검색결과
게시물 키워드""에 대한 9495개의 검색결과를 찾았습니다.
KIST, 폴리에틸렌 생분해 효소 개발로 플라스틱 순환경제 실현 앞당긴다.
- 합성생물학을 활용해 폴리에틸렌 분해 효소 개발 및 생분해 매커니즘 규명 - 난분해성 플라스틱의 친환경적 분해를 통해 순환경제 달성 기대 전 세계적으로 매년 4억 톤의 플라스틱 제품이 생산되며, 그중 절반은 일회용품으로 1년 이내에 폐기된다. 특히, 자연적으로 분해되기까지 500년 이상 걸리는 난분해성 플라스틱 폐기물은 대부분 매립으로 처리하고 있는데 이 과정에서 형성되는 미세플라스틱은 생태계를 교란하거나 생물체 안에 축적돼 유해성을 높인다. 환경부에 따르면 2030년경 우리나라의 공공 매립시설 중 절반이 포화하는 것으로 알려져 이에 대한 대책 마련이 시급한 상황이다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 안정호 박사 연구팀은 미생물에서 유래한 효소를 이용해 폴리에틸렌(polyethylene)을 생분해하는 기술을 개발했다고 밝혔다. 폴리에틸렌은 매년 생산되는 플라스틱 중에서 35%를 차지하며, 주로 포장재, 비닐봉지 등 다양한 용도로 사용되는 난분해성 플라스틱이다. 일반적으로 해양이나 토양에 버려진 폴리에틸렌은 태양광에 의해 산화된 형태로 존재하는데, 연구팀은 산화된 폴리에틸렌을 분해하는 효소를 최초로 발굴하는 데 성공했다. 연구팀은 합성고분자인 폴리에틸렌과 화학적으로 유사한 구조를 가진 지질을 분해하는 효소를 유력한 후보로 판단했다. 이후 합성생물학을 기반으로 지질 분해 효소 정제 및 생산 공정을 개발해 Pelosinus fermentans lipase 1(PFL1)을 발굴했다. 혐기성 세균인 펠로시누스 퍼멘탄스(Pelosinus fermentans)에서 유래한 이 지질 분해 효소를 폴리에틸렌에 처리한 결과, 생분해 정도를 나타내는 중량평균분자량이 44.6%, 수평균분자량이 11.3% 감소했다. 또한, 전자현미경으로 분해된 폴리에틸렌 표면에 찢어짐과 갈라짐이 발생한 것을 관찰해 효소에 의한 폴리에틸렌의 생분해 과정을 확인했다. 연구팀은 PFL1과 폴리에틸렌 간의 상호작용을 컴퓨터 시뮬레이션으로 분석해 폴리에틸렌의 생분해 메커니즘을 최초로 규명했다. 분해능을 가진 PFL1 효소가 폴리에틸렌 표면에 강하게 결합된 후 폴리에틸렌을 작은 조각으로 분해하는 것을 확인했다. 이러한 분석 결과는 PFL1 효소의 물성 향상 및 새로운 플라스틱 생분해 효소 탐색에도 활용할 수 있을 것으로 기대된다. 플라스틱 폐기물 처리를 위해 지금까지 사용되는 소각 및 화학적 분해법은 분해 과정에서 유독 물질이 생성되고 값비싼 촉매를 사용해야 했다. 그러나 PFL1 효소는 재생가능한 원료로 대량생산이 가능하고 유독 물질이 발생하지 않는 친환경적인 기술이다. 또한, 생분해 과정에서 만들어지는 알코올, 카복실산 등은 플라스틱 재합성이나 화학 소재 생산에 활용될 수 있다. KIST 안정호 박사는 “이번에 새로 발굴된 효소는 기존에 처리가 곤란했던 난분해성 플라스틱 폐기물의 생분해 가능성을 보여주었다”라며, “기술의 상업화를 통해 포화상태에 이른 쓰레기 매립지 문제를 해결하고 지속가능한 플라스틱 순환경제를 달성하겠다”라고 말했다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업, 창의형 융합연구사업(CAP20024-300) 및 원자력 연구개발사업 RS-2022-00156234)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Bioresource Technology」 (IF 11.1, JCR 분야 2.5%) 최신호에 게재됐다. * 논문명 : Biodegradation of oxidized low density polyethylene by Pelosinus fermentans lipase [그림 1] 플라스틱 폐기물의 생분해 과정 모식도. 플라스틱 폐기물이 태양광에 의해 산화된 후 생분해 효소에 의해 분해되는 과정을 나타낸 모식도 [그림 2] 효소에 의한 폴리에틸렌 생분해 기작 분석. 컴퓨터 시뮬레이션을 통해 분석한 PFL1 효소의 폴리에틸렌과의 상호작용 및 분해 기작을 나타낸 이미지
KIST, 폴리에틸렌 생분해 효소 개발로 플라스틱 순환경제 실현 앞당긴다.
