하는 타우 올리고머를 구분해낼 실험 방법이 부재한 상황이다. KIST 김윤경, 임성수 박사 연구팀은 세포에서 타우 올리고머의 형성을 관찰할 수 있는 플랫폼인 ‘타우-BiFC(Bimolecular Fluorescence Complementation) 플랫폼’을 확립하여 이를 동물모델로 확장한 ‘타우-BiFC 생쥐모델’을 개발하였다. 이 플랫폼은 신경세포 내에서 타우 단백질이 응집하여 올리고머가 형성되면 형광이 켜지는 시스템으로, 타우 응집 초기 올리고머 단계부터 정량적으로 관찰할 수 있다는 장점이 있다. KIST 연구진은 개발한 ‘타우-BiFC 생쥐’를 통해 단계별로 정량적인 모니터링이 가능했다. 생쥐가 어린 나이일 때 타우 올리고머가 생성되어도 세포 자체적으로 분해·제거하는 시스템이 가동되지만, 생쥐가 나이가 들수록 그 기능이 떨어져 타우의 응집이 가속되고 신경이 퇴화하는 특성을 보이는 것을 관찰할 수 있었다. KIST 김윤경 박사는 “타우-BiFC 생쥐모델은 뇌에 쌓이는 타우 단백질의 초기 응집 단계인 올리고머부터 효과적으로 관찰할 수 있는 신규 플랫폼으로, 외국에서 개발된 생쥐모델에 의존하던 기존의 치매 연구를 탈피할 수 있을 것”이라고 말하며, “신경세포 독성 및 전이성을 보이는 타우 응집체의 형성을 파악하고 관찰하는 연구는 알츠하이머성 치매를 포함한 타우 병증의 치료제 개발에 있어 중요한 시작점이라 할 수 있다.”라고 말했다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 미래선도형융합연구단사업과 뇌과학원천기술개발사업 등으로 수행되었으며, 이번 연구결과는 신경과학 분야 국제 저널인 ‘Progress in Neurobiology’ (IF: 10.65, JCR 분야 상위 4.68%) 최신 호에 게재되었다. * (논문명) Visualization of soluble tau oligomers in TauP301L-BiFC transgenic mice demonstrates the progression of tauopathy - (제 1저자) 한국과학기술연구원 신슬기 박사과정 (UST) - (교신저자) 한국과학기술연구원 임성수 선임연구원 - (교신저자) 한국과학기술연구원 김윤경 책임연구원 <그림설명> [그림 1] 타우-BiFC 생쥐모델의 뇌에서 노화에 따른 타우 응집 정도 모니터링
KIST, 신규 치매 플랫폼 개발 머릿 속 치매 원인물질을 초기 단계부터 관찰한다
- 비정상적 타우 단백질 응집을 초기 단계부터 관찰할 수 있는 동물 모델 개발 - 타우 표적 치매 치료제 개발 연구 가속화 및 새로운 치매 기전 규명 기대 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 치매DTC융합연구단 김윤경, 임성수 박사 연구팀은 치매 유발 원인으로 알려진 타우 단백질의 응집을 초기 단계부터 관찰할 수 있는 동물모델을 개발했다고 밝혔다. 이 신규 플랫폼을 활용하면 치료제 개발연구를 가속화하고, 새로운 치매 기전을 규명할 수 있을 것으로 기대된다. 가장 흔한 퇴행성 뇌질환인 알츠하이머성 치매는 뇌 속 베타-아밀로이드 단백질이나 타우 단백질이 응집되는 것이 주요 원인으로 여겨지고 있다. 잘 알려진 베타-아밀로이드의 응집은 뇌 기능이 손상되는데 길게는 십 년 이상이 걸리기도 하며 심지어 병변이 나타나지 않는 때도 있어, 최근 신경세포사멸에 직접적인 영향을 미치는 타우 단백질이 치매의 새로운 치료 표적으로 급부상하고 있다. 타우 단백질이 응집되기 시작하면, 단백질이 뭉친 형태인 올리고머 형태가 되는데, 이는 신경세포 독성을 일으키고 알츠하이머성 치매를 비롯한 다양한 퇴행성 뇌 질환을 전이시키는 매개체로써 작용한다. 이에 타우 올리고머를 표적으로 한 치매 치료제 개발이 화두에 오르고 있지만, 신경세포 내 과량으로 존재하는 정상 타우 단백질로부터 응집 초기에 소량으로 존재하는 타우 올리고머를 구분해낼 실험 방법이 부재한 상황이다. KIST 김윤경, 임성수 박사 연구팀은 세포에서 타우 올리고머의 형성을 관찰할 수 있는 플랫폼인 ‘타우-BiFC(Bimolecular Fluorescence Complementation) 플랫폼’을 확립하여 이를 동물모델로 확장한 ‘타우-BiFC 생쥐모델’을 개발하였다. 이 플랫폼은 신경세포 내에서 타우 단백질이 응집하여 올리고머가 형성되면 형광이 켜지는 시스템으로, 타우 응집 초기 올리고머 단계부터 정량적으로 관찰할 수 있다는 장점이 있다. KIST 연구진은 개발한 ‘타우-BiFC 생쥐’를 통해 단계별로 정량적인 모니터링이 가능했다. 