검색결과
게시물 키워드""에 대한 9493개의 검색결과를 찾았습니다.
KIST, 신축성 투명전극 대형화 성공 스트레처블 디스플레이 제작 가능
- 대면적화와 패턴 제조기술 개발, 향후 늘어나는 디스플레이 등에 응용 - 휘어있는 은 나노와이어 네트워크의 신축 기판 위 범용 제작 기술 개발 국내 연구진이 휘어지고, 늘어나기도 하는 투명전극의 대형화에 성공했다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 광전하이브리드연구센터 이상수, 손정곤 박사 연구팀이 높은 투명도에서도 신축성과 전기전도성을 유지할 수 있는 은 나노와이어 전극을 A4용지 크기 이상의 대면적으로 제작하는 기술을 개발했다고 밝혔다. 투명전극은 전기가 흐르는 전극이면서 투명하므로 태양전지, 터치스크린 기반의 디스플레이 장치 등에 필수적인 요소이다. 현재 상용화되어 활용되고 있는 것은 인듐주석산화물(ITO) 기반의 투명전극인데, ITO기반의 투명전극은 금속 산화물 성분이기에 유연성이 매우 낮아, 향후 휴대형 전자기기의 주류를 이룰 것으로 예측되는 플렉서블 및 웨어러블 기기에는 활용할 수 없어 유연성이 특화된 새로운 투명전극 개발이 필요하다. 은 나노와이어는 단면 지름이 수십 나노미터인, 가늘고 긴 막대 형태의 은(Ag) 성분의 나노소재이다. 매우 미세한 크기로 인해 외부에서 가해지는 힘에 따라 구부러질 수 있으며, 은 고유의 뛰어난 전기전도성과 함께 나노와이어가 엉켜있는 형태인 나노 네트워크를 구성하여 투명도 높은 필름을 만들 수 있어서, 차세대 유연 투명전극 소재로 주목받고 있다. 하지만, 은 나노와이어는 구부러질 수 있어서 유연하기는 하지만 늘어나는 소재로 활용할 수는 없었다. 기존 유연전극 연구그룹들은 신축성 기판을 늘려놓은 뒤 그 위에 은 나노와이어를 배치한 후 원래 크기로 돌려놓는 과정을 통해 구부러진 구조의 은 나노와이어를 구현하는 연구를 진행해 왔지만, 이 경우 늘임-이완을 몇 회만 반복해도 쉽게 끊어진다. 이를 보완하고자 나노와이어의 양을 증가시켜 높은 밀도의 나노와이어 네트워크를 제작하면 나노와이어가 부분적으로 끊어지더라도 전기적 연결이 계속 유지되도록 할 수 있어서 신축 전극으로 활용할 수 있으나, 이 경우에는 투명도가 크게 저하되기에 투명도와 전도도를 동시에 가지면서 신축 변형이 가능한 투명전극을 제조하는 것은 매우 어려웠다. KIST 이상수, 손정곤 박사팀은 미리 늘려놓은 기판 위에 나노와이어를 배치한 다음 늘어난 기판을 다시 이완시킬 때 나노와이어가 부러지거나 손상되는 현상을 극복하고자 나노와이어 네트워크에 용매를 접촉한 상태에서 늘임-이완을 진행하는 공정을 새롭게 제안하였다. 용매에 접촉하면 나노와이어가 젖으면서 나노와이어 사이의 마찰 저항이 감소하게 되어 기판과 함께 안정적으로 변형될 수 있게 되어, 나노와이어 네트워크가 부러지거나 나노와이어 층이 벗겨지는 불안정한 상태가 만들어지지 않을 수 있었다. 이렇게 제조된 은 나노와이어 네트워크 필름은 50% 이상 늘어날 수 있었으며, 5000번 이상의 반복적인 늘임에도 투명성과 전도성을 안정적으로 유지했다. 또한, 마찰저항을 경감시키는 용매로서 에탄올 등과 함께 물이 좋은 결과를 보임으로써 저렴하고 친환경적인 공정의 구성이 가능함을 입증하였다. KIST 연구진은 개발된 제작 공정으로 A4 종이 크기의 기판에도 휘어있는 은 나노와이어 네트워크 필름을 형성 할 수 있었고, 이를 통해 어른 손바닥 크기의 신축성 투명 디스플레이를 구현할 수 있었다. 다양한 기계적 변형을 가함에도 불구하고 디스플레이 소자의 발광효율은 일정하게 유지되었으며 빛을 내는 발광체 층 이외에는 모두 투명한 투명 디스플레이로서의 적용 가능성 또한 입증하였다. KIST 이상수 박사는 “본 연구를 통해 개발된 휘어있는 은 나노와이어 신축 투명전극 제작 기술은 어떠한 변형에도 전기전도도가 변하지 않는 특성을 가진다.”라고 밝혔으며, KIST 손정곤 박사는 “대면적화 양산 공정에도 사용될 수 있으므로 고기능성 스마트웨어를 포함한 웨어러블 전자기기 산업 및 의료기기 분야에 새로운 파급력을 가져올 것으로 기대한다.”라고 연구의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원 사업으로 수행되었다. 이번 연구결과는 소재 분야 최고 권위지인 ‘Advanced Functional Materials’ (IF: 15.621) 최신 호에 게재되었다. * (논문명) Buckling Instability Control of 1D Nanowire Networks for a Large-Area Stretchable and Transparent Electrode - (제 1저자) 한국과학기술연구원 김병수 박사 (현재, U. Michigan Postdoc) - (제 1저자) 한국과학기술연구원 권현정 박사과정 - (제 1저자) 한국과학기술연구원 권효원 석사 (현재, LG Display) - (교신저자) 한국과학기술연구원 이상수 책임연구원 - (교신저자) 한국과학기술연구원 손정곤 책임연구원 <그림설명> [그림 1] 기존의 미리 잡아당기는 방법을 사용하여 탄성체 기판에서 은 나노와이어를 코팅시 용매 접촉을 했을 때와 안했을 때 만들어지는 구조의 도식 이미지와 전자 현미경 사진. 직선으로 곧은 나노와이어 네트워크와 뾰족하게 접혀지고 깨진 나노와이어 네트워크, 마지막으로 물을 통해서 형성되는 큰 곡률반경으로 굽어진 은나노와이어 네트워크 [그림 2] 큰 곡률반경으로 휘어있는 은 나노와이어 네트워크 기반 신축 투명 전극을 기반으로 한 KIST 로고 패턴의 ZnS:Cu 기반 신축/투명 교류 전자 발광 (ACEL) 장치의 도식 이미지 및 사진 이미지. 신축성 및 투명한 ZnS:Cu ACEL 소자의 전자 발광 이미지 및 40% 인장시 및 비틀림 및 롤링을 포함한 다양한 기계적 변형에서 작동하는 사진 이미지
KIST, 신축성 투명전극 대형화 성공 스트레처블 디스플레이 제작 가능