- 합성생물학을 활용해 폴리에틸렌 분해 효소 개발 및 생분해 매커니즘 규명 - 난분해성 플라스틱의 친환경적 분해를 통해 순환경제 달성 기대 전 세계적으로 매년 4억 톤의 플라스틱 제품이 생산되며, 그중 절반은 일회용품으로 1년 이내에 폐기된다. 특히, 자연적으로 분해되기까지 500년 이상 걸리는 난분해성 플라스틱 폐기물은 대부분 매립으로 처리하고 있는데 이 과정에서 형성되는 미세플라스틱은 생태계를 교란하거나 생물체 안에 축적돼 유해성을 높인다. 환경부에 따르면 2030년경 우리나라의 공공 매립시설 중 절반이 포화하는 것으로 알려져 이에 대한 대책 마련이 시급한 상황이다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 안정호 박사 연구팀은 미생물에서 유래한 효소를 이용해 폴리에틸렌(polyethylene)을 생분해하는 기술을 개발했다고 밝혔다. 폴리에틸렌은 매년 생산되는 플라스틱 중에서 35%를 차지하며, 주로 포장재, 비닐봉지 등 다양한 용도로 사용되는 난분해성 플라스틱이다. 일반적으로 해양이나 토양에 버려진 폴리에틸렌은 태양광에 의해 산화된 형태로 존재하는데, 연구팀은 산화된 폴리에틸렌을 분해하는 효소를 최초로 발굴하는 데 성공했다. 연구팀은 합성고분자인 폴리에틸렌과 화학적으로 유사한 구조를 가진 지질을 분해하는 효소를 유력한 후보로 판단했다. 이후 합성생물학을 기반으로 지질 분해 효소 정제 및 생산 공정을 개발해 Pelosinus fermentans lipase 1(PFL1)을 발굴했다. 혐기성 세균인 펠로시누스 퍼멘탄스(Pelosinus fermentans)에서 유래한 이 지질 분해 효소를 폴리에틸렌에 처리한 결과, 생분해 정도를 나타내는 중량평균분자량이 44.6%, 수평균분자량이 11.3% 감소했다. 또한, 전자현미경으로 분해된 폴리에틸렌 표면에 찢어짐과 갈라짐이 발생한 것을 관찰해 효소에 의한 폴리에틸렌의 생분해 과정을 확인했다. 연구팀은 PFL1과 폴리에틸렌 간의 상호작용을 컴퓨터 시뮬레이션으로 분석해 폴리에틸렌의 생분해 메커니즘을 최초로 규명했다. 분해능을 가진 PFL1 효소가 폴리에틸렌 표면에 강하게 결합된 후 폴리에틸렌을 작은 조각으로 분해하는 것을 확인했다. 이러한 분석 결과는 PFL1 효소의 물성 향상 및 새로운 플라스틱 생분해 효소 탐색에도 활용할 수 있을 것으로 기대된다. 플라스틱 폐기물 처리를 위해 지금까지 사용되는 소각 및 화학적 분해법은 분해 과정에서 유독 물질이 생성되고 값비싼 촉매를 사용해야 했다. 그러나 PFL1 효소는 재생가능한 원료로 대량생산이 가능하고 유독 물질이 발생하지 않는 친환경적인 기술이다. 또한, 생분해 과정에서 만들어지는 알코올, 카복실산 등은 플라스틱 재합성이나 화학 소재 생산에 활용될 수 있다. KIST 안정호 박사는 “이번에 새로 발굴된 효소는 기존에 처리가 곤란했던 난분해성 플라스틱 폐기물의 생분해 가능성을 보여주었다”라며, “기술의 상업화를 통해 포화상태에 이른 쓰레기 매립지 문제를 해결하고 지속가능한 플라스틱 순환경제를 달성하겠다”라고 말했다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업, 창의형 융합연구사업(CAP20024-300) 및 원자력 연구개발사업 RS-2022-00156234)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Bioresource Technology」 (IF 11.1, JCR 분야 2.5%) 최신호에 게재됐다. * 논문명 : Biodegradation of oxidized low density polyethylene by Pelosinus fermentans lipase [그림 1] 플라스틱 폐기물의 생분해 과정 모식도. 플라스틱 폐기물이 태양광에 의해 산화된 후 생분해 효소에 의해 분해되는 과정을 나타낸 모식도 [그림 2] 효소에 의한 폴리에틸렌 생분해 기작 분석. 컴퓨터 시뮬레이션을 통해 분석한 PFL1 효소의 폴리에틸렌과의 상호작용 및 분해 기작을 나타낸 이미지
KIST, 한-인도 세계 지적자산 플랫폼(GKP) 워크숍 개최(8.11~12)
한-인도간 과학기술협력 토대를 마련하기 위한‘한·인도 세계 지적자산 플랫폼 워크숍’이 우리원과 국제과학비지니스벨트포럼(대표: 민동필 교수)·한국전자통신연구원 공동 주관으로 11과 12일 양일간 서울대와 KIST에서 개최되었다. 세계 지적자산 플랫폼(GKP) 사업은 전 세계가 보유한 지적자산을 공동으로 활용하여 인류공영에 기여한다는 취지에서 이명박 대통령과 압둘 칼람 인도 전 대통령과 함께 주창한 사업이며, 양국 대통령은 지난해 4월 한국과 인도가 중심이 되어 GKP 사업을 추진키로 합의한 바 있다. 이번 워크숍에는 인도 과학원(IISc) 발락크리슈난 부총장 등 5명, 우리나라에서는 주호영, 강승규 의원, 정진곤 청와대 교육과학문화수석 등 정·관계 인사와 민동필 서울대 교수, 조영상 박사 등 GKP 운영위원 등 50여명이 참석하여, 환경·에너지·안전·인터넷·DMB 등 5개 분야에서 양국 간 협력방향에 대하여 의견을 나누었다. 압둘 칼람 인도 전 대통령은 12일 전화 메시지를 통해 워커숍 참석자의 노고를 격려하고, 향후 GKP사업이 성공적으로 추진될 수 있도록 관계자들이 노력해줄 것을 당부하였다. 한편 문길주 부원장은 발락크리슈난 부총장과 별도의 면담을 갖고, 우리원이 추진중인 한-인도 협력센터의 설치 및 현지랩 개설에 관하여 의견을 교환하였으며, 향후 구체적인 협력분야 선정, 조사단 파견 등을 통해 협력사업을 추진키로 하였다. IISc 대표단은 행사후 우리원 태양전지, 연료전지, 지능로봇연구실을 방문하여 연구현황에 관해 설명을 듣고 향후 양 기관간 협력을 더욱 활성화하기로 하였다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다. - 고출력·고용량을 동시에 구현한 차세대 에너지 저장 기술 개발 - 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 적용 가능성 한국과학기술연구원(KIST, 원장 오상록) 탄소융합소재연구센터 구본철, 김서균 박사 연구팀과 서울대학교(총장 유홍림) 박원철 교수 연구팀이 공동 연구를 통해 차세대 에너지 저장 장치로 주목받는 고성능 슈퍼커패시터를 개발했다. 