생쥐가 어린 나이일 때 타우 올리고머가 생성되어도 세포 자체적으로 분해·제거하는 시스템이 가동되지만, 생쥐가 나이가 들수록 그 기능이 떨어져 타우의 응집이 가속되고 신경이 퇴화하는 특성을 보이는 것을 관찰할 수 있었다. KIST 김윤경 박사는 “타우-BiFC 생쥐모델은 뇌에 쌓이는 타우 단백질의 초기 응집 단계인 올리고머부터 효과적으로 관찰할 수 있는 신규 플랫폼으로, 외국에서 개발된 생쥐모델에 의존하던 기존의 치매 연구를 탈피할 수 있을 것”이라고 말하며, “신경세포 독성 및 전이성을 보이는 타우 응집체의 형성을 파악하고 관찰하는 연구는 알츠하이머성 치매를 포함한 타우 병증의 치료제 개발에 있어 중요한 시작점이라 할 수 있다.”라고 말했다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 미래선도형융합연구단사업과 뇌과학원천기술개발사업 등으로 수행되었으며, 이번 연구결과는 신경과학 분야 국제 저널인 ‘Progress in Neurobiology’ (IF: 10.65, JCR 분야 상위 4.68%) 최신 호에 게재되었다. * (논문명) Visualization of soluble tau oligomers in TauP301L-BiFC transgenic mice demonstrates the progression of tauopathy - (제 1저자) 한국과학기술연구원 신슬기 박사과정 (UST) - (교신저자) 한국과학기술연구원 임성수 선임연구원 - (교신저자) 한국과학기술연구원 김윤경 책임연구원 <그림설명> [그림 1] 타우-BiFC 생쥐모델의 뇌에서 노화에 따른 타우 응집 정도 모니터링
KIST, 신규 치매 플랫폼 개발 머릿 속 치매 원인물질을 초기 단계부터 관찰한다
- 비정상적 타우 단백질 응집을 초기 단계부터 관찰할 수 있는 동물 모델 개발 - 타우 표적 치매 치료제 개발 연구 가속화 및 새로운 치매 기전 규명 기대 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 치매DTC융합연구단 김윤경, 임성수 박사 연구팀은 치매 유발 원인으로 알려진 타우 단백질의 응집을 초기 단계부터 관찰할 수 있는 동물모델을 개발했다고 밝혔다. 이 신규 플랫폼을 활용하면 치료제 개발연구를 가속화하고, 새로운 치매 기전을 규명할 수 있을 것으로 기대된다. 가장 흔한 퇴행성 뇌질환인 알츠하이머성 치매는 뇌 속 베타-아밀로이드 단백질이나 타우 단백질이 응집되는 것이 주요 원인으로 여겨지고 있다. 잘 알려진 베타-아밀로이드의 응집은 뇌 기능이 손상되는데 길게는 십 년 이상이 걸리기도 하며 심지어 병변이 나타나지 않는 때도 있어, 최근 신경세포사멸에 직접적인 영향을 미치는 타우 단백질이 치매의 새로운 치료 표적으로 급부상하고 있다. 타우 단백질이 응집되기 시작하면, 단백질이 뭉친 형태인 올리고머 형태가 되는데, 이는 신경세포 독성을 일으키고 알츠하이머성 치매를 비롯한 다양한 퇴행성 뇌 질환을 전이시키는 매개체로써 작용한다. 이에 타우 올리고머를 표적으로 한 치매 치료제 개발이 화두에 오르고 있지만, 신경세포 내 과량으로 존재하는 정상 타우 단백질로부터 응집 초기에 소량으로 존재하는 타우 올리고머를 구분해낼 실험 방법이 부재한 상황이다. KIST 김윤경, 임성수 박사 연구팀은 세포에서 타우 올리고머의 형성을 관찰할 수 있는 플랫폼인 ‘타우-BiFC(Bimolecular Fluorescence Complementation) 플랫폼’을 확립하여 이를 동물모델로 확장한 ‘타우-BiFC 생쥐모델’을 개발하였다. 이 플랫폼은 신경세포 내에서 타우 단백질이 응집하여 올리고머가 형성되면 형광이 켜지는 시스템으로, 타우 응집 초기 올리고머 단계부터 정량적으로 관찰할 수 있다는 장점이 있다. KIST 연구진은 개발한 ‘타우-BiFC 생쥐’를 통해 단계별로 정량적인 모니터링이 가능했다. 생쥐가 어린 나이일 때 타우 올리고머가 생성되어도 세포 자체적으로 분해·제거하는 시스템이 가동되지만, 생쥐가 나이가 들수록 그 기능이 떨어져 타우의 응집이 가속되고 신경이 퇴화하는 특성을 보이는 것을 관찰할 수 있었다. KIST 김윤경 박사는 “타우-BiFC 생쥐모델은 뇌에 쌓이는 타우 단백질의 초기 응집 단계인 올리고머부터 효과적으로 관찰할 수 있는 신규 플랫폼으로, 외국에서 개발된 생쥐모델에 의존하던 기존의 치매 연구를 탈피할 수 있을 것”이라고 말하며, “신경세포 독성 및 전이성을 보이는 타우 응집체의 형성을 파악하고 관찰하는 연구는 알츠하이머성 치매를 포함한 타우 병증의 치료제 개발에 있어 중요한 시작점이라 할 수 있다.”