- 대면적화와 패턴 제조기술 개발, 향후 늘어나는 디스플레이 등에 응용 - 휘어있는 은 나노와이어 네트워크의 신축 기판 위 범용 제작 기술 개발 국내 연구진이 휘어지고, 늘어나기도 하는 투명전극의 대형화에 성공했다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 광전하이브리드연구센터 이상수, 손정곤 박사 연구팀이 높은 투명도에서도 신축성과 전기전도성을 유지할 수 있는 은 나노와이어 전극을 A4용지 크기 이상의 대면적으로 제작하는 기술을 개발했다고 밝혔다. 투명전극은 전기가 흐르는 전극이면서 투명하므로 태양전지, 터치스크린 기반의 디스플레이 장치 등에 필수적인 요소이다. 현재 상용화되어 활용되고 있는 것은 인듐주석산화물(ITO) 기반의 투명전극인데, ITO기반의 투명전극은 금속 산화물 성분이기에 유연성이 매우 낮아, 향후 휴대형 전자기기의 주류를 이룰 것으로 예측되는 플렉서블 및 웨어러블 기기에는 활용할 수 없어 유연성이 특화된 새로운 투명전극 개발이 필요하다. 은 나노와이어는 단면 지름이 수십 나노미터인, 가늘고 긴 막대 형태의 은(Ag) 성분의 나노소재이다. 매우 미세한 크기로 인해 외부에서 가해지는 힘에 따라 구부러질 수 있으며, 은 고유의 뛰어난 전기전도성과 함께 나노와이어가 엉켜있는 형태인 나노 네트워크를 구성하여 투명도 높은 필름을 만들 수 있어서, 차세대 유연 투명전극 소재로 주목받고 있다. 하지만, 은 나노와이어는 구부러질 수 있어서 유연하기는 하지만 늘어나는 소재로 활용할 수는 없었다. 기존 유연전극 연구그룹들은 신축성 기판을 늘려놓은 뒤 그 위에 은 나노와이어를 배치한 후 원래 크기로 돌려놓는 과정을 통해 구부러진 구조의 은 나노와이어를 구현하는 연구를 진행해 왔지만, 이 경우 늘임-이완을 몇 회만 반복해도 쉽게 끊어진다. 이를 보완하고자 나노와이어의 양을 증가시켜 높은 밀도의 나노와이어 네트워크를 제작하면 나노와이어가 부분적으로 끊어지더라도 전기적 연결이 계속 유지되도록 할 수 있어서 신축 전극으로 활용할 수 있으나, 이 경우에는 투명도가 크게 저하되기에 투명도와 전도도를 동시에 가지면서 신축 변형이 가능한 투명전극을 제조하는 것은 매우 어려웠다. KIST 이상수, 손정곤 박사팀은 미리 늘려놓은 기판 위에 나노와이어를 배치한 다음 늘어난 기판을 다시 이완시킬 때 나노와이어가 부러지거나 손상되는 현상을 극복하고자 나노와이어 네트워크에 용매를 접촉한 상태에서 늘임-이완을 진행하는 공정을 새롭게 제안하였다. 용매에 접촉하면 나노와이어가 젖으면서 나노와이어 사이의 마찰 저항이 감소하게 되어 기판과 함께 안정적으로 변형될 수 있게 되어, 나노와이어 네트워크가 부러지거나 나노와이어 층이 벗겨지는 불안정한 상태가 만들어지지 않을 수 있었다. 이렇게 제조된 은 나노와이어 네트워크 필름은 50% 이상 늘어날 수 있었으며, 5000번 이상의 반복적인 늘임에도 투명성과 전도성을 안정적으로 유지했다. 또한, 마찰저항을 경감시키는 용매로서 에탄올 등과 함께 물이 좋은 결과를 보임으로써 저렴하고 친환경적인 공정의 구성이 가능함을 입증하였다. KIST 연구진은 개발된 제작 공정으로 A4 종이 크기의 기판에도 휘어있는 은 나노와이어 네트워크 필름을 형성 할 수 있었고, 이를 통해 어른 손바닥 크기의 신축성 투명 디스플레이를 구현할 수 있었다. 다양한 기계적 변형을 가함에도 불구하고 디스플레이 소자의 발광효율은 일정하게 유지되었으며 빛을 내는 발광체 층 이외에는 모두 투명한 투명 디스플레이로서의 적용 가능성 또한 입증하였다. KIST 이상수 박사는 “본 연구를 통해 개발된 휘어있는 은 나노와이어 신축 투명전극 제작 기술은 어떠한 변형에도 전기전도도가 변하지 않는 특성을 가진다.”라고 밝혔으며, KIST 손정곤 박사는 “대면적화 양산 공정에도 사용될 수 있으므로 고기능성 스마트웨어를 포함한 웨어러블 전자기기 산업 및 의료기기 분야에 새로운 파급력을 가져올 것으로 기대한다.”라고 연구의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원 사업으로 수행되었다. 이번 연구결과는 소재 분야 최고 권위지인 ‘Advanced Functional Materials’ (IF: 15.621) 최신 호에 게재되었다. * (논문명) Buckling Instability Control of 1D Nanowire Networks for a Large-Area Stretchable and Transparent Electrode - (제 1저자) 한국과학기술연구원 김병수 박사 (현재, U. Michigan Postdoc) - (제 1저자) 한국과학기술연구원 권현정 박사과정 - (제 1저자) 한국과학기술연구원 권효원 석사 (현재, LG Display) - (교신저자) 한국과학기술연구원 이상수 책임연구원 - (교신저자) 한국과학기술연구원 손정곤 책임연구원 <그림설명> [그림 1] 기존의 미리 잡아당기는 방법을 사용하여 탄성체 기판에서 은 나노와이어를 코팅시 용매 접촉을 했을 때와 안했을 때 만들어지는 구조의 도식 이미지와 전자 현미경 사진. 직선으로 곧은 나노와이어 네트워크와 뾰족하게 접혀지고 깨진 나노와이어 네트워크, 마지막으로 물을 통해서 형성되는 큰 곡률반경으로 굽어진 은나노와이어 네트워크 [그림 2] 큰 곡률반경으로 휘어있는 은 나노와이어 네트워크 기반 신축 투명 전극을 기반으로 한 KIST 로고 패턴의 ZnS:Cu 기반 신축/투명 교류 전자 발광 (ACEL) 장치의 도식 이미지 및 사진 이미지. 신축성 및 투명한 ZnS:Cu ACEL 소자의 전자 발광 이미지 및 40% 인장시 및 비틀림 및 롤링을 포함한 다양한 기계적 변형에서 작동하는 사진 이미지
KIST, 신축성 투명전극 대형화 성공 스트레처블 디스플레이 제작 가능
- 대면적화와 패턴 제조기술 개발, 향후 늘어나는 디스플레이 등에 응용 - 휘어있는 은 나노와이어 네트워크의 신축 기판 위 범용 제작 기술 개발 국내 연구진이 휘어지고, 늘어나기도 하는 투명전극의 대형화에 성공했다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 광전하이브리드연구센터 이상수, 손정곤 박사 연구팀이 높은 투명도에서도 신축성과 전기전도성을 유지할 수 있는 은 나노와이어 전극을 A4용지 크기 이상의 대면적으로 제작하는 기술을 개발했다고 밝혔다. 투명전극은 전기가 흐르는 전극이면서 투명하므로 태양전지, 터치스크린 기반의 디스플레이 장치 등에 필수적인 요소이다. 현재 상용화되어 활용되고 있는 것은 인듐주석산화물(ITO) 기반의 투명전극인데, ITO기반의 투명전극은 금속 산화물 성분이기에 유연성이 매우 낮아, 향후 휴대형 전자기기의 주류를 이룰 것으로 예측되는 플렉서블 및 웨어러블 기기에는 활용할 수 없어 유연성이 특화된 새로운 투명전극 개발이 필요하다. 