공동 연구진이 개발한 이번 기술은 단일벽 탄소나노튜브(CNT)와 전도성 고분자 폴리아닐린(PANI)을 복합한 혁신적인 섬유 구조를 활용해 기존 슈퍼커패시터의 한계를 극복한 것이 특징이다. 슈퍼커패시터는 일반 배터리에 비해 빠른 충전과 높은 전력 밀도를 자랑하며, 수만 회의 충·방전 사이클에도 성능 저하가 적다. 그러나 상대적으로 낮은 에너지 밀도 탓에 장시간 사용에는 제약이 있어, 전기차나 드론 등 실사용 분야에서는 한계를 보였다. 연구진은 이러한 문제 해결을 위해, 전도성이 뛰어난 단일벽 탄소나노튜브(CNT)와 가공성과 저렴한 가격이 강점인 폴리아닐린(PANI)을 나노 수준에서 균일하게 화학 결합을 성공시켰다. 이를 통해 전자와 이온의 흐름을 동시에 향상시키는 정교한 섬유 구조체를 제작, 더 많은 에너지를 저장하면서도 빠른 속도로 방출할 수 있는 슈퍼커패시터를 개발했다. 개발된 슈퍼커패시터는 10만 회 이상의 충·방전 테스트에서도 안정적인 성능을 유지하며, 고전압 환경에서도 내구성이 뛰어난 것으로 나타났다. 이러한 특성 덕분에, 해당 기술은 기존 배터리 시스템을 대체하거나 보완하는 형태로 활용될 수 있다. 예를 들어 전기차에 적용할 경우, 급속 충전과 더불어 효율적인 전력 공급이 가능해져 주행 거리와 성능 모두를 향상시킬 수 있다. 드론이나 로봇 등의 분야에서도 운용 시간 증가 및 안정성 강화 등 다양한 효과가 기대된다. 또한 개발된 복합 섬유(CNT-PANI)는 높은 기계적 유연성을 가지기 때문에, 휘거나 접을 수 있어 웨어러블 기기 등 차세대 전자 소자에 적용이 가능하다. 이번 연구의 또 다른 큰 성과는 생산비 절감 및 대량 생산 가능성 확보이다. 단일벽 탄소나노튜브(CNT)는 우수한 특성에도 불구하고 생산 단가가 높아 상용화에 어려움이 있었지만, 연구진은 저가의 전도성 고분자 폴리아닐린(PANI)과의 복합화 기술을 통해 이 문제를 해결했다. 나아가 간단한 공정을 통해 대량생산이 가능한 공정 기반도 마련했으며, 최근에는 이 기술을 바탕으로 필름 형태의 구조체 개발에까지 성공함으로써, 상용화를 한층 더 앞당겼다. 향후 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 걸쳐 탄소중립 사회로의 전환을 위한 핵심 기반 기술로 활용될 예정이다. KIST 구본철 박사는 “이번 기술은 슈퍼커패시터의 단점을 단일벽 탄소나노튜브 및 전도성 고분자를 이용해 극복한 기술이다”며, “앞으로 탄소나노튜브 기반 초고성능 탄소섬유 개발 및 산업화에 매진할 계획이다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) KIST 기관고유사업, 지역혁신선도기술개발사업(RS-2019-NR040066), 학연플랫폼구축시범사업(RS-2023-00304729) 및 산업통상자원부(장관 안덕근) 소재부품기술개발사업(RS-2023-00258521) 등 지원으로 수행됐다. 이번 연구 성과는 국제 학술지 ‘Composites Part B: Engineering’ (IF: 12.7, JCR: 0.3%) 최신호에 게재됐으며, 국내 및 미국 특허출원도 완료한 상태이다. * (논문명) Nanocell-structured carbon nanotube composite fibers for ultrahigh energy and power density supercapacitors [그림 1] 차세대 CNT-PANI 복합섬유 슈퍼커패시터 모식도 및 최근 연구결과와 비교 그래프 (좌) CNT와 PANI가 복합화되어 있는 모식도이다. CNT 사이에 공유결합된 PANI가 고르게 분포하고, 그 각각의 PANI가 나노크기의 셀로써 작용할 수 있다는 것을 나타낸다. (우) 이러한 특성을 기반으로 하여 제조된 복합섬유는 일반적인 슈퍼커패시터의 특성을 뛰어넘는, 전력밀도와 에너지밀도가 동시에 우수한 특성을 보인다. (*KIST1은 PANI의 무게만으로 계산된 값, KIST2는 섬유 전체의 무게로 계산된 값이다.) [그림 2] CNT-PANI 복합섬유 대량화 공정에 따른 섬유 단면 이미지 및 비정전용량 분석 그래프 복합섬유 커패시터의 상용화 가능성을 보기 위해, 대량 제조공정을 도입하였다. 1가닥 섬유부터 300가닥의 섬유까지 대량화 공정을 통해 섬유 다발을 제조하였고, PANI가 내부에서 나노셀 역할을 하기 때문에 비정전용량은 감소하지 않고 잘 유지되는 것을 확인할 수 있다. [그림 3] CNT-PANI 복합섬유의 제조 공정 모식도 PANI가 복합화된 섬유를 제조하는 전체적인 공정 모식도이다. (좌측부터) 탄소나노튜브를 기반으로 하여 액정상을 형성하고, 이를 응고용매에 방사하며 응고 및 연신 공정을 거친다. 최종적으로 제조된 복합섬유는 PANI가 고르게 분포하고 있는 구조를 가진다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다. - 고출력·고용량을 동시에 구현한 차세대 에너지 저장 기술 개발 - 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 적용 가능성 한국과학기술연구원(KIST, 원장 오상록) 탄소융합소재연구센터 구본철, 김서균 박사 연구팀과 서울대학교(총장 유홍림) 박원철 교수 연구팀이 공동 연구를 통해 차세대 에너지 저장 장치로 주목받는 고성능 슈퍼커패시터를 개발했다. 공동 연구진이 개발한 이번 기술은 단일벽 탄소나노튜브(CNT)와 전도성 고분자 폴리아닐린(PANI)을 복합한 혁신적인 섬유 구조를 활용해 기존 슈퍼커패시터의 한계를 극복한 것이 특징이다. 슈퍼커패시터는 일반 배터리에 비해 빠른 충전과 높은 전력 밀도를 자랑하며, 수만 회의 충·방전 사이클에도 성능 저하가 적다. 그러나 상대적으로 낮은 에너지 밀도 탓에 장시간 사용에는 제약이 있어, 전기차나 드론 등 실사용 분야에서는 한계를 보였다. 연구진은 이러한 문제 해결을 위해, 전도성이 뛰어난 단일벽 탄소나노튜브(CNT)와 가공성과 저렴한 가격이 강점인 폴리아닐린(PANI)을 나노 수준에서 균일하게 화학 결합을 성공시켰다. 이를 통해 전자와 이온의 흐름을 동시에 향상시키는 정교한 섬유 구조체를 제작, 더 많은 에너지를 저장하면서도 빠른 속도로 방출할 수 있는 슈퍼커패시터를 개발했다. 