라고 말했다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 미래선도형융합연구단사업과 뇌과학원천기술개발사업 등으로 수행되었으며, 이번 연구결과는 신경과학 분야 국제 저널인 ‘Progress in Neurobiology’ (IF: 10.65, JCR 분야 상위 4.68%) 최신 호에 게재되었다. * (논문명) Visualization of soluble tau oligomers in TauP301L-BiFC transgenic mice demonstrates the progression of tauopathy - (제 1저자) 한국과학기술연구원 신슬기 박사과정 (UST) - (교신저자) 한국과학기술연구원 임성수 선임연구원 - (교신저자) 한국과학기술연구원 김윤경 책임연구원 <그림설명> [그림 1] 타우-BiFC 생쥐모델의 뇌에서 노화에 따른 타우 응집 정도 모니터링
KIST, 신규 치매 플랫폼 개발 머릿 속 치매 원인물질을 초기 단계부터 관찰한다
- 비정상적 타우 단백질 응집을 초기 단계부터 관찰할 수 있는 동물 모델 개발 - 타우 표적 치매 치료제 개발 연구 가속화 및 새로운 치매 기전 규명 기대 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 치매DTC융합연구단 김윤경, 임성수 박사 연구팀은 치매 유발 원인으로 알려진 타우 단백질의 응집을 초기 단계부터 관찰할 수 있는 동물모델을 개발했다고 밝혔다. 이 신규 플랫폼을 활용하면 치료제 개발연구를 가속화하고, 새로운 치매 기전을 규명할 수 있을 것으로 기대된다. 가장 흔한 퇴행성 뇌질환인 알츠하이머성 치매는 뇌 속 베타-아밀로이드 단백질이나 타우 단백질이 응집되는 것이 주요 원인으로 여겨지고 있다. 잘 알려진 베타-아밀로이드의 응집은 뇌 기능이 손상되는데 길게는 십 년 이상이 걸리기도 하며 심지어 병변이 나타나지 않는 때도 있어, 최근 신경세포사멸에 직접적인 영향을 미치는 타우 단백질이 치매의 새로운 치료 표적으로 급부상하고 있다. 타우 단백질이 응집되기 시작하면, 단백질이 뭉친 형태인 올리고머 형태가 되는데, 이는 신경세포 독성을 일으키고 알츠하이머성 치매를 비롯한 다양한 퇴행성 뇌 질환을 전이시키는 매개체로써 작용한다. 이에 타우 올리고머를 표적으로 한 치매 치료제 개발이 화두에 오르고 있지만, 신경세포 내 과량으로 존재하는 정상 타우 단백질로부터 응집 초기에 소량으로 존재하는 타우 올리고머를 구분해낼 실험 방법이 부재한 상황이다. KIST 김윤경, 임성수 박사 연구팀은 세포에서 타우 올리고머의 형성을 관찰할 수 있는 플랫폼인 ‘타우-BiFC(Bimolecular Fluorescence Complementation) 플랫폼’을 확립하여 이를 동물모델로 확장한 ‘타우-BiFC 생쥐모델’을 개발하였다. 이 플랫폼은 신경세포 내에서 타우 단백질이 응집하여 올리고머가 형성되면 형광이 켜지는 시스템으로, 타우 응집 초기 올리고머 단계부터 정량적으로 관찰할 수 있다는 장점이 있다. KIST 연구진은 개발한 ‘타우-BiFC 생쥐’를 통해 단계별로 정량적인 모니터링이 가능했다. 생쥐가 어린 나이일 때 타우 올리고머가 생성되어도 세포 자체적으로 분해·제거하는 시스템이 가동되지만, 생쥐가 나이가 들수록 그 기능이 떨어져 타우의 응집이 가속되고 신경이 퇴화하는 특성을 보이는 것을 관찰할 수 있었다. KIST 김윤경 박사는 “타우-BiFC 생쥐모델은 뇌에 쌓이는 타우 단백질의 초기 응집 단계인 올리고머부터 효과적으로 관찰할 수 있는 신규 플랫폼으로, 외국에서 개발된 생쥐모델에 의존하던 기존의 치매 연구를 탈피할 수 있을 것”이라고 말하며, “신경세포 독성 및 전이성을 보이는 타우 응집체의 형성을 파악하고 관찰하는 연구는 알츠하이머성 치매를 포함한 타우 병증의 치료제 개발에 있어 중요한 시작점이라 할 수 있다.”라고 말했다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 미래선도형융합연구단사업과 뇌과학원천기술개발사업 등으로 수행되었으며, 이번 연구결과는 신경과학 분야 국제 저널인 ‘Progress in Neurobiology’ (IF: 10.65, JCR 분야 상위 4.68%) 최신 호에 게재되었다. * (논문명) Visualization of soluble tau oligomers in TauP301L-BiFC transgenic mice demonstrates the progression of tauopathy - (제 1저자) 한국과학기술연구원 신슬기 박사과정 (UST) - (교신저자) 한국과학기술연구원 임성수 선임연구원 - (교신저자) 한국과학기술연구원 김윤경 책임연구원 <그림설명> [그림 1] 타우-BiFC 생쥐모델의 뇌에서 노화에 따른 타우 응집 정도 모니터링