은 나노와이어는 단면 지름이 수십 나노미터인, 가늘고 긴 막대 형태의 은(Ag) 성분의 나노소재이다. 매우 미세한 크기로 인해 외부에서 가해지는 힘에 따라 구부러질 수 있으며, 은 고유의 뛰어난 전기전도성과 함께 나노와이어가 엉켜있는 형태인 나노 네트워크를 구성하여 투명도 높은 필름을 만들 수 있어서, 차세대 유연 투명전극 소재로 주목받고 있다. 하지만, 은 나노와이어는 구부러질 수 있어서 유연하기는 하지만 늘어나는 소재로 활용할 수는 없었다. 기존 유연전극 연구그룹들은 신축성 기판을 늘려놓은 뒤 그 위에 은 나노와이어를 배치한 후 원래 크기로 돌려놓는 과정을 통해 구부러진 구조의 은 나노와이어를 구현하는 연구를 진행해 왔지만, 이 경우 늘임-이완을 몇 회만 반복해도 쉽게 끊어진다. 이를 보완하고자 나노와이어의 양을 증가시켜 높은 밀도의 나노와이어 네트워크를 제작하면 나노와이어가 부분적으로 끊어지더라도 전기적 연결이 계속 유지되도록 할 수 있어서 신축 전극으로 활용할 수 있으나, 이 경우에는 투명도가 크게 저하되기에 투명도와 전도도를 동시에 가지면서 신축 변형이 가능한 투명전극을 제조하는 것은 매우 어려웠다. KIST 이상수, 손정곤 박사팀은 미리 늘려놓은 기판 위에 나노와이어를 배치한 다음 늘어난 기판을 다시 이완시킬 때 나노와이어가 부러지거나 손상되는 현상을 극복하고자 나노와이어 네트워크에 용매를 접촉한 상태에서 늘임-이완을 진행하는 공정을 새롭게 제안하였다. 용매에 접촉하면 나노와이어가 젖으면서 나노와이어 사이의 마찰 저항이 감소하게 되어 기판과 함께 안정적으로 변형될 수 있게 되어, 나노와이어 네트워크가 부러지거나 나노와이어 층이 벗겨지는 불안정한 상태가 만들어지지 않을 수 있었다. 이렇게 제조된 은 나노와이어 네트워크 필름은 50% 이상 늘어날 수 있었으며, 5000번 이상의 반복적인 늘임에도 투명성과 전도성을 안정적으로 유지했다. 또한, 마찰저항을 경감시키는 용매로서 에탄올 등과 함께 물이 좋은 결과를 보임으로써 저렴하고 친환경적인 공정의 구성이 가능함을 입증하였다. KIST 연구진은 개발된 제작 공정으로 A4 종이 크기의 기판에도 휘어있는 은 나노와이어 네트워크 필름을 형성 할 수 있었고, 이를 통해 어른 손바닥 크기의 신축성 투명 디스플레이를 구현할 수 있었다. 다양한 기계적 변형을 가함에도 불구하고 디스플레이 소자의 발광효율은 일정하게 유지되었으며 빛을 내는 발광체 층 이외에는 모두 투명한 투명 디스플레이로서의 적용 가능성 또한 입증하였다. KIST 이상수 박사는 “본 연구를 통해 개발된 휘어있는 은 나노와이어 신축 투명전극 제작 기술은 어떠한 변형에도 전기전도도가 변하지 않는 특성을 가진다.”라고 밝혔으며, KIST 손정곤 박사는 “대면적화 양산 공정에도 사용될 수 있으므로 고기능성 스마트웨어를 포함한 웨어러블 전자기기 산업 및 의료기기 분야에 새로운 파급력을 가져올 것으로 기대한다.”라고 연구의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원 사업으로 수행되었다. 이번 연구결과는 소재 분야 최고 권위지인 ‘Advanced Functional Materials’ (IF: 15.621) 최신 호에 게재되었다. * (논문명) Buckling Instability Control of 1D Nanowire Networks for a Large-Area Stretchable and Transparent Electrode - (제 1저자) 한국과학기술연구원 김병수 박사 (현재, U. Michigan Postdoc) - (제 1저자) 한국과학기술연구원 권현정 박사과정 - (제 1저자) 한국과학기술연구원 권효원 석사 (현재, LG Display) - (교신저자) 한국과학기술연구원 이상수 책임연구원 - (교신저자) 한국과학기술연구원 손정곤 책임연구원 <그림설명> [그림 1] 기존의 미리 잡아당기는 방법을 사용하여 탄성체 기판에서 은 나노와이어를 코팅시 용매 접촉을 했을 때와 안했을 때 만들어지는 구조의 도식 이미지와 전자 현미경 사진. 직선으로 곧은 나노와이어 네트워크와 뾰족하게 접혀지고 깨진 나노와이어 네트워크, 마지막으로 물을 통해서 형성되는 큰 곡률반경으로 굽어진 은나노와이어 네트워크 [그림 2] 큰 곡률반경으로 휘어있는 은 나노와이어 네트워크 기반 신축 투명 전극을 기반으로 한 KIST 로고 패턴의 ZnS:Cu 기반 신축/투명 교류 전자 발광 (ACEL) 장치의 도식 이미지 및 사진 이미지. 신축성 및 투명한 ZnS:Cu ACEL 소자의 전자 발광 이미지 및 40% 인장시 및 비틀림 및 롤링을 포함한 다양한 기계적 변형에서 작동하는 사진 이미지
KIST, 신축성 투명전극 대형화 성공 스트레처블 디스플레이 제작 가능
- 대면적화와 패턴 제조기술 개발, 향후 늘어나는 디스플레이 등에 응용 - 휘어있는 은 나노와이어 네트워크의 신축 기판 위 범용 제작 기술 개발 국내 연구진이 휘어지고, 늘어나기도 하는 투명전극의 대형화에 성공했다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 광전하이브리드연구센터 이상수, 손정곤 박사 연구팀이 높은 투명도에서도 신축성과 전기전도성을 유지할 수 있는 은 나노와이어 전극을 A4용지 크기 이상의 대면적으로 제작하는 기술을 개발했다고 밝혔다. 투명전극은 전기가 흐르는 전극이면서 투명하므로 태양전지, 터치스크린 기반의 디스플레이 장치 등에 필수적인 요소이다. 현재 상용화되어 활용되고 있는 것은 인듐주석산화물(ITO) 기반의 투명전극인데, ITO기반의 투명전극은 금속 산화물 성분이기에 유연성이 매우 낮아, 향후 휴대형 전자기기의 주류를 이룰 것으로 예측되는 플렉서블 및 웨어러블 기기에는 활용할 수 없어 유연성이 특화된 새로운 투명전극 개발이 필요하다. 은 나노와이어는 단면 지름이 수십 나노미터인, 가늘고 긴 막대 형태의 은(Ag) 성분의 나노소재이다. 매우 미세한 크기로 인해 외부에서 가해지는 힘에 따라 구부러질 수 있으며, 은 고유의 뛰어난 전기전도성과 함께 나노와이어가 엉켜있는 형태인 나노 네트워크를 구성하여 투명도 높은 필름을 만들 수 있어서, 차세대 유연 투명전극 소재로 주목받고 있다. 하지만, 은 나노와이어는 구부러질 수 있어서 유연하기는 하지만 늘어나는 소재로 활용할 수는 없었다. 