개발된 슈퍼커패시터는 10만 회 이상의 충·방전 테스트에서도 안정적인 성능을 유지하며, 고전압 환경에서도 내구성이 뛰어난 것으로 나타났다. 이러한 특성 덕분에, 해당 기술은 기존 배터리 시스템을 대체하거나 보완하는 형태로 활용될 수 있다. 예를 들어 전기차에 적용할 경우, 급속 충전과 더불어 효율적인 전력 공급이 가능해져 주행 거리와 성능 모두를 향상시킬 수 있다. 드론이나 로봇 등의 분야에서도 운용 시간 증가 및 안정성 강화 등 다양한 효과가 기대된다. 또한 개발된 복합 섬유(CNT-PANI)는 높은 기계적 유연성을 가지기 때문에, 휘거나 접을 수 있어 웨어러블 기기 등 차세대 전자 소자에 적용이 가능하다. 이번 연구의 또 다른 큰 성과는 생산비 절감 및 대량 생산 가능성 확보이다. 단일벽 탄소나노튜브(CNT)는 우수한 특성에도 불구하고 생산 단가가 높아 상용화에 어려움이 있었지만, 연구진은 저가의 전도성 고분자 폴리아닐린(PANI)과의 복합화 기술을 통해 이 문제를 해결했다. 나아가 간단한 공정을 통해 대량생산이 가능한 공정 기반도 마련했으며, 최근에는 이 기술을 바탕으로 필름 형태의 구조체 개발에까지 성공함으로써, 상용화를 한층 더 앞당겼다. 향후 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 걸쳐 탄소중립 사회로의 전환을 위한 핵심 기반 기술로 활용될 예정이다. KIST 구본철 박사는 “이번 기술은 슈퍼커패시터의 단점을 단일벽 탄소나노튜브 및 전도성 고분자를 이용해 극복한 기술이다”며, “앞으로 탄소나노튜브 기반 초고성능 탄소섬유 개발 및 산업화에 매진할 계획이다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) KIST 기관고유사업, 지역혁신선도기술개발사업(RS-2019-NR040066), 학연플랫폼구축시범사업(RS-2023-00304729) 및 산업통상자원부(장관 안덕근) 소재부품기술개발사업(RS-2023-00258521) 등 지원으로 수행됐다. 이번 연구 성과는 국제 학술지 ‘Composites Part B: Engineering’ (IF: 12.7, JCR: 0.3%) 최신호에 게재됐으며, 국내 및 미국 특허출원도 완료한 상태이다. * (논문명) Nanocell-structured carbon nanotube composite fibers for ultrahigh energy and power density supercapacitors [그림 1] 차세대 CNT-PANI 복합섬유 슈퍼커패시터 모식도 및 최근 연구결과와 비교 그래프 (좌) CNT와 PANI가 복합화되어 있는 모식도이다. CNT 사이에 공유결합된 PANI가 고르게 분포하고, 그 각각의 PANI가 나노크기의 셀로써 작용할 수 있다는 것을 나타낸다. (우) 이러한 특성을 기반으로 하여 제조된 복합섬유는 일반적인 슈퍼커패시터의 특성을 뛰어넘는, 전력밀도와 에너지밀도가 동시에 우수한 특성을 보인다. (*KIST1은 PANI의 무게만으로 계산된 값, KIST2는 섬유 전체의 무게로 계산된 값이다.) [그림 2] CNT-PANI 복합섬유 대량화 공정에 따른 섬유 단면 이미지 및 비정전용량 분석 그래프 복합섬유 커패시터의 상용화 가능성을 보기 위해, 대량 제조공정을 도입하였다. 1가닥 섬유부터 300가닥의 섬유까지 대량화 공정을 통해 섬유 다발을 제조하였고, PANI가 내부에서 나노셀 역할을 하기 때문에 비정전용량은 감소하지 않고 잘 유지되는 것을 확인할 수 있다. [그림 3] CNT-PANI 복합섬유의 제조 공정 모식도 PANI가 복합화된 섬유를 제조하는 전체적인 공정 모식도이다. (좌측부터) 탄소나노튜브를 기반으로 하여 액정상을 형성하고, 이를 응고용매에 방사하며 응고 및 연신 공정을 거친다. 최종적으로 제조된 복합섬유는 PANI가 고르게 분포하고 있는 구조를 가진다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다. - 고출력·고용량을 동시에 구현한 차세대 에너지 저장 기술 개발 - 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 적용 가능성 한국과학기술연구원(KIST, 원장 오상록) 탄소융합소재연구센터 구본철, 김서균 박사 연구팀과 서울대학교(총장 유홍림) 박원철 교수 연구팀이 공동 연구를 통해 차세대 에너지 저장 장치로 주목받는 고성능 슈퍼커패시터를 개발했다. 공동 연구진이 개발한 이번 기술은 단일벽 탄소나노튜브(CNT)와 전도성 고분자 폴리아닐린(PANI)을 복합한 혁신적인 섬유 구조를 활용해 기존 슈퍼커패시터의 한계를 극복한 것이 특징이다. 슈퍼커패시터는 일반 배터리에 비해 빠른 충전과 높은 전력 밀도를 자랑하며, 수만 회의 충·방전 사이클에도 성능 저하가 적다. 그러나 상대적으로 낮은 에너지 밀도 탓에 장시간 사용에는 제약이 있어, 전기차나 드론 등 실사용 분야에서는 한계를 보였다. 연구진은 이러한 문제 해결을 위해, 전도성이 뛰어난 단일벽 탄소나노튜브(CNT)와 가공성과 저렴한 가격이 강점인 폴리아닐린(PANI)을 나노 수준에서 균일하게 화학 결합을 성공시켰다. 이를 통해 전자와 이온의 흐름을 동시에 향상시키는 정교한 섬유 구조체를 제작, 더 많은 에너지를 저장하면서도 빠른 속도로 방출할 수 있는 슈퍼커패시터를 개발했다. 개발된 슈퍼커패시터는 10만 회 이상의 충·방전 테스트에서도 안정적인 성능을 유지하며, 고전압 환경에서도 내구성이 뛰어난 것으로 나타났다. 이러한 특성 덕분에, 해당 기술은 기존 배터리 시스템을 대체하거나 보완하는 형태로 활용될 수 있다. 예를 들어 전기차에 적용할 경우, 급속 충전과 더불어 효율적인 전력 공급이 가능해져 주행 거리와 성능 모두를 향상시킬 수 있다. 드론이나 로봇 등의 분야에서도 운용 시간 증가 및 안정성 강화 등 다양한 효과가 기대된다. 또한 개발된 복합 섬유(CNT-PANI)는 높은 기계적 유연성을 가지기 때문에, 휘거나 접을 수 있어 웨어러블 기기 등 차세대 전자 소자에 적용이 가능하다. 이번 연구의 또 다른 큰 성과는 생산비 절감 및 대량 생산 가능성 확보이다. 단일벽 탄소나노튜브(CNT)는 우수한 특성에도 불구하고 생산 단가가 높아 상용화에 어려움이 있었지만, 연구진은 저가의 전도성 고분자 폴리아닐린(PANI)과의 복합화 기술을 통해 이 문제를 해결했다. 