KIST, 신규 치매 플랫폼 개발 머릿 속 치매 원인물질을 초기 단계부터 관찰한다
- 비정상적 타우 단백질 응집을 초기 단계부터 관찰할 수 있는 동물 모델 개발 - 타우 표적 치매 치료제 개발 연구 가속화 및 새로운 치매 기전 규명 기대 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 치매DTC융합연구단 김윤경, 임성수 박사 연구팀은 치매 유발 원인으로 알려진 타우 단백질의 응집을 초기 단계부터 관찰할 수 있는 동물모델을 개발했다고 밝혔다. 이 신규 플랫폼을 활용하면 치료제 개발연구를 가속화하고, 새로운 치매 기전을 규명할 수 있을 것으로 기대된다. 가장 흔한 퇴행성 뇌질환인 알츠하이머성 치매는 뇌 속 베타-아밀로이드 단백질이나 타우 단백질이 응집되는 것이 주요 원인으로 여겨지고 있다. 잘 알려진 베타-아밀로이드의 응집은 뇌 기능이 손상되는데 길게는 십 년 이상이 걸리기도 하며 심지어 병변이 나타나지 않는 때도 있어, 최근 신경세포사멸에 직접적인 영향을 미치는 타우 단백질이 치매의 새로운 치료 표적으로 급부상하고 있다. 타우 단백질이 응집되기 시작하면, 단백질이 뭉친 형태인 올리고머 형태가 되는데, 이는 신경세포 독성을 일으키고 알츠하이머성 치매를 비롯한 다양한 퇴행성 뇌 질환을 전이시키는 매개체로써 작용한다. 이에 타우 올리고머를 표적으로 한 치매 치료제 개발이 화두에 오르고 있지만, 신경세포 내 과량으로 존재하는 정상 타우 단백질로부터 응집 초기에 소량으로 존재하는 타우 올리고머를 구분해낼 실험 방법이 부재한 상황이다. KIST 김윤경, 임성수 박사 연구팀은 세포에서 타우 올리고머의 형성을 관찰할 수 있는 플랫폼인 ‘타우-BiFC(Bimolecular Fluorescence Complementation) 플랫폼’을 확립하여 이를 동물모델로 확장한 ‘타우-BiFC 생쥐모델’을 개발하였다. 이 플랫폼은 신경세포 내에서 타우 단백질이 응집하여 올리고머가 형성되면 형광이 켜지는 시스템으로, 타우 응집 초기 올리고머 단계부터 정량적으로 관찰할 수 있다는 장점이 있다. KIST 연구진은 개발한 ‘타우-BiFC 생쥐’를 통해 단계별로 정량적인 모니터링이 가능했다. 생쥐가 어린 나이일 때 타우 올리고머가 생성되어도 세포 자체적으로 분해·제거하는 시스템이 가동되지만, 생쥐가 나이가 들수록 그 기능이 떨어져 타우의 응집이 가속되고 신경이 퇴화하는 특성을 보이는 것을 관찰할 수 있었다. KIST 김윤경 박사는 “타우-BiFC 생쥐모델은 뇌에 쌓이는 타우 단백질의 초기 응집 단계인 올리고머부터 효과적으로 관찰할 수 있는 신규 플랫폼으로, 외국에서 개발된 생쥐모델에 의존하던 기존의 치매 연구를 탈피할 수 있을 것”이라고 말하며, “신경세포 독성 및 전이성을 보이는 타우 응집체의 형성을 파악하고 관찰하는 연구는 알츠하이머성 치매를 포함한 타우 병증의 치료제 개발에 있어 중요한 시작점이라 할 수 있다.”라고 말했다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 미래선도형융합연구단사업과 뇌과학원천기술개발사업 등으로 수행되었으며, 이번 연구결과는 신경과학 분야 국제 저널인 ‘Progress in Neurobiology’ (IF: 10.65, JCR 분야 상위 4.68%) 최신 호에 게재되었다. * (논문명) Visualization of soluble tau oligomers in TauP301L-BiFC transgenic mice demonstrates the progression of tauopathy - (제 1저자) 한국과학기술연구원 신슬기 박사과정 (UST) - (교신저자) 한국과학기술연구원 임성수 선임연구원 - (교신저자) 한국과학기술연구원 김윤경 책임연구원 <그림설명> [그림 1] 타우-BiFC 생쥐모델의 뇌에서 노화에 따른 타우 응집 정도 모니터링
KIST, 신신제약과 ‘염증성 질환치료를 위한 엑소좀-하이드로겔 플랫폼’ 기술이전 협약 체결