기존 유연전극 연구그룹들은 신축성 기판을 늘려놓은 뒤 그 위에 은 나노와이어를 배치한 후 원래 크기로 돌려놓는 과정을 통해 구부러진 구조의 은 나노와이어를 구현하는 연구를 진행해 왔지만, 이 경우 늘임-이완을 몇 회만 반복해도 쉽게 끊어진다. 이를 보완하고자 나노와이어의 양을 증가시켜 높은 밀도의 나노와이어 네트워크를 제작하면 나노와이어가 부분적으로 끊어지더라도 전기적 연결이 계속 유지되도록 할 수 있어서 신축 전극으로 활용할 수 있으나, 이 경우에는 투명도가 크게 저하되기에 투명도와 전도도를 동시에 가지면서 신축 변형이 가능한 투명전극을 제조하는 것은 매우 어려웠다. KIST 이상수, 손정곤 박사팀은 미리 늘려놓은 기판 위에 나노와이어를 배치한 다음 늘어난 기판을 다시 이완시킬 때 나노와이어가 부러지거나 손상되는 현상을 극복하고자 나노와이어 네트워크에 용매를 접촉한 상태에서 늘임-이완을 진행하는 공정을 새롭게 제안하였다. 용매에 접촉하면 나노와이어가 젖으면서 나노와이어 사이의 마찰 저항이 감소하게 되어 기판과 함께 안정적으로 변형될 수 있게 되어, 나노와이어 네트워크가 부러지거나 나노와이어 층이 벗겨지는 불안정한 상태가 만들어지지 않을 수 있었다. 이렇게 제조된 은 나노와이어 네트워크 필름은 50% 이상 늘어날 수 있었으며, 5000번 이상의 반복적인 늘임에도 투명성과 전도성을 안정적으로 유지했다. 또한, 마찰저항을 경감시키는 용매로서 에탄올 등과 함께 물이 좋은 결과를 보임으로써 저렴하고 친환경적인 공정의 구성이 가능함을 입증하였다. KIST 연구진은 개발된 제작 공정으로 A4 종이 크기의 기판에도 휘어있는 은 나노와이어 네트워크 필름을 형성 할 수 있었고, 이를 통해 어른 손바닥 크기의 신축성 투명 디스플레이를 구현할 수 있었다. 다양한 기계적 변형을 가함에도 불구하고 디스플레이 소자의 발광효율은 일정하게 유지되었으며 빛을 내는 발광체 층 이외에는 모두 투명한 투명 디스플레이로서의 적용 가능성 또한 입증하였다. KIST 이상수 박사는 “본 연구를 통해 개발된 휘어있는 은 나노와이어 신축 투명전극 제작 기술은 어떠한 변형에도 전기전도도가 변하지 않는 특성을 가진다.”라고 밝혔으며, KIST 손정곤 박사는 “대면적화 양산 공정에도 사용될 수 있으므로 고기능성 스마트웨어를 포함한 웨어러블 전자기기 산업 및 의료기기 분야에 새로운 파급력을 가져올 것으로 기대한다.”라고 연구의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원 사업으로 수행되었다. 이번 연구결과는 소재 분야 최고 권위지인 ‘Advanced Functional Materials’ (IF: 15.621) 최신 호에 게재되었다. * (논문명) Buckling Instability Control of 1D Nanowire Networks for a Large-Area Stretchable and Transparent Electrode - (제 1저자) 한국과학기술연구원 김병수 박사 (현재, U. Michigan Postdoc) - (제 1저자) 한국과학기술연구원 권현정 박사과정 - (제 1저자) 한국과학기술연구원 권효원 석사 (현재, LG Display) - (교신저자) 한국과학기술연구원 이상수 책임연구원 - (교신저자) 한국과학기술연구원 손정곤 책임연구원 <그림설명> [그림 1] 기존의 미리 잡아당기는 방법을 사용하여 탄성체 기판에서 은 나노와이어를 코팅시 용매 접촉을 했을 때와 안했을 때 만들어지는 구조의 도식 이미지와 전자 현미경 사진. 직선으로 곧은 나노와이어 네트워크와 뾰족하게 접혀지고 깨진 나노와이어 네트워크, 마지막으로 물을 통해서 형성되는 큰 곡률반경으로 굽어진 은나노와이어 네트워크 [그림 2] 큰 곡률반경으로 휘어있는 은 나노와이어 네트워크 기반 신축 투명 전극을 기반으로 한 KIST 로고 패턴의 ZnS:Cu 기반 신축/투명 교류 전자 발광 (ACEL) 장치의 도식 이미지 및 사진 이미지. 신축성 및 투명한 ZnS:Cu ACEL 소자의 전자 발광 이미지 및 40% 인장시 및 비틀림 및 롤링을 포함한 다양한 기계적 변형에서 작동하는 사진 이미지
KIST, 신축성 투명전극 대형화 성공 스트레처블 디스플레이 제작 가능
- 대면적화와 패턴 제조기술 개발, 향후 늘어나는 디스플레이 등에 응용 - 휘어있는 은 나노와이어 네트워크의 신축 기판 위 범용 제작 기술 개발 국내 연구진이 휘어지고, 늘어나기도 하는 투명전극의 대형화에 성공했다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 광전하이브리드연구센터 이상수, 손정곤 박사 연구팀이 높은 투명도에서도 신축성과 전기전도성을 유지할 수 있는 은 나노와이어 전극을 A4용지 크기 이상의 대면적으로 제작하는 기술을 개발했다고 밝혔다. 투명전극은 전기가 흐르는 전극이면서 투명하므로 태양전지, 터치스크린 기반의 디스플레이 장치 등에 필수적인 요소이다. 현재 상용화되어 활용되고 있는 것은 인듐주석산화물(ITO) 기반의 투명전극인데, ITO기반의 투명전극은 금속 산화물 성분이기에 유연성이 매우 낮아, 향후 휴대형 전자기기의 주류를 이룰 것으로 예측되는 플렉서블 및 웨어러블 기기에는 활용할 수 없어 유연성이 특화된 새로운 투명전극 개발이 필요하다. 은 나노와이어는 단면 지름이 수십 나노미터인, 가늘고 긴 막대 형태의 은(Ag) 성분의 나노소재이다. 매우 미세한 크기로 인해 외부에서 가해지는 힘에 따라 구부러질 수 있으며, 은 고유의 뛰어난 전기전도성과 함께 나노와이어가 엉켜있는 형태인 나노 네트워크를 구성하여 투명도 높은 필름을 만들 수 있어서, 차세대 유연 투명전극 소재로 주목받고 있다. 하지만, 은 나노와이어는 구부러질 수 있어서 유연하기는 하지만 늘어나는 소재로 활용할 수는 없었다. 기존 유연전극 연구그룹들은 신축성 기판을 늘려놓은 뒤 그 위에 은 나노와이어를 배치한 후 원래 크기로 돌려놓는 과정을 통해 구부러진 구조의 은 나노와이어를 구현하는 연구를 진행해 왔지만, 이 경우 늘임-이완을 몇 회만 반복해도 쉽게 끊어진다. 이를 보완하고자 나노와이어의 양을 증가시켜 높은 밀도의 나노와이어 네트워크를 제작하면 나노와이어가 부분적으로 끊어지더라도 전기적 연결이 계속 유지되도록 할 수 있어서 신축 전극으로 활용할 수 있으나, 이 경우에는 투명도가 크게 저하되기에 투명도와 전도도를 동시에 가지면서 신축 변형이 가능한 투명전극을 제조하는 것은 매우 어려웠다. KIST 이상수, 손정곤 박사팀은 미리 늘려놓은 기판 위에 나노와이어를 배치한 다음 늘어난 기판을 다시 이완시킬 때 나노와이어가 부러지거나 손상되는 현상을 극복하고자 나노와이어 네트워크에 용매를 접촉한 상태에서 늘임-이완을 진행하는 공정을 새롭게 제안하였다. 