나아가 간단한 공정을 통해 대량생산이 가능한 공정 기반도 마련했으며, 최근에는 이 기술을 바탕으로 필름 형태의 구조체 개발에까지 성공함으로써, 상용화를 한층 더 앞당겼다. 향후 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 걸쳐 탄소중립 사회로의 전환을 위한 핵심 기반 기술로 활용될 예정이다. KIST 구본철 박사는 “이번 기술은 슈퍼커패시터의 단점을 단일벽 탄소나노튜브 및 전도성 고분자를 이용해 극복한 기술이다”며, “앞으로 탄소나노튜브 기반 초고성능 탄소섬유 개발 및 산업화에 매진할 계획이다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) KIST 기관고유사업, 지역혁신선도기술개발사업(RS-2019-NR040066), 학연플랫폼구축시범사업(RS-2023-00304729) 및 산업통상자원부(장관 안덕근) 소재부품기술개발사업(RS-2023-00258521) 등 지원으로 수행됐다. 이번 연구 성과는 국제 학술지 ‘Composites Part B: Engineering’ (IF: 12.7, JCR: 0.3%) 최신호에 게재됐으며, 국내 및 미국 특허출원도 완료한 상태이다. * (논문명) Nanocell-structured carbon nanotube composite fibers for ultrahigh energy and power density supercapacitors [그림 1] 차세대 CNT-PANI 복합섬유 슈퍼커패시터 모식도 및 최근 연구결과와 비교 그래프 (좌) CNT와 PANI가 복합화되어 있는 모식도이다. CNT 사이에 공유결합된 PANI가 고르게 분포하고, 그 각각의 PANI가 나노크기의 셀로써 작용할 수 있다는 것을 나타낸다. (우) 이러한 특성을 기반으로 하여 제조된 복합섬유는 일반적인 슈퍼커패시터의 특성을 뛰어넘는, 전력밀도와 에너지밀도가 동시에 우수한 특성을 보인다. (*KIST1은 PANI의 무게만으로 계산된 값, KIST2는 섬유 전체의 무게로 계산된 값이다.) [그림 2] CNT-PANI 복합섬유 대량화 공정에 따른 섬유 단면 이미지 및 비정전용량 분석 그래프 복합섬유 커패시터의 상용화 가능성을 보기 위해, 대량 제조공정을 도입하였다. 1가닥 섬유부터 300가닥의 섬유까지 대량화 공정을 통해 섬유 다발을 제조하였고, PANI가 내부에서 나노셀 역할을 하기 때문에 비정전용량은 감소하지 않고 잘 유지되는 것을 확인할 수 있다. [그림 3] CNT-PANI 복합섬유의 제조 공정 모식도 PANI가 복합화된 섬유를 제조하는 전체적인 공정 모식도이다. (좌측부터) 탄소나노튜브를 기반으로 하여 액정상을 형성하고, 이를 응고용매에 방사하며 응고 및 연신 공정을 거친다. 최종적으로 제조된 복합섬유는 PANI가 고르게 분포하고 있는 구조를 가진다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다. - 고출력·고용량을 동시에 구현한 차세대 에너지 저장 기술 개발 - 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 적용 가능성 한국과학기술연구원(KIST, 원장 오상록) 탄소융합소재연구센터 구본철, 김서균 박사 연구팀과 서울대학교(총장 유홍림) 박원철 교수 연구팀이 공동 연구를 통해 차세대 에너지 저장 장치로 주목받는 고성능 슈퍼커패시터를 개발했다. 공동 연구진이 개발한 이번 기술은 단일벽 탄소나노튜브(CNT)와 전도성 고분자 폴리아닐린(PANI)을 복합한 혁신적인 섬유 구조를 활용해 기존 슈퍼커패시터의 한계를 극복한 것이 특징이다. 슈퍼커패시터는 일반 배터리에 비해 빠른 충전과 높은 전력 밀도를 자랑하며, 수만 회의 충·방전 사이클에도 성능 저하가 적다. 그러나 상대적으로 낮은 에너지 밀도 탓에 장시간 사용에는 제약이 있어, 전기차나 드론 등 실사용 분야에서는 한계를 보였다. 연구진은 이러한 문제 해결을 위해, 전도성이 뛰어난 단일벽 탄소나노튜브(CNT)와 가공성과 저렴한 가격이 강점인 폴리아닐린(PANI)을 나노 수준에서 균일하게 화학 결합을 성공시켰다. 이를 통해 전자와 이온의 흐름을 동시에 향상시키는 정교한 섬유 구조체를 제작, 더 많은 에너지를 저장하면서도 빠른 속도로 방출할 수 있는 슈퍼커패시터를 개발했다. 개발된 슈퍼커패시터는 10만 회 이상의 충·방전 테스트에서도 안정적인 성능을 유지하며, 고전압 환경에서도 내구성이 뛰어난 것으로 나타났다. 이러한 특성 덕분에, 해당 기술은 기존 배터리 시스템을 대체하거나 보완하는 형태로 활용될 수 있다. 예를 들어 전기차에 적용할 경우, 급속 충전과 더불어 효율적인 전력 공급이 가능해져 주행 거리와 성능 모두를 향상시킬 수 있다. 드론이나 로봇 등의 분야에서도 운용 시간 증가 및 안정성 강화 등 다양한 효과가 기대된다. 또한 개발된 복합 섬유(CNT-PANI)는 높은 기계적 유연성을 가지기 때문에, 휘거나 접을 수 있어 웨어러블 기기 등 차세대 전자 소자에 적용이 가능하다. 이번 연구의 또 다른 큰 성과는 생산비 절감 및 대량 생산 가능성 확보이다. 단일벽 탄소나노튜브(CNT)는 우수한 특성에도 불구하고 생산 단가가 높아 상용화에 어려움이 있었지만, 연구진은 저가의 전도성 고분자 폴리아닐린(PANI)과의 복합화 기술을 통해 이 문제를 해결했다. 나아가 간단한 공정을 통해 대량생산이 가능한 공정 기반도 마련했으며, 최근에는 이 기술을 바탕으로 필름 형태의 구조체 개발에까지 성공함으로써, 상용화를 한층 더 앞당겼다. 향후 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 걸쳐 탄소중립 사회로의 전환을 위한 핵심 기반 기술로 활용될 예정이다. KIST 구본철 박사는 “이번 기술은 슈퍼커패시터의 단점을 단일벽 탄소나노튜브 및 전도성 고분자를 이용해 극복한 기술이다”며, “앞으로 탄소나노튜브 기반 초고성능 탄소섬유 개발 및 산업화에 매진할 계획이다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) KIST 기관고유사업, 지역혁신선도기술개발사업(RS-2019-NR040066), 학연플랫폼구축시범사업(RS-2023-00304729) 및 산업통상자원부(장관 안덕근) 소재부품기술개발사업(RS-2023-00258521) 등 지원으로 수행됐다. 