KIST, 신신제약과 ‘염증성 질환치료를 위한 엑소좀-하이드로겔 플랫폼’ 기술이전 협약 체결 - KIST Bridge Plus Program 사업을 통한 기술이전 협력 체계 구축 엑소좀-하이드로겔을 활용해 당뇨족부궤양, 건선에 특화된 치료법 개발 협력 한국과학기술연구원(이하 KIST, 원장 오상록)은 1월 24일(금) 서울 성북구 KIST 본원에서 신신제약(사장 이병기)과 염증성 질환 치료를 위한 엑소좀-하이드로겔 플랫폼 기술이전 협약식을 개최 했다고 밝혔다. 이번 기술이전으로 두 기관은 염증성 질환 중에서도 당뇨족부궤양, 건선 등에 특화된 치료법 개발에 힘을 합친다는 계획이다. 당뇨는 우리나라 65세 이상 성인 3명 중 1명이 앓고 있을 정도로 유병률이 높다. 당뇨환자 중 약 15~25%는 당뇨족부궤양(Diabetic Foot Ulcers, DFU)을 경험하는데 심한 경우 하지 절단에 이르게 된다. 현재 치료법으로는 항생제 치료, 혈류개선, 변연절제술 등이 사용되지만 재발률이 높고 치유 속도가 느리다는 한계가 있다. 건선은 면역 체계 이상으로 발생하는 만성 염증성 피부질환으로 스테로이드 크림, 광선치료, 면역억제제 등의 치료법이 있지만 완전환 치료가 아닌 증상 완화를 목적으로 하는 치료인 만큼 장기간 치료로 인해 발생하는 환자의 부담이 크다. 연구진은 당뇨족부궤양, 건선 등 염증성 질환의 편리한 치료를 위해 스프레이 하이드로겔과 밀크엑소좀을 활용한 치료제 개발을 제안했다. 밀크엑소좀은 우유에서 유래한 안정성이 높은 엑소좀으로 생체적합성이 우수하고 단순한 공정과 높은 경제성으로 대량생산이 가능하다. 그 자체로도 항염증 및 재생효과가 있으며 빌리루빈 등 항염증 기능성 유효성분(Active Pharmaceutical Ingredient, API)을 봉입할 경우 매우 높은 효능이 기대된다. 연구진은 이렇게 만들어진 엑소좀을 다양한 제형의 기능성 하이드로겔 기술에 접목시켜 상처부위에 분사 가능한 스프레이형 하이드로겔 기술로 염증질환 치료의 패러다임을 변화할 수 있는 제품을 개발한다는 계획이다. KIST에서는 기술이전 이후 기술의 빠른 상용화를 돕기위해 앞으로 2년간 KIST BP Plus 사업을 지원하기로 했다. 이 사업으로 신신제약과 KIST는 공동실험실을 운영하며 기술성숙도를 상향하고 사업화 준비를 수행한다는 계획이다. 연구책임자인 정영미 KIST 생체재료연구센터 책임연구원은 “혁신적인 스프레이형 하이드로겔과 고효능 엑소좀 복합체를 활용한 신개념 염증질환 치료제 개발로, 광범위한 손상 부위에 신속하고 간편하게 적용할 수 있어, 기존 치료법의 한계를 극복할 수 있을 것으로 기대된다”고 밝혔다. 오상록 KIST 원장은 “신신제약은 의료용 외용제 개발에 특화된 제약업체로 알려져 있다. KIST 연구진의 원천기술이 실험실 수준의 좋은 연구 성과로 끝나는 것이 아니라 이렇게 알맞은 기업을 찾아 기술이전이 진행되어 앞으로의 성과가 기대된다”라며 “KIST의 기술이 실제 제품화까지 이어질 수 있게 상용화지원과제 등 원 차원에서 꾸준한 지원을 하겠다”라고 밝혔다. 이병기 신신제약 사장은 "이번 기술이전을 통해 낮은 치료 효과와 부작용 등으로 미충족 의료 수요가 높은 당뇨족부궤양, 건선 환자들에게 복약 편의성이 높은 혁신적인 치료법을 제시할 수 있을 것"이라며, "KIST와 긴밀한 협업을 통해 완성도 높은 의약품 상용화를 이끌어내 환자들의 삶의 질이 개선될 수 있도록 최선을 다하겠다"라고 말했다. 한편, 신신제약은 1959년 설립된 이래 차별화된 기술력으로 첩부제, 에어로졸, 리퀴드 제형 등 다양한 제품을 선보이며 외용제 의약품 부문을 선도하고 있다. 최근에는 초고령화로 진입한 우리 사회에서 더욱 중요해지는 노년의 삶과 밀접한 분야에서 복약 편의성을 높인 의약품 개발을 활발히 추진하고 있다. [사진1] (좌측부터) 이병기 신신제약 사장, 오상록 KIST 원장이 기술이전 협약식을 마치고 기념촬영을 하고 있다. [사진2] 기술이전 협약식에 참석한 기관의 주요 관계자들이 조인식을 마치고 기념촬영을 하고 있다.
KIST, 신약 발굴 AI 기술로 세계 최상위 팀 선정
KIST, 신약 발굴 AI 기술로 세계 최상위 팀 선정 - 자체 AI 기술로 신약후보물질 발굴 국제대회 CACHE 챌린지 상위 4개 팀으로 선정 코로나19 바이러스 치료를 위한 가장 독창적인 후보물질 제시 성공 한국과학기술연구원(KIST, 원장 오상록) 천연물시스템생물연구센터 박근완 박사팀은 제3회 CACHE 챌린지 중 코로나19 바이러스 표적 신약 후보 발굴 부문에서 세계 최상위 4개 팀에 선정됐다고 밝혔다. 신약 후보 예측 대회인 CACHE 챌린지에서는 가장 높은 성능을 보이는 AI 기술을 발표하며, 대회에서 얻어지는 모든 데이터는 일반에 공개해 후속 신약 개발 연구를 지원한다. 