용매에 접촉하면 나노와이어가 젖으면서 나노와이어 사이의 마찰 저항이 감소하게 되어 기판과 함께 안정적으로 변형될 수 있게 되어, 나노와이어 네트워크가 부러지거나 나노와이어 층이 벗겨지는 불안정한 상태가 만들어지지 않을 수 있었다. 이렇게 제조된 은 나노와이어 네트워크 필름은 50% 이상 늘어날 수 있었으며, 5000번 이상의 반복적인 늘임에도 투명성과 전도성을 안정적으로 유지했다. 또한, 마찰저항을 경감시키는 용매로서 에탄올 등과 함께 물이 좋은 결과를 보임으로써 저렴하고 친환경적인 공정의 구성이 가능함을 입증하였다. KIST 연구진은 개발된 제작 공정으로 A4 종이 크기의 기판에도 휘어있는 은 나노와이어 네트워크 필름을 형성 할 수 있었고, 이를 통해 어른 손바닥 크기의 신축성 투명 디스플레이를 구현할 수 있었다. 다양한 기계적 변형을 가함에도 불구하고 디스플레이 소자의 발광효율은 일정하게 유지되었으며 빛을 내는 발광체 층 이외에는 모두 투명한 투명 디스플레이로서의 적용 가능성 또한 입증하였다. KIST 이상수 박사는 “본 연구를 통해 개발된 휘어있는 은 나노와이어 신축 투명전극 제작 기술은 어떠한 변형에도 전기전도도가 변하지 않는 특성을 가진다.”라고 밝혔으며, KIST 손정곤 박사는 “대면적화 양산 공정에도 사용될 수 있으므로 고기능성 스마트웨어를 포함한 웨어러블 전자기기 산업 및 의료기기 분야에 새로운 파급력을 가져올 것으로 기대한다.”라고 연구의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원 사업으로 수행되었다. 이번 연구결과는 소재 분야 최고 권위지인 ‘Advanced Functional Materials’ (IF: 15.621) 최신 호에 게재되었다. * (논문명) Buckling Instability Control of 1D Nanowire Networks for a Large-Area Stretchable and Transparent Electrode - (제 1저자) 한국과학기술연구원 김병수 박사 (현재, U. Michigan Postdoc) - (제 1저자) 한국과학기술연구원 권현정 박사과정 - (제 1저자) 한국과학기술연구원 권효원 석사 (현재, LG Display) - (교신저자) 한국과학기술연구원 이상수 책임연구원 - (교신저자) 한국과학기술연구원 손정곤 책임연구원 <그림설명> [그림 1] 기존의 미리 잡아당기는 방법을 사용하여 탄성체 기판에서 은 나노와이어를 코팅시 용매 접촉을 했을 때와 안했을 때 만들어지는 구조의 도식 이미지와 전자 현미경 사진. 직선으로 곧은 나노와이어 네트워크와 뾰족하게 접혀지고 깨진 나노와이어 네트워크, 마지막으로 물을 통해서 형성되는 큰 곡률반경으로 굽어진 은나노와이어 네트워크 [그림 2] 큰 곡률반경으로 휘어있는 은 나노와이어 네트워크 기반 신축 투명 전극을 기반으로 한 KIST 로고 패턴의 ZnS:Cu 기반 신축/투명 교류 전자 발광 (ACEL) 장치의 도식 이미지 및 사진 이미지. 신축성 및 투명한 ZnS:Cu ACEL 소자의 전자 발광 이미지 및 40% 인장시 및 비틀림 및 롤링을 포함한 다양한 기계적 변형에서 작동하는 사진 이미지
KIST, 신축성 투명전극 대형화 성공 스트레처블 디스플레이 제작 가능
- 대면적화와 패턴 제조기술 개발, 향후 늘어나는 디스플레이 등에 응용 - 휘어있는 은 나노와이어 네트워크의 신축 기판 위 범용 제작 기술 개발 국내 연구진이 휘어지고, 늘어나기도 하는 투명전극의 대형화에 성공했다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 광전하이브리드연구센터 이상수, 손정곤 박사 연구팀이 높은 투명도에서도 신축성과 전기전도성을 유지할 수 있는 은 나노와이어 전극을 A4용지 크기 이상의 대면적으로 제작하는 기술을 개발했다고 밝혔다. 투명전극은 전기가 흐르는 전극이면서 투명하므로 태양전지, 터치스크린 기반의 디스플레이 장치 등에 필수적인 요소이다. 현재 상용화되어 활용되고 있는 것은 인듐주석산화물(ITO) 기반의 투명전극인데, ITO기반의 투명전극은 금속 산화물 성분이기에 유연성이 매우 낮아, 향후 휴대형 전자기기의 주류를 이룰 것으로 예측되는 플렉서블 및 웨어러블 기기에는 활용할 수 없어 유연성이 특화된 새로운 투명전극 개발이 필요하다. 은 나노와이어는 단면 지름이 수십 나노미터인, 가늘고 긴 막대 형태의 은(Ag) 성분의 나노소재이다. 매우 미세한 크기로 인해 외부에서 가해지는 힘에 따라 구부러질 수 있으며, 은 고유의 뛰어난 전기전도성과 함께 나노와이어가 엉켜있는 형태인 나노 네트워크를 구성하여 투명도 높은 필름을 만들 수 있어서, 차세대 유연 투명전극 소재로 주목받고 있다. 하지만, 은 나노와이어는 구부러질 수 있어서 유연하기는 하지만 늘어나는 소재로 활용할 수는 없었다. 기존 유연전극 연구그룹들은 신축성 기판을 늘려놓은 뒤 그 위에 은 나노와이어를 배치한 후 원래 크기로 돌려놓는 과정을 통해 구부러진 구조의 은 나노와이어를 구현하는 연구를 진행해 왔지만, 이 경우 늘임-이완을 몇 회만 반복해도 쉽게 끊어진다. 이를 보완하고자 나노와이어의 양을 증가시켜 높은 밀도의 나노와이어 네트워크를 제작하면 나노와이어가 부분적으로 끊어지더라도 전기적 연결이 계속 유지되도록 할 수 있어서 신축 전극으로 활용할 수 있으나, 이 경우에는 투명도가 크게 저하되기에 투명도와 전도도를 동시에 가지면서 신축 변형이 가능한 투명전극을 제조하는 것은 매우 어려웠다. KIST 이상수, 손정곤 박사팀은 미리 늘려놓은 기판 위에 나노와이어를 배치한 다음 늘어난 기판을 다시 이완시킬 때 나노와이어가 부러지거나 손상되는 현상을 극복하고자 나노와이어 네트워크에 용매를 접촉한 상태에서 늘임-이완을 진행하는 공정을 새롭게 제안하였다. 용매에 접촉하면 나노와이어가 젖으면서 나노와이어 사이의 마찰 저항이 감소하게 되어 기판과 함께 안정적으로 변형될 수 있게 되어, 나노와이어 네트워크가 부러지거나 나노와이어 층이 벗겨지는 불안정한 상태가 만들어지지 않을 수 있었다. 