이번 연구 성과는 국제 학술지 ‘Composites Part B: Engineering’ (IF: 12.7, JCR: 0.3%) 최신호에 게재됐으며, 국내 및 미국 특허출원도 완료한 상태이다. * (논문명) Nanocell-structured carbon nanotube composite fibers for ultrahigh energy and power density supercapacitors [그림 1] 차세대 CNT-PANI 복합섬유 슈퍼커패시터 모식도 및 최근 연구결과와 비교 그래프 (좌) CNT와 PANI가 복합화되어 있는 모식도이다. CNT 사이에 공유결합된 PANI가 고르게 분포하고, 그 각각의 PANI가 나노크기의 셀로써 작용할 수 있다는 것을 나타낸다. (우) 이러한 특성을 기반으로 하여 제조된 복합섬유는 일반적인 슈퍼커패시터의 특성을 뛰어넘는, 전력밀도와 에너지밀도가 동시에 우수한 특성을 보인다. (*KIST1은 PANI의 무게만으로 계산된 값, KIST2는 섬유 전체의 무게로 계산된 값이다.) [그림 2] CNT-PANI 복합섬유 대량화 공정에 따른 섬유 단면 이미지 및 비정전용량 분석 그래프 복합섬유 커패시터의 상용화 가능성을 보기 위해, 대량 제조공정을 도입하였다. 1가닥 섬유부터 300가닥의 섬유까지 대량화 공정을 통해 섬유 다발을 제조하였고, PANI가 내부에서 나노셀 역할을 하기 때문에 비정전용량은 감소하지 않고 잘 유지되는 것을 확인할 수 있다. [그림 3] CNT-PANI 복합섬유의 제조 공정 모식도 PANI가 복합화된 섬유를 제조하는 전체적인 공정 모식도이다. (좌측부터) 탄소나노튜브를 기반으로 하여 액정상을 형성하고, 이를 응고용매에 방사하며 응고 및 연신 공정을 거친다. 최종적으로 제조된 복합섬유는 PANI가 고르게 분포하고 있는 구조를 가진다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다. - 고출력·고용량을 동시에 구현한 차세대 에너지 저장 기술 개발 - 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 적용 가능성 한국과학기술연구원(KIST, 원장 오상록) 탄소융합소재연구센터 구본철, 김서균 박사 연구팀과 서울대학교(총장 유홍림) 박원철 교수 연구팀이 공동 연구를 통해 차세대 에너지 저장 장치로 주목받는 고성능 슈퍼커패시터를 개발했다. 공동 연구진이 개발한 이번 기술은 단일벽 탄소나노튜브(CNT)와 전도성 고분자 폴리아닐린(PANI)을 복합한 혁신적인 섬유 구조를 활용해 기존 슈퍼커패시터의 한계를 극복한 것이 특징이다. 슈퍼커패시터는 일반 배터리에 비해 빠른 충전과 높은 전력 밀도를 자랑하며, 수만 회의 충·방전 사이클에도 성능 저하가 적다. 그러나 상대적으로 낮은 에너지 밀도 탓에 장시간 사용에는 제약이 있어, 전기차나 드론 등 실사용 분야에서는 한계를 보였다. 연구진은 이러한 문제 해결을 위해, 전도성이 뛰어난 단일벽 탄소나노튜브(CNT)와 가공성과 저렴한 가격이 강점인 폴리아닐린(PANI)을 나노 수준에서 균일하게 화학 결합을 성공시켰다. 이를 통해 전자와 이온의 흐름을 동시에 향상시키는 정교한 섬유 구조체를 제작, 더 많은 에너지를 저장하면서도 빠른 속도로 방출할 수 있는 슈퍼커패시터를 개발했다. 개발된 슈퍼커패시터는 10만 회 이상의 충·방전 테스트에서도 안정적인 성능을 유지하며, 고전압 환경에서도 내구성이 뛰어난 것으로 나타났다. 이러한 특성 덕분에, 해당 기술은 기존 배터리 시스템을 대체하거나 보완하는 형태로 활용될 수 있다. 예를 들어 전기차에 적용할 경우, 급속 충전과 더불어 효율적인 전력 공급이 가능해져 주행 거리와 성능 모두를 향상시킬 수 있다. 드론이나 로봇 등의 분야에서도 운용 시간 증가 및 안정성 강화 등 다양한 효과가 기대된다. 또한 개발된 복합 섬유(CNT-PANI)는 높은 기계적 유연성을 가지기 때문에, 휘거나 접을 수 있어 웨어러블 기기 등 차세대 전자 소자에 적용이 가능하다. 이번 연구의 또 다른 큰 성과는 생산비 절감 및 대량 생산 가능성 확보이다. 단일벽 탄소나노튜브(CNT)는 우수한 특성에도 불구하고 생산 단가가 높아 상용화에 어려움이 있었지만, 연구진은 저가의 전도성 고분자 폴리아닐린(PANI)과의 복합화 기술을 통해 이 문제를 해결했다. 나아가 간단한 공정을 통해 대량생산이 가능한 공정 기반도 마련했으며, 최근에는 이 기술을 바탕으로 필름 형태의 구조체 개발에까지 성공함으로써, 상용화를 한층 더 앞당겼다. 향후 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 걸쳐 탄소중립 사회로의 전환을 위한 핵심 기반 기술로 활용될 예정이다. KIST 구본철 박사는 “이번 기술은 슈퍼커패시터의 단점을 단일벽 탄소나노튜브 및 전도성 고분자를 이용해 극복한 기술이다”며, “앞으로 탄소나노튜브 기반 초고성능 탄소섬유 개발 및 산업화에 매진할 계획이다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) KIST 기관고유사업, 지역혁신선도기술개발사업(RS-2019-NR040066), 학연플랫폼구축시범사업(RS-2023-00304729) 및 산업통상자원부(장관 안덕근) 소재부품기술개발사업(RS-2023-00258521) 등 지원으로 수행됐다. 이번 연구 성과는 국제 학술지 ‘Composites Part B: Engineering’ (IF: 12.7, JCR: 0.3%) 최신호에 게재됐으며, 국내 및 미국 특허출원도 완료한 상태이다. * (논문명) Nanocell-structured carbon nanotube composite fibers for ultrahigh energy and power density supercapacitors [그림 1] 차세대 CNT-PANI 복합섬유 슈퍼커패시터 모식도 및 최근 연구결과와 비교 그래프 (좌) CNT와 PANI가 복합화되어 있는 모식도이다. CNT 사이에 공유결합된 PANI가 고르게 분포하고, 그 각각의 PANI가 나노크기의 셀로써 작용할 수 있다는 것을 나타낸다. (우) 이러한 특성을 기반으로 하여 제조된 복합섬유는 일반적인 슈퍼커패시터의 특성을 뛰어넘는, 전력밀도와 에너지밀도가 동시에 우수한 특성을 보인다. (*KIST1은 PANI의 무게만으로 계산된 값, KIST2는 섬유 전체의 무게로 계산된 값이다.) [그림 2] CNT-PANI 복합섬유 대량화 공정에 따른 섬유 단면 이미지 및 비정전용량 분석 그래프 복합섬유 커패시터의 상용화 가능성을 보기 위해, 대량 제조공정을 도입하였다. 