이와 같은 공동체 중심의 신약 개발 패러다임은 알파폴드가 참가한 단백질 구조 예측 대회인 CASP과 유사하다. CACHE(Critical Assessment of Computational Hit-finding Experiments)는 다양한 신약 후보 물질 발굴 인공지능(AI) 방법의 예측 성능을 공정하게 평가하기 위해 2021년 조직된 국제적인 컨소시엄이다. 아스트라제네카, 바이엘, 베링거인겔하임 등 글로벌 제약사들과 협력하고 캐나다 정부와 미국 국립보건원(NIH)의 후원을 받고 있다. 이번 CACHE 챌린지는 코로나19 바이러스와 같은 치명적인 감염병 억제 약물 개발을 목표로 11개국 23개 본선 진출 팀이 약 2년간 경쟁하며 진행됐다. 참가팀들은 컴퓨터 기반 AI 예측 기술을 활용해 총 1,739개의 신약후보물질을 제안했으며, 2023년 1월 본선 참가팀이 선정된 이후 2024년 12월 최종 결과가 발표됐다. KIST 연구팀은 천연물 신약 개발을 위해 자체 개발한 ECBS(Evolutionary Chemical Binding Similarity, 진화적 화합물 결합 유사성)라는 AI 모델을 활용했다. ECBS는 질병 표적 단백질의 진화 정보를 활용해 화합물 예측 정확도를 높인 새로운 AI 모델로, 현재 KIST 강릉분원 천연물연구소에서 천연물 신약 후보물질을 발굴하는 데 활용되고 있다. 본선에서는 실험적 결합 데이터 외에도 화합물의 결합력, 물성, 화학구조의 독창성을 종합적으로 고려한 심사가 진행됐다. 심사 결과, KIST(대한민국), 오타와대학교(캐나다), 브리티시 컬럼비아 대학교(캐나다), 베를린자유대학교(독일) 연구팀이 최종 우승팀으로 선정됐다. 연구팀은 코로나19 바이러스의 Nsp3 단백질을 표적으로 하는 혁신적인 저분자 화합물을 제시해 KIST의 AI 기반 신약 개발 기술의 우수성과 국제적 경쟁력을 입증했다. 향후 국내외 연구기관 및 제약사와의 공동연구를 통해 AI 기반 신약 개발 연구를 선도할 것으로 기대된다. 또한, 천연물 신약 개발을 통해 희귀질환과 난치병 치료 등 그동안 주목받지 못했던 분야에서 새로운 산업 창출의 가능성을 열어갈 것으로 보인다. KIST 박근완 박사는 “AI를 활용한 신약 개발 연구가 코로나바이러스와 같은 치명적인 감염병 해결에 기여할 수 있다는 가능성을 보여주었다”라며, “이번 대회 결과를 바탕으로 국내외 기관과의 연구 협력과 정보 교류 활성화를 통해 글로벌 경쟁력을 갖춘 신약 개발 연구를 수행할 계획이다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 해양수산부(장관 강도형) 국가생명연구자원 선진화사업(RS-2021-KS211526)을 통해 진행됐다. 이번 대회 결과는 CACHE 공식 홈페이지에 발표됐다. [그림 1] CACHE 챌린지 대회 설명 CACHE 챌린지에서 질병 표적 단백질이 정해지면 각 참가팀은 고유한 계산 방법을 이용해서 표적에 가장 잘 결합할 수 있는 화합물을 컴퓨터를 통해 가상으로 스크리닝한다. 참가팀에서 제출한 화합물은 CACHE 주최 측에서 실험적 검증을 거친 뒤 화합물의 구조적 독창성과 표적에 대한 결합력을 평가하여 최종 우승팀을 선정하게 된다. 그림 출처: https://www.nature.com/articles/s41570-022-00363-z [그림 2] 제3회 CACHE 챌린지 대회 일정 (2022-12-02) CACHE 챌린지 제안서 접수 시작 (2023-01-01) 제안서 평가 및 1차 본선 진출팀 선정 (2023-03-15) 참가팀 화합물 예측 시작, 후보 화합물 제시 (최대 100개) (2023-10-31) 실험 검증 데이터 공유, 2차 본선 진출팀 선정 (2024-01-01) 2차 본선 진출 팀에 한해 화합물 2차 예측 (최대 50개) (2024-07-01) 2차 실험 검증 데이터 공유 (2024-12-11) 대회 마감 및 모든 데이터 일반에 공개 [그림 3] CACHE 챌린지에 활용한 KIST 화합물 예측 모델 KIST에서 자체 개발한 화합물 활성 예측 모델인 Evolutionary Chemical Binding Similarity (ECBS) 모델의 개념도이다. 표적 단백질의 진화 정보를 활용하여 화합물 예측의 정확도를 높인 AI 모델이며, CACHE 챌린지에서 해당 모델을 활용해 코로나 바이러스 저해 화합물을 탐색하였다. [그림 4] AI 기반 화합물 가상 탐색 절차 모식도 컴퓨터와 AI 기술을 통해 신약후보물질을 효율적으로 탐색하는 가상 탐색 (Virtual Screening) 절차를 보여준다. 많은 비용과 시간이 소요되는 실험 기반 방법과 비교하여 AI 기술을 활용함으로써 최소한의 실험을 통해 효율적인 신약후보물질 발굴이 가능하다.