이렇게 제조된 은 나노와이어 네트워크 필름은 50% 이상 늘어날 수 있었으며, 5000번 이상의 반복적인 늘임에도 투명성과 전도성을 안정적으로 유지했다. 또한, 마찰저항을 경감시키는 용매로서 에탄올 등과 함께 물이 좋은 결과를 보임으로써 저렴하고 친환경적인 공정의 구성이 가능함을 입증하였다. KIST 연구진은 개발된 제작 공정으로 A4 종이 크기의 기판에도 휘어있는 은 나노와이어 네트워크 필름을 형성 할 수 있었고, 이를 통해 어른 손바닥 크기의 신축성 투명 디스플레이를 구현할 수 있었다. 다양한 기계적 변형을 가함에도 불구하고 디스플레이 소자의 발광효율은 일정하게 유지되었으며 빛을 내는 발광체 층 이외에는 모두 투명한 투명 디스플레이로서의 적용 가능성 또한 입증하였다. KIST 이상수 박사는 “본 연구를 통해 개발된 휘어있는 은 나노와이어 신축 투명전극 제작 기술은 어떠한 변형에도 전기전도도가 변하지 않는 특성을 가진다.”라고 밝혔으며, KIST 손정곤 박사는 “대면적화 양산 공정에도 사용될 수 있으므로 고기능성 스마트웨어를 포함한 웨어러블 전자기기 산업 및 의료기기 분야에 새로운 파급력을 가져올 것으로 기대한다.”라고 연구의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원 사업으로 수행되었다. 이번 연구결과는 소재 분야 최고 권위지인 ‘Advanced Functional Materials’ (IF: 15.621) 최신 호에 게재되었다. * (논문명) Buckling Instability Control of 1D Nanowire Networks for a Large-Area Stretchable and Transparent Electrode - (제 1저자) 한국과학기술연구원 김병수 박사 (현재, U. Michigan Postdoc) - (제 1저자) 한국과학기술연구원 권현정 박사과정 - (제 1저자) 한국과학기술연구원 권효원 석사 (현재, LG Display) - (교신저자) 한국과학기술연구원 이상수 책임연구원 - (교신저자) 한국과학기술연구원 손정곤 책임연구원 <그림설명> [그림 1] 기존의 미리 잡아당기는 방법을 사용하여 탄성체 기판에서 은 나노와이어를 코팅시 용매 접촉을 했을 때와 안했을 때 만들어지는 구조의 도식 이미지와 전자 현미경 사진. 직선으로 곧은 나노와이어 네트워크와 뾰족하게 접혀지고 깨진 나노와이어 네트워크, 마지막으로 물을 통해서 형성되는 큰 곡률반경으로 굽어진 은나노와이어 네트워크 [그림 2] 큰 곡률반경으로 휘어있는 은 나노와이어 네트워크 기반 신축 투명 전극을 기반으로 한 KIST 로고 패턴의 ZnS:Cu 기반 신축/투명 교류 전자 발광 (ACEL) 장치의 도식 이미지 및 사진 이미지. 신축성 및 투명한 ZnS:Cu ACEL 소자의 전자 발광 이미지 및 40% 인장시 및 비틀림 및 롤링을 포함한 다양한 기계적 변형에서 작동하는 사진 이미지
KIST, 신축성 투명전극 대형화 성공 스트레처블 디스플레이 제작 가능
- 대면적화와 패턴 제조기술 개발, 향후 늘어나는 디스플레이 등에 응용 - 휘어있는 은 나노와이어 네트워크의 신축 기판 위 범용 제작 기술 개발 국내 연구진이 휘어지고, 늘어나기도 하는 투명전극의 대형화에 성공했다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 광전하이브리드연구센터 이상수, 손정곤 박사 연구팀이 높은 투명도에서도 신축성과 전기전도성을 유지할 수 있는 은 나노와이어 전극을 A4용지 크기 이상의 대면적으로 제작하는 기술을 개발했다고 밝혔다. 투명전극은 전기가 흐르는 전극이면서 투명하므로 태양전지, 터치스크린 기반의 디스플레이 장치 등에 필수적인 요소이다. 현재 상용화되어 활용되고 있는 것은 인듐주석산화물(ITO) 기반의 투명전극인데, ITO기반의 투명전극은 금속 산화물 성분이기에 유연성이 매우 낮아, 향후 휴대형 전자기기의 주류를 이룰 것으로 예측되는 플렉서블 및 웨어러블 기기에는 활용할 수 없어 유연성이 특화된 새로운 투명전극 개발이 필요하다. 은 나노와이어는 단면 지름이 수십 나노미터인, 가늘고 긴 막대 형태의 은(Ag) 성분의 나노소재이다. 매우 미세한 크기로 인해 외부에서 가해지는 힘에 따라 구부러질 수 있으며, 은 고유의 뛰어난 전기전도성과 함께 나노와이어가 엉켜있는 형태인 나노 네트워크를 구성하여 투명도 높은 필름을 만들 수 있어서, 차세대 유연 투명전극 소재로 주목받고 있다. 하지만, 은 나노와이어는 구부러질 수 있어서 유연하기는 하지만 늘어나는 소재로 활용할 수는 없었다. 기존 유연전극 연구그룹들은 신축성 기판을 늘려놓은 뒤 그 위에 은 나노와이어를 배치한 후 원래 크기로 돌려놓는 과정을 통해 구부러진 구조의 은 나노와이어를 구현하는 연구를 진행해 왔지만, 이 경우 늘임-이완을 몇 회만 반복해도 쉽게 끊어진다. 이를 보완하고자 나노와이어의 양을 증가시켜 높은 밀도의 나노와이어 네트워크를 제작하면 나노와이어가 부분적으로 끊어지더라도 전기적 연결이 계속 유지되도록 할 수 있어서 신축 전극으로 활용할 수 있으나, 이 경우에는 투명도가 크게 저하되기에 투명도와 전도도를 동시에 가지면서 신축 변형이 가능한 투명전극을 제조하는 것은 매우 어려웠다. KIST 이상수, 손정곤 박사팀은 미리 늘려놓은 기판 위에 나노와이어를 배치한 다음 늘어난 기판을 다시 이완시킬 때 나노와이어가 부러지거나 손상되는 현상을 극복하고자 나노와이어 네트워크에 용매를 접촉한 상태에서 늘임-이완을 진행하는 공정을 새롭게 제안하였다. 용매에 접촉하면 나노와이어가 젖으면서 나노와이어 사이의 마찰 저항이 감소하게 되어 기판과 함께 안정적으로 변형될 수 있게 되어, 나노와이어 네트워크가 부러지거나 나노와이어 층이 벗겨지는 불안정한 상태가 만들어지지 않을 수 있었다. 이렇게 제조된 은 나노와이어 네트워크 필름은 50% 이상 늘어날 수 있었으며, 5000번 이상의 반복적인 늘임에도 투명성과 전도성을 안정적으로 유지했다. 또한, 마찰저항을 경감시키는 용매로서 에탄올 등과 함께 물이 좋은 결과를 보임으로써 저렴하고 친환경적인 공정의 구성이 가능함을 입증하였다. KIST 연구진은 개발된 제작 공정으로 A4 종이 크기의 기판에도 휘어있는 은 나노와이어 네트워크 필름을 형성 할 수 있었고, 이를 통해 어른 손바닥 크기의 신축성 투명 디스플레이를 구현할 수 있었다. 