1가닥 섬유부터 300가닥의 섬유까지 대량화 공정을 통해 섬유 다발을 제조하였고, PANI가 내부에서 나노셀 역할을 하기 때문에 비정전용량은 감소하지 않고 잘 유지되는 것을 확인할 수 있다. [그림 3] CNT-PANI 복합섬유의 제조 공정 모식도 PANI가 복합화된 섬유를 제조하는 전체적인 공정 모식도이다. (좌측부터) 탄소나노튜브를 기반으로 하여 액정상을 형성하고, 이를 응고용매에 방사하며 응고 및 연신 공정을 거친다. 최종적으로 제조된 복합섬유는 PANI가 고르게 분포하고 있는 구조를 가진다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다. - 고출력·고용량을 동시에 구현한 차세대 에너지 저장 기술 개발 - 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 적용 가능성 한국과학기술연구원(KIST, 원장 오상록) 탄소융합소재연구센터 구본철, 김서균 박사 연구팀과 서울대학교(총장 유홍림) 박원철 교수 연구팀이 공동 연구를 통해 차세대 에너지 저장 장치로 주목받는 고성능 슈퍼커패시터를 개발했다. 공동 연구진이 개발한 이번 기술은 단일벽 탄소나노튜브(CNT)와 전도성 고분자 폴리아닐린(PANI)을 복합한 혁신적인 섬유 구조를 활용해 기존 슈퍼커패시터의 한계를 극복한 것이 특징이다. 슈퍼커패시터는 일반 배터리에 비해 빠른 충전과 높은 전력 밀도를 자랑하며, 수만 회의 충·방전 사이클에도 성능 저하가 적다. 그러나 상대적으로 낮은 에너지 밀도 탓에 장시간 사용에는 제약이 있어, 전기차나 드론 등 실사용 분야에서는 한계를 보였다. 연구진은 이러한 문제 해결을 위해, 전도성이 뛰어난 단일벽 탄소나노튜브(CNT)와 가공성과 저렴한 가격이 강점인 폴리아닐린(PANI)을 나노 수준에서 균일하게 화학 결합을 성공시켰다. 이를 통해 전자와 이온의 흐름을 동시에 향상시키는 정교한 섬유 구조체를 제작, 더 많은 에너지를 저장하면서도 빠른 속도로 방출할 수 있는 슈퍼커패시터를 개발했다. 개발된 슈퍼커패시터는 10만 회 이상의 충·방전 테스트에서도 안정적인 성능을 유지하며, 고전압 환경에서도 내구성이 뛰어난 것으로 나타났다. 이러한 특성 덕분에, 해당 기술은 기존 배터리 시스템을 대체하거나 보완하는 형태로 활용될 수 있다. 예를 들어 전기차에 적용할 경우, 급속 충전과 더불어 효율적인 전력 공급이 가능해져 주행 거리와 성능 모두를 향상시킬 수 있다. 드론이나 로봇 등의 분야에서도 운용 시간 증가 및 안정성 강화 등 다양한 효과가 기대된다. 또한 개발된 복합 섬유(CNT-PANI)는 높은 기계적 유연성을 가지기 때문에, 휘거나 접을 수 있어 웨어러블 기기 등 차세대 전자 소자에 적용이 가능하다. 이번 연구의 또 다른 큰 성과는 생산비 절감 및 대량 생산 가능성 확보이다. 단일벽 탄소나노튜브(CNT)는 우수한 특성에도 불구하고 생산 단가가 높아 상용화에 어려움이 있었지만, 연구진은 저가의 전도성 고분자 폴리아닐린(PANI)과의 복합화 기술을 통해 이 문제를 해결했다. 나아가 간단한 공정을 통해 대량생산이 가능한 공정 기반도 마련했으며, 최근에는 이 기술을 바탕으로 필름 형태의 구조체 개발에까지 성공함으로써, 상용화를 한층 더 앞당겼다. 향후 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 걸쳐 탄소중립 사회로의 전환을 위한 핵심 기반 기술로 활용될 예정이다. KIST 구본철 박사는 “이번 기술은 슈퍼커패시터의 단점을 단일벽 탄소나노튜브 및 전도성 고분자를 이용해 극복한 기술이다”며, “앞으로 탄소나노튜브 기반 초고성능 탄소섬유 개발 및 산업화에 매진할 계획이다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) KIST 기관고유사업, 지역혁신선도기술개발사업(RS-2019-NR040066), 학연플랫폼구축시범사업(RS-2023-00304729) 및 산업통상자원부(장관 안덕근) 소재부품기술개발사업(RS-2023-00258521) 등 지원으로 수행됐다. 이번 연구 성과는 국제 학술지 ‘Composites Part B: Engineering’ (IF: 12.7, JCR: 0.3%) 최신호에 게재됐으며, 국내 및 미국 특허출원도 완료한 상태이다. * (논문명) Nanocell-structured carbon nanotube composite fibers for ultrahigh energy and power density supercapacitors [그림 1] 차세대 CNT-PANI 복합섬유 슈퍼커패시터 모식도 및 최근 연구결과와 비교 그래프 (좌) CNT와 PANI가 복합화되어 있는 모식도이다. CNT 사이에 공유결합된 PANI가 고르게 분포하고, 그 각각의 PANI가 나노크기의 셀로써 작용할 수 있다는 것을 나타낸다. (우) 이러한 특성을 기반으로 하여 제조된 복합섬유는 일반적인 슈퍼커패시터의 특성을 뛰어넘는, 전력밀도와 에너지밀도가 동시에 우수한 특성을 보인다. (*KIST1은 PANI의 무게만으로 계산된 값, KIST2는 섬유 전체의 무게로 계산된 값이다.) [그림 2] CNT-PANI 복합섬유 대량화 공정에 따른 섬유 단면 이미지 및 비정전용량 분석 그래프 복합섬유 커패시터의 상용화 가능성을 보기 위해, 대량 제조공정을 도입하였다. 1가닥 섬유부터 300가닥의 섬유까지 대량화 공정을 통해 섬유 다발을 제조하였고, PANI가 내부에서 나노셀 역할을 하기 때문에 비정전용량은 감소하지 않고 잘 유지되는 것을 확인할 수 있다. [그림 3] CNT-PANI 복합섬유의 제조 공정 모식도 PANI가 복합화된 섬유를 제조하는 전체적인 공정 모식도이다. (좌측부터) 탄소나노튜브를 기반으로 하여 액정상을 형성하고, 이를 응고용매에 방사하며 응고 및 연신 공정을 거친다. 최종적으로 제조된 복합섬유는 PANI가 고르게 분포하고 있는 구조를 가진다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다.