KIST, 신약 발굴 AI 기술로 세계 최상위 팀 선정
KIST, 신약 발굴 AI 기술로 세계 최상위 팀 선정 - 자체 AI 기술로 신약후보물질 발굴 국제대회 CACHE 챌린지 상위 4개 팀으로 선정 코로나19 바이러스 치료를 위한 가장 독창적인 후보물질 제시 성공 한국과학기술연구원(KIST, 원장 오상록) 천연물시스템생물연구센터 박근완 박사팀은 제3회 CACHE 챌린지 중 코로나19 바이러스 표적 신약 후보 발굴 부문에서 세계 최상위 4개 팀에 선정됐다고 밝혔다. 신약 후보 예측 대회인 CACHE 챌린지에서는 가장 높은 성능을 보이는 AI 기술을 발표하며, 대회에서 얻어지는 모든 데이터는 일반에 공개해 후속 신약 개발 연구를 지원한다. 이와 같은 공동체 중심의 신약 개발 패러다임은 알파폴드가 참가한 단백질 구조 예측 대회인 CASP과 유사하다. CACHE(Critical Assessment of Computational Hit-finding Experiments)는 다양한 신약 후보 물질 발굴 인공지능(AI) 방법의 예측 성능을 공정하게 평가하기 위해 2021년 조직된 국제적인 컨소시엄이다. 아스트라제네카, 바이엘, 베링거인겔하임 등 글로벌 제약사들과 협력하고 캐나다 정부와 미국 국립보건원(NIH)의 후원을 받고 있다. 이번 CACHE 챌린지는 코로나19 바이러스와 같은 치명적인 감염병 억제 약물 개발을 목표로 11개국 23개 본선 진출 팀이 약 2년간 경쟁하며 진행됐다. 참가팀들은 컴퓨터 기반 AI 예측 기술을 활용해 총 1,739개의 신약후보물질을 제안했으며, 2023년 1월 본선 참가팀이 선정된 이후 2024년 12월 최종 결과가 발표됐다. KIST 연구팀은 천연물 신약 개발을 위해 자체 개발한 ECBS(Evolutionary Chemical Binding Similarity, 진화적 화합물 결합 유사성)라는 AI 모델을 활용했다. ECBS는 질병 표적 단백질의 진화 정보를 활용해 화합물 예측 정확도를 높인 새로운 AI 모델로, 현재 KIST 강릉분원 천연물연구소에서 천연물 신약 후보물질을 발굴하는 데 활용되고 있다. 본선에서는 실험적 결합 데이터 외에도 화합물의 결합력, 물성, 화학구조의 독창성을 종합적으로 고려한 심사가 진행됐다. 심사 결과, KIST(대한민국), 오타와대학교(캐나다), 브리티시 컬럼비아 대학교(캐나다), 베를린자유대학교(독일) 연구팀이 최종 우승팀으로 선정됐다. 연구팀은 코로나19 바이러스의 Nsp3 단백질을 표적으로 하는 혁신적인 저분자 화합물을 제시해 KIST의 AI 기반 신약 개발 기술의 우수성과 국제적 경쟁력을 입증했다. 향후 국내외 연구기관 및 제약사와의 공동연구를 통해 AI 기반 신약 개발 연구를 선도할 것으로 기대된다. 또한, 천연물 신약 개발을 통해 희귀질환과 난치병 치료 등 그동안 주목받지 못했던 분야에서 새로운 산업 창출의 가능성을 열어갈 것으로 보인다. KIST 박근완 박사는 “AI를 활용한 신약 개발 연구가 코로나바이러스와 같은 치명적인 감염병 해결에 기여할 수 있다는 가능성을 보여주었다”라며, “이번 대회 결과를 바탕으로 국내외 기관과의 연구 협력과 정보 교류 활성화를 통해 글로벌 경쟁력을 갖춘 신약 개발 연구를 수행할 계획이다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 해양수산부(장관 강도형) 국가생명연구자원 선진화사업(RS-2021-KS211526)을 통해 진행됐다. 이번 대회 결과는 CACHE 공식 홈페이지에 발표됐다. [그림 1] CACHE 챌린지 대회 설명 CACHE 챌린지에서 질병 표적 단백질이 정해지면 각 참가팀은 고유한 계산 방법을 이용해서 표적에 가장 잘 결합할 수 있는 화합물을 컴퓨터를 통해 가상으로 스크리닝한다. 참가팀에서 제출한 화합물은 CACHE 주최 측에서 실험적 검증을 거친 뒤 화합물의 구조적 독창성과 표적에 대한 결합력을 평가하여 최종 우승팀을 선정하게 된다. 그림 출처: https://www.nature.com/articles/s41570-022-00363-z [그림 2] 제3회 CACHE 챌린지 대회 일정 (2022-12-02) CACHE 챌린지 제안서 접수 시작 (2023-01-01) 제안서 평가 및 1차 본선 진출팀 선정 (2023-03-15) 참가팀 화합물 예측 시작, 후보 화합물 제시 (최대 100개) (2023-10-31) 실험 검증 데이터 공유, 2차 본선 진출팀 선정 (2024-01-01) 2차 본선 진출 팀에 한해 화합물 2차 예측 (최대 50개) (2024-07-01) 2차 실험 검증 데이터 공유 (2024-12-11) 대회 마감 및 모든 데이터 일반에 공개 [그림 3] CACHE 챌린지에 활용한 KIST 화합물 예측 모델 KIST에서 자체 개발한 화합물 활성 예측 모델인 Evolutionary Chemical Binding Similarity (ECBS) 모델의 개념도이다. 표적 단백질의 진화 정보를 활용하여 화합물 예측의 정확도를 높인 AI 모델이며, CACHE 챌린지에서 해당 모델을 활용해 코로나 바이러스 저해 화합물을 탐색하였다. [그림 4] AI 기반 화합물 가상 탐색 절차 모식도 컴퓨터와 AI 기술을 통해 신약후보물질을 효율적으로 탐색하는 가상 탐색 (Virtual Screening) 절차를 보여준다. 많은 비용과 시간이 소요되는 실험 기반 방법과 비교하여 AI 기술을 활용함으로써 최소한의 실험을 통해 효율적인 신약후보물질 발굴이 가능하다.