다양한 기계적 변형을 가함에도 불구하고 디스플레이 소자의 발광효율은 일정하게 유지되었으며 빛을 내는 발광체 층 이외에는 모두 투명한 투명 디스플레이로서의 적용 가능성 또한 입증하였다. KIST 이상수 박사는 “본 연구를 통해 개발된 휘어있는 은 나노와이어 신축 투명전극 제작 기술은 어떠한 변형에도 전기전도도가 변하지 않는 특성을 가진다.”라고 밝혔으며, KIST 손정곤 박사는 “대면적화 양산 공정에도 사용될 수 있으므로 고기능성 스마트웨어를 포함한 웨어러블 전자기기 산업 및 의료기기 분야에 새로운 파급력을 가져올 것으로 기대한다.”라고 연구의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원 사업으로 수행되었다. 이번 연구결과는 소재 분야 최고 권위지인 ‘Advanced Functional Materials’ (IF: 15.621) 최신 호에 게재되었다. * (논문명) Buckling Instability Control of 1D Nanowire Networks for a Large-Area Stretchable and Transparent Electrode - (제 1저자) 한국과학기술연구원 김병수 박사 (현재, U. Michigan Postdoc) - (제 1저자) 한국과학기술연구원 권현정 박사과정 - (제 1저자) 한국과학기술연구원 권효원 석사 (현재, LG Display) - (교신저자) 한국과학기술연구원 이상수 책임연구원 - (교신저자) 한국과학기술연구원 손정곤 책임연구원 <그림설명> [그림 1] 기존의 미리 잡아당기는 방법을 사용하여 탄성체 기판에서 은 나노와이어를 코팅시 용매 접촉을 했을 때와 안했을 때 만들어지는 구조의 도식 이미지와 전자 현미경 사진. 직선으로 곧은 나노와이어 네트워크와 뾰족하게 접혀지고 깨진 나노와이어 네트워크, 마지막으로 물을 통해서 형성되는 큰 곡률반경으로 굽어진 은나노와이어 네트워크 [그림 2] 큰 곡률반경으로 휘어있는 은 나노와이어 네트워크 기반 신축 투명 전극을 기반으로 한 KIST 로고 패턴의 ZnS:Cu 기반 신축/투명 교류 전자 발광 (ACEL) 장치의 도식 이미지 및 사진 이미지. 신축성 및 투명한 ZnS:Cu ACEL 소자의 전자 발광 이미지 및 40% 인장시 및 비틀림 및 롤링을 포함한 다양한 기계적 변형에서 작동하는 사진 이미지
KIST, 안전보건경영시스템 국제표준(ISO45001) 인증 획득
- 인증서 수여식 및 현판식 개최 KIST 안전보건경영시스템 'ISO 45001' 현판식 한국과학기술연구원(KIST, 원장 윤석진)은 안전보건경영시스템 국제표준(ISO 45001) 인증을 취득하여 12월 24일(금) 인증서를 수여받고 현판식을 개최했다. 안전보건경영시스템(ISO 45001)은 사업장에서의 다양한 위험요인과 사고를 미연에 방지하고 최적의 안전 환경을 조성하고 유지할 수 있도록 안전보건을 체계적으로 관리하기 위한 국제표준 인증제도이다. KIST는 구성원의 안전보건을 최우선으로 하는 경영방침을 아래 전담조직기능 강화와 전문인력 확충 등 안전 역량을 확대·강화하였다. 또한, 안전교육과 안전점검 내실화, 외부전문가가 참여하는 연구실 정밀안전진단, 위험성 평가 등을 통해 연구현장에서 발생할 수 있는 안전사고의 예방과 안전문화 조성을 위한 체계적인 경영활동을 꾸준히 진행해 왔다. 이러한 노력의 결과로 KIST가 안전보건경영 분야 국제표준화기구(ISO) 인증을 획득함으로써 국제표준에 따른 체계적이고 효율적인 안전보건관리가 이루어지고 있음을 인정받게 되었다. 김철 시스템코리아인증원 원장, 윤석진 KIST 원장 윤석진 원장은 “앞으로도 KIST의 모든 구성원들이 안전하고 건강한 일터에서 국가·사회적 역할에 매진할 수 있는 환경을 만들어 가는 데 배전의 노력을 기울이겠다”고 말했다.
KIST, 양자암호 상용화를 위한 핵심기술 개발
- 세계 두 번째로 확장 가능한 TF QKD 네트워크 구조 검증 현대의 암호 체계는 수학적인 문제를 기반으로 공개키와 비밀키를 생성하고, 이를 이용하여 정보를 암호화하고 해독하는 것이 일반적이다. 반면 계산 복잡도가 아닌 양자역학 법칙에 기반하고 있는 양자암호는 양자컴퓨터의 연산 능력과 관계없이 높은 보안성을 보장할 수 있어서 조만간 현대 암호체계를 대체할 수 있을 것으로 보인다. 양자키 분배(QKD, Quantum Key Distribution) 기술은 양자암호의 상용화를 위해 반드시 갖추어야 할 핵심 기술로 꼽힌다. QKD 구현을 위해 해결해야만 하는 주요 기술 이슈는 두 가지가 있다. 첫째는 현재 약 100km내에서만 작동이 제한되는 통신거리이고, 두 번째는 일대일(1:1) 통신에서 일대다(1:N) 또는 다대다(N:N) 네트워크 통신으로 확장하는 것이다. 2018년에 발표된 TF(Twin-field) QKD는 기존 QKD 시스템의 통신거리를 획기적으로 늘릴 수 있는 장거리 프로토콜로 주목받았다. QKD 시스템은 양자신호를 송수신부로 전송하는 과정에서 양자신호의 손실이 발생하는데, TF QKD는 수신자와 송신자가 양쪽에서 동시에 정보를 보낼 수 있고, 제 3자의 측정 장치를 중간에 추가하여 수신자 송신자가 중간까지만 정보를 송신하더라도 통신이 가능하게 하여 통신거리가 증가되는 효과를 가진다. 그러나 TF QKD 프로토콜의 검증은 시스템 개발 난이도가 매우 높아 세계적인 QKD 선도그룹에서만 성공하였고, 네트워크 통신 확장에 관한 연구는 미진한 상태이다. 한국과학기술연구원(KIST, 원장 윤석진)은 양자정보연구단 한상욱 단장 연구팀이 단일 광원을 사용하는 PnP 구조를 적용하여 TF QKD 시스템 작동에 필요한 난이도를 낮추는 것과 동시에, 1:1이 아닌 다대다 네트워크로 확장이 동시에 가능한 시스템 구조를 제안했다고 밝혔다. 이는 캐나다 토론토 대학에 이어 TF QKD 네트워크 실험 검증에서는 세계에서 두 번째로 성공한 것이다. 연구팀은 TF QKD 시스템의 개발 난이도를 개선하기 위해 플러그앤플레이 (Plug and play, PnP) 구조를 적용하였다. 기존 TF-QKD 시스템에서는 송수신자가 각각 양자신호로 두 개의 광원을 사용하였기 때문에 서로 다른 두 광원의 특성을 동일하게 만들기 위한 제어 시스템이 필요하다. KIST 연구팀이 개발한 PnP TF QKD 구조는 하나의 광원으로만 동작하여 제 3자의 측정 장치가 동일한 광원을 양쪽 송수신자에게 전달하고 그 광원을 활용하여 정보를 공유하는 시스템이다. 