KIST, 한계를 극복한 슈퍼커패시터 개발로 차세대 에너지 저장 기술 선도한다. - 고출력·고용량을 동시에 구현한 차세대 에너지 저장 기술 개발 - 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 적용 가능성 한국과학기술연구원(KIST, 원장 오상록) 탄소융합소재연구센터 구본철, 김서균 박사 연구팀과 서울대학교(총장 유홍림) 박원철 교수 연구팀이 공동 연구를 통해 차세대 에너지 저장 장치로 주목받는 고성능 슈퍼커패시터를 개발했다. 공동 연구진이 개발한 이번 기술은 단일벽 탄소나노튜브(CNT)와 전도성 고분자 폴리아닐린(PANI)을 복합한 혁신적인 섬유 구조를 활용해 기존 슈퍼커패시터의 한계를 극복한 것이 특징이다. 슈퍼커패시터는 일반 배터리에 비해 빠른 충전과 높은 전력 밀도를 자랑하며, 수만 회의 충·방전 사이클에도 성능 저하가 적다. 그러나 상대적으로 낮은 에너지 밀도 탓에 장시간 사용에는 제약이 있어, 전기차나 드론 등 실사용 분야에서는 한계를 보였다. 연구진은 이러한 문제 해결을 위해, 전도성이 뛰어난 단일벽 탄소나노튜브(CNT)와 가공성과 저렴한 가격이 강점인 폴리아닐린(PANI)을 나노 수준에서 균일하게 화학 결합을 성공시켰다. 이를 통해 전자와 이온의 흐름을 동시에 향상시키는 정교한 섬유 구조체를 제작, 더 많은 에너지를 저장하면서도 빠른 속도로 방출할 수 있는 슈퍼커패시터를 개발했다. 개발된 슈퍼커패시터는 10만 회 이상의 충·방전 테스트에서도 안정적인 성능을 유지하며, 고전압 환경에서도 내구성이 뛰어난 것으로 나타났다. 이러한 특성 덕분에, 해당 기술은 기존 배터리 시스템을 대체하거나 보완하는 형태로 활용될 수 있다. 예를 들어 전기차에 적용할 경우, 급속 충전과 더불어 효율적인 전력 공급이 가능해져 주행 거리와 성능 모두를 향상시킬 수 있다. 드론이나 로봇 등의 분야에서도 운용 시간 증가 및 안정성 강화 등 다양한 효과가 기대된다. 또한 개발된 복합 섬유(CNT-PANI)는 높은 기계적 유연성을 가지기 때문에, 휘거나 접을 수 있어 웨어러블 기기 등 차세대 전자 소자에 적용이 가능하다. 이번 연구의 또 다른 큰 성과는 생산비 절감 및 대량 생산 가능성 확보이다. 단일벽 탄소나노튜브(CNT)는 우수한 특성에도 불구하고 생산 단가가 높아 상용화에 어려움이 있었지만, 연구진은 저가의 전도성 고분자 폴리아닐린(PANI)과의 복합화 기술을 통해 이 문제를 해결했다. 나아가 간단한 공정을 통해 대량생산이 가능한 공정 기반도 마련했으며, 최근에는 이 기술을 바탕으로 필름 형태의 구조체 개발에까지 성공함으로써, 상용화를 한층 더 앞당겼다. 향후 전기차, 로봇, 드론, 웨어러블 디바이스 등 다양한 산업에 걸쳐 탄소중립 사회로의 전환을 위한 핵심 기반 기술로 활용될 예정이다. KIST 구본철 박사는 “이번 기술은 슈퍼커패시터의 단점을 단일벽 탄소나노튜브 및 전도성 고분자를 이용해 극복한 기술이다”며, “앞으로 탄소나노튜브 기반 초고성능 탄소섬유 개발 및 산업화에 매진할 계획이다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) KIST 기관고유사업, 지역혁신선도기술개발사업(RS-2019-NR040066), 학연플랫폼구축시범사업(RS-2023-00304729) 및 산업통상자원부(장관 안덕근) 소재부품기술개발사업(RS-2023-00258521) 등 지원으로 수행됐다. 이번 연구 성과는 국제 학술지 ‘Composites Part B: Engineering’ (IF: 12.7, JCR: 0.3%) 최신호에 게재됐으며, 국내 및 미국 특허출원도 완료한 상태이다. * (논문명) Nanocell-structured carbon nanotube composite fibers for ultrahigh energy and power density supercapacitors [그림 1] 차세대 CNT-PANI 복합섬유 슈퍼커패시터 모식도 및 최근 연구결과와 비교 그래프 (좌) CNT와 PANI가 복합화되어 있는 모식도이다. CNT 사이에 공유결합된 PANI가 고르게 분포하고, 그 각각의 PANI가 나노크기의 셀로써 작용할 수 있다는 것을 나타낸다. (우) 이러한 특성을 기반으로 하여 제조된 복합섬유는 일반적인 슈퍼커패시터의 특성을 뛰어넘는, 전력밀도와 에너지밀도가 동시에 우수한 특성을 보인다. (*KIST1은 PANI의 무게만으로 계산된 값, KIST2는 섬유 전체의 무게로 계산된 값이다.) [그림 2] CNT-PANI 복합섬유 대량화 공정에 따른 섬유 단면 이미지 및 비정전용량 분석 그래프 복합섬유 커패시터의 상용화 가능성을 보기 위해, 대량 제조공정을 도입하였다. 1가닥 섬유부터 300가닥의 섬유까지 대량화 공정을 통해 섬유 다발을 제조하였고, PANI가 내부에서 나노셀 역할을 하기 때문에 비정전용량은 감소하지 않고 잘 유지되는 것을 확인할 수 있다. [그림 3] CNT-PANI 복합섬유의 제조 공정 모식도 PANI가 복합화된 섬유를 제조하는 전체적인 공정 모식도이다. (좌측부터) 탄소나노튜브를 기반으로 하여 액정상을 형성하고, 이를 응고용매에 방사하며 응고 및 연신 공정을 거친다. 최종적으로 제조된 복합섬유는 PANI가 고르게 분포하고 있는 구조를 가진다.