KIST, 신약 발굴 AI 기술로 세계 최상위 팀 선정
KIST, 신약 발굴 AI 기술로 세계 최상위 팀 선정 - 자체 AI 기술로 신약후보물질 발굴 국제대회 CACHE 챌린지 상위 4개 팀으로 선정 코로나19 바이러스 치료를 위한 가장 독창적인 후보물질 제시 성공 한국과학기술연구원(KIST, 원장 오상록) 천연물시스템생물연구센터 박근완 박사팀은 제3회 CACHE 챌린지 중 코로나19 바이러스 표적 신약 후보 발굴 부문에서 세계 최상위 4개 팀에 선정됐다고 밝혔다. 신약 후보 예측 대회인 CACHE 챌린지에서는 가장 높은 성능을 보이는 AI 기술을 발표하며, 대회에서 얻어지는 모든 데이터는 일반에 공개해 후속 신약 개발 연구를 지원한다. 이와 같은 공동체 중심의 신약 개발 패러다임은 알파폴드가 참가한 단백질 구조 예측 대회인 CASP과 유사하다. CACHE(Critical Assessment of Computational Hit-finding Experiments)는 다양한 신약 후보 물질 발굴 인공지능(AI) 방법의 예측 성능을 공정하게 평가하기 위해 2021년 조직된 국제적인 컨소시엄이다. 아스트라제네카, 바이엘, 베링거인겔하임 등 글로벌 제약사들과 협력하고 캐나다 정부와 미국 국립보건원(NIH)의 후원을 받고 있다. 이번 CACHE 챌린지는 코로나19 바이러스와 같은 치명적인 감염병 억제 약물 개발을 목표로 11개국 23개 본선 진출 팀이 약 2년간 경쟁하며 진행됐다. 참가팀들은 컴퓨터 기반 AI 예측 기술을 활용해 총 1,739개의 신약후보물질을 제안했으며, 2023년 1월 본선 참가팀이 선정된 이후 2024년 12월 최종 결과가 발표됐다. KIST 연구팀은 천연물 신약 개발을 위해 자체 개발한 ECBS(Evolutionary Chemical Binding Similarity, 진화적 화합물 결합 유사성)라는 AI 모델을 활용했다. ECBS는 질병 표적 단백질의 진화 정보를 활용해 화합물 예측 정확도를 높인 새로운 AI 모델로, 현재 KIST 강릉분원 천연물연구소에서 천연물 신약 후보물질을 발굴하는 데 활용되고 있다. 본선에서는 실험적 결합 데이터 외에도 화합물의 결합력, 물성, 화학구조의 독창성을 종합적으로 고려한 심사가 진행됐다. 심사 결과, KIST(대한민국), 오타와대학교(캐나다), 브리티시 컬럼비아 대학교(캐나다), 베를린자유대학교(독일) 연구팀이 최종 우승팀으로 선정됐다. 연구팀은 코로나19 바이러스의 Nsp3 단백질을 표적으로 하는 혁신적인 저분자 화합물을 제시해 KIST의 AI 기반 신약 개발 기술의 우수성과 국제적 경쟁력을 입증했다. 향후 국내외 연구기관 및 제약사와의 공동연구를 통해 AI 기반 신약 개발 연구를 선도할 것으로 기대된다. 또한, 천연물 신약 개발을 통해 희귀질환과 난치병 치료 등 그동안 주목받지 못했던 분야에서 새로운 산업 창출의 가능성을 열어갈 것으로 보인다. KIST 박근완 박사는 “AI를 활용한 신약 개발 연구가 코로나바이러스와 같은 치명적인 감염병 해결에 기여할 수 있다는 가능성을 보여주었다”라며, “이번 대회 결과를 바탕으로 국내외 기관과의 연구 협력과 정보 교류 활성화를 통해 글로벌 경쟁력을 갖춘 신약 개발 연구를 수행할 계획이다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 해양수산부(장관 강도형) 국가생명연구자원 선진화사업(RS-2021-KS211526)을 통해 진행됐다. 이번 대회 결과는 CACHE 공식 홈페이지에 발표됐다. [그림 1] CACHE 챌린지 대회 설명 CACHE 챌린지에서 질병 표적 단백질이 정해지면 각 참가팀은 고유한 계산 방법을 이용해서 표적에 가장 잘 결합할 수 있는 화합물을 컴퓨터를 통해 가상으로 스크리닝한다. 참가팀에서 제출한 화합물은 CACHE 주최 측에서 실험적 검증을 거친 뒤 화합물의 구조적 독창성과 표적에 대한 결합력을 평가하여 최종 우승팀을 선정하게 된다. 그림 출처: https://www.nature.com/articles/s41570-022-00363-z [그림 2] 제3회 CACHE 챌린지 대회 일정 (2022-12-02) CACHE 챌린지 제안서 접수 시작 (2023-01-01) 제안서 평가 및 1차 본선 진출팀 선정 (2023-03-15) 참가팀 화합물 예측 시작, 후보 화합물 제시 (최대 100개) (2023-10-31) 실험 검증 데이터 공유, 2차 본선 진출팀 선정 (2024-01-01) 2차 본선 진출 팀에 한해 화합물 2차 예측 (최대 50개) (2024-07-01) 2차 실험 검증 데이터 공유 (2024-12-11) 대회 마감 및 모든 데이터 일반에 공개 [그림 3] CACHE 챌린지에 활용한 KIST 화합물 예측 모델 KIST에서 자체 개발한 화합물 활성 예측 모델인 Evolutionary Chemical Binding Similarity (ECBS) 모델의 개념도이다. 표적 단백질의 진화 정보를 활용하여 화합물 예측의 정확도를 높인 AI 모델이며, CACHE 챌린지에서 해당 모델을 활용해 코로나 바이러스 저해 화합물을 탐색하였다. [그림 4] AI 기반 화합물 가상 탐색 절차 모식도 컴퓨터와 AI 기술을 통해 신약후보물질을 효율적으로 탐색하는 가상 탐색 (Virtual Screening) 절차를 보여준다. 많은 비용과 시간이 소요되는 실험 기반 방법과 비교하여 AI 기술을 활용함으로써 최소한의 실험을 통해 효율적인 신약후보물질 발굴이 가능하다.