이러한 이유로, 동일한 양자 신호가 통신 채널을 왕복하기 때문에 채널에서 발생하는 편광 노이즈(잡음)가 자동으로 보상되는 특징을 가지고 있다. 연구팀은 또한 편광, 시간, 파장 분할 기술을 적용하여 2:N 네트워크로 확장 가능한 새로운 TF QKD 네트워크 구조를 제안하고 실험적으로 검증하였다. 이는 세계에서 두 번째로 TF QKD 네트워크 실험 검증에 성공한 사례이다. 최초의 연구사례는 링(Ring) 네트워크 구조인 반면 연구팀의 구조는 별(Star) 네트워크 구조이다. 링 구조는 양자신호가 링에 연결된 모든 곳을 지나야 하지만, 별 구조에서는 중심부만 거치기 때문에 보다 실용적인 QKD 시스템 구현이 가능하다. 연구를 주도한 양자정보연구단 한상욱 단장은 “QKD의 상용화를 가로막던 장거리, 네트워크 확장 두 가지 과제를 동시에 해결한 연구성과”라면서 “장거리 양자암호 네트워크 분야를 리딩할 수 있는 기반 기술을 확보했다는 것에 의의가 있다”고 밝혔다. 이번 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업과 한국연구재단 양자컴퓨팅기술개발사업, IITP 정보통신방송기술개발사업으로 수행되었으며, 연구 결과는 ‘npj Quantum Informaion’ (IF: 7.385 JCR 분야 상위 4.054%) 최신호에 게재되었다. * (논문명) 2×N twin-field quantum key distribution network configuration based on polarization, wavelength, and time division multiplexing - (제 1저자) 한국과학기술연구원 박창훈 학생연구원 - (공동교신저자) 아주대학교 김상인 교수 - (공동교신저자) 한국과학기술연구원 한상욱 책임연구원 그림 설명 [그림 1] 2:N TF QKD 네트워크 구조 [그림 2] 실험 모식도
KIST, 양자암호 상용화를 위한 핵심기술 개발
- 세계 두 번째로 확장 가능한 TF QKD 네트워크 구조 검증 현대의 암호 체계는 수학적인 문제를 기반으로 공개키와 비밀키를 생성하고, 이를 이용하여 정보를 암호화하고 해독하는 것이 일반적이다. 반면 계산 복잡도가 아닌 양자역학 법칙에 기반하고 있는 양자암호는 양자컴퓨터의 연산 능력과 관계없이 높은 보안성을 보장할 수 있어서 조만간 현대 암호체계를 대체할 수 있을 것으로 보인다. 양자키 분배(QKD, Quantum Key Distribution) 기술은 양자암호의 상용화를 위해 반드시 갖추어야 할 핵심 기술로 꼽힌다. QKD 구현을 위해 해결해야만 하는 주요 기술 이슈는 두 가지가 있다. 첫째는 현재 약 100km내에서만 작동이 제한되는 통신거리이고, 두 번째는 일대일(1:1) 통신에서 일대다(1:N) 또는 다대다(N:N) 네트워크 통신으로 확장하는 것이다. 2018년에 발표된 TF(Twin-field) QKD는 기존 QKD 시스템의 통신거리를 획기적으로 늘릴 수 있는 장거리 프로토콜로 주목받았다. QKD 시스템은 양자신호를 송수신부로 전송하는 과정에서 양자신호의 손실이 발생하는데, TF QKD는 수신자와 송신자가 양쪽에서 동시에 정보를 보낼 수 있고, 제 3자의 측정 장치를 중간에 추가하여 수신자 송신자가 중간까지만 정보를 송신하더라도 통신이 가능하게 하여 통신거리가 증가되는 효과를 가진다. 그러나 TF QKD 프로토콜의 검증은 시스템 개발 난이도가 매우 높아 세계적인 QKD 선도그룹에서만 성공하였고, 네트워크 통신 확장에 관한 연구는 미진한 상태이다. 한국과학기술연구원(KIST, 원장 윤석진)은 양자정보연구단 한상욱 단장 연구팀이 단일 광원을 사용하는 PnP 구조를 적용하여 TF QKD 시스템 작동에 필요한 난이도를 낮추는 것과 동시에, 1:1이 아닌 다대다 네트워크로 확장이 동시에 가능한 시스템 구조를 제안했다고 밝혔다. 이는 캐나다 토론토 대학에 이어 TF QKD 네트워크 실험 검증에서는 세계에서 두 번째로 성공한 것이다. 연구팀은 TF QKD 시스템의 개발 난이도를 개선하기 위해 플러그앤플레이 (Plug and play, PnP) 구조를 적용하였다. 기존 TF-QKD 시스템에서는 송수신자가 각각 양자신호로 두 개의 광원을 사용하였기 때문에 서로 다른 두 광원의 특성을 동일하게 만들기 위한 제어 시스템이 필요하다. KIST 연구팀이 개발한 PnP TF QKD 구조는 하나의 광원으로만 동작하여 제 3자의 측정 장치가 동일한 광원을 양쪽 송수신자에게 전달하고 그 광원을 활용하여 정보를 공유하는 시스템이다. 이러한 이유로, 동일한 양자 신호가 통신 채널을 왕복하기 때문에 채널에서 발생하는 편광 노이즈(잡음)가 자동으로 보상되는 특징을 가지고 있다. 연구팀은 또한 편광, 시간, 파장 분할 기술을 적용하여 2:N 네트워크로 확장 가능한 새로운 TF QKD 네트워크 구조를 제안하고 실험적으로 검증하였다. 이는 세계에서 두 번째로 TF QKD 네트워크 실험 검증에 성공한 사례이다. 최초의 연구사례는 링(Ring) 네트워크 구조인 반면 연구팀의 구조는 별(Star) 네트워크 구조이다. 링 구조는 양자신호가 링에 연결된 모든 곳을 지나야 하지만, 별 구조에서는 중심부만 거치기 때문에 보다 실용적인 QKD 시스템 구현이 가능하다. 연구를 주도한 양자정보연구단 한상욱 단장은 “QKD의 상용화를 가로막던 장거리, 네트워크 확장 두 가지 과제를 동시에 해결한 연구성과”라면서 “장거리 양자암호 네트워크 분야를 리딩할 수 있는 기반 기술을 확보했다는 것에 의의가 있다”고 밝혔다. 이번 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업과 한국연구재단 양자컴퓨팅기술개발사업, IITP 정보통신방송기술개발사업으로 수행되었으며, 연구 결과는 ‘npj Quantum Informaion’ (IF: 7.385 JCR 분야 상위 4.054%) 최신호에 게재되었다. * (논문명) 2×N twin-field quantum key distribution network configuration based on polarization, wavelength, and time division multiplexing - (제 1저자) 한국과학기술연구원 박창훈 학생연구원 - (공동교신저자) 아주대학교 김상인 교수 - (공동교신저자) 한국과학기술연구원 한상욱 책임연구원 그림 설명 [그림 1] 2:N TF QKD 네트워크 구조 [그림 2] 실험 모식도