검색결과
게시물 키워드""에 대한 9495개의 검색결과를 찾았습니다.
KIST-LETI 차세대반도체 연구개발협력 MOU 체결
KIST-LETI 차세대반도체 연구개발협력 MOU 체결 - 글로벌 차세대반도체 기술개발 리더십 확보위해 공동협력 한국과학기술연구원(원장 이병권)과 프랑스 원자력청(CEA) 산하 전자정보기술연구소(LETI, CEO Marie Semeria)는 2016년 7월 13일(수) 차세대반도체 연구개발을 위해 상호 협력을 강화하는 양해각서(MOU)를 체결하였다. KIST는 지난 2015년 1월 차세대반도체연구소를 신설하여 차세대 반도체의 핵심인 ‘초저전력 화합물반도체 기반 전자소자’ 개발연구를 통해 2018년까지 현재의 실리콘반도체보다 100배 이상 성능이 뛰어난 반도체를 개발하고 2022년경 이 기술을 이전하여 상용화한다는 목표로 연구를 진행하고 있다. 이외에 산업혁명 4.0시대와 사물인터넷 미래사회에 핵심 플랫폼 기술인 양자컴퓨팅 기술과 신경망모사 반도체칩 개발 등 다양한 반도체관련 연구를 수행하고 있다. LETI는 프랑스 원자력청 산하 연구소 중 하나로 주요 연구분야는 나노기반기술개발과 반도체 응용 공정을 기반으로 한 시스템 반도체, 무선디바이스/시스템 개발, 화합물반도체 집적 및 헬스케어 등이며 현재 실리콘 소자와 화합물 반도체를 효과적을 집적하는 기술을 기반으로 연구영역을 확대해 나가고 있다. 양 기관은 이번 MOU를 통해 KIST와 LETI는 광전 3D 집적기술, 인공지능을 위한 신경모사 반도체, 차세대 비휘발성 메모리, 스핀트로닉스, 초저전력 반도체 등의 분야에 대해 공동연구를 추진할 계획이다. KIST 차세대반도체연구소 장준연 소장은 “이번 LETI와의 MOU를 통해 국제협력 네트워크의 폭을 넓혀 선진국들이 주도하고 있는 차세대 반도체기술개발에 대한 글로벌 리더십을 조기에 확보할 수 있을 것으로 기대된다”고 밝혔다. LETI의 나노전자소자기술부문 총괄책임자인 Carlo Reita는 “KIST는 지난 50년간 프랑스 LETI와 마찬가지로 한국 내 정부출연연구기관의 체계를 구축하는데 크게 기여하였다. 본 MOU는 산업의 생산성 제고, 기업의 혁신 가속화, 인류의 삶 향상을 위해 반드시 개발되어야 하는 필수적인 기술을 반영하고 있다”고 말했다. 현재 실리콘(Si)으로 대표되는 반도체 기술은 지속적인 크기 축소에 따라 최근 10nm 소자기술이 개발되어 7nm로 여겨지는 Si반도체 미세화의 한계에 도달하고 있다. 미국, 일본, EU등 선진국들은 새로운 소재와 작동원리를 갖는 차세대 반도체 기술에서 주도권을 확보하기 위해 국가적인 노력을 기울이고 있으며 선진국가간 공동연구를 통해 후발주자와의 기술격차를 벌이는 전략을 사용하고 있다. 우리나라는 Si을 이용한 메모리소자분야에서는 소형화를 주도하며 시장과 기술을 선도하고 있으나 그 한계가 머지않아 차세대 기술에 대해 기업뿐만 아니라 국가가 큰 관심을 기울여야 할 중요한 시점이다.
KIST-LG 화학, 탄소중립을 위해 뭉쳤다.
- KIST-LG화학, 탄소중립 기술이전 조인식 및 공동연구실 개소식 개최 - 공동연구실 구축을 통한 KIST 원천기술의 상용화 견인 한국과학기술연구원(KIST, 원장 윤석진)은 26일(화) KIST 서울 본원에서 ㈜LG화학(CEO 신학철)과 탄소중립 기술 개발을 위한 기술이전 조인식 및 공동연구실 발족을 위한 현판식을 개최했다고 밝혔다. KIST와 ㈜LG화학은 탄소중립 및 수소 에너지 등 관련기술의 공동 연구개발을 위한 업무협약(MOU)을 작년 4월 체결한 바 있으며, 그동안 상용화 가능성 및 파급력이 크다고 예상되는 유망 탄소중립 기술 10개의 과제를 도출하였다. 그 중 청정신기술연구본부 민병권 본부장, 오형석 박사팀의 ‘전기화학적 CO2 전환 에틸렌 생산 기술’과 엄영순 박사팀의 ‘합성가스 및 당을 이용한 C6 유기산 생산 기술’ 두 가지 기술을 우선 선정해 LG 화학에 기술을 이전하고 공동연구실을 출범해 양 기관의 효율적 협업을 시작하기로 결정하였다. ‘전기화학적 CO2 전환 에틸렌 생산 기술’은 전기를 이용하여 CO2를 직접 ‘산업의 쌀’로 알려진 에틸렌(C2H4)을 생산하는 기술로, 아직은 개발 초기 단계에 있는 매우 도전적이면서 파급력이 큰 기술 분야이다. ‘합성가스 및 당을 이용한 C6 유기산 생산 기술’의 경우는 KIST가 독자적으로 발굴한 신규 아세토젠 미생물을 이용하여 합성가스 또는 이산화탄소를 C4~C6 유기산과 알코올로 전환하는 기술이며 향후 목질계와 같은 비식량계 리그노셀룰로스 바이오매스를 이용한 탄소중립적 C6 유기산 생산을 가능하게 할 것으로 기대하고 있다. 두 연구성과는 각각 과학기술정보통신부(장관 임혜숙)의 ‘차세대 탄소자원화 사업’, ‘CtoX 기술개발 사업“ 및 ‘C1 가스 리파이너리 사업’ 과 KIST 기관고유 사업의 지원을 받아 수행한 연구에 바탕을 두고 있다. 이밖에도 KIST와 ㈜LG화학은 양 기관의 지속가능한 연구협력을 위해 다양한 인프라와 인력 교류 프로그램을 개발했다. 실질적인 연구 협력을 더욱 강화하기 위해 KIST 본원 환경 연구동에 공동연구실을 설치하여 양 기관의 연구자와 학생 연구원이 같이 연구를 수행한다. 인력 교류 프로그램도 개발했다. 본 프로그램으로 두 명의 ㈜LG화학 연구자가 KIST 학연 프로그램을 통하여 금년부터 박사과정을 시작하였고, KIST 학연학생 중 ㈜LG화학 산연장학생을 선발하여 등록금과 연수금을 지원하고, 졸업 후 ㈜LG화학에 입사하는 프로그램 또한 진행하고 있다. KIST 윤석진 원장은 “2050 탄소중립 구현은 기존에 없던 전혀 새로운 기술의 개발 여부가 성공을 결정하는 핵심 요인이다”며, “이는 현재 국가 연구소가 개발하고 있는 원천기술을 어떻게 실용화하느냐에 달려 있다고도 볼 수 있다. 이런 점에서 이번 KIST와 ㈜LG화학의 연구협력은 원천기술의 조기 상용화를 위한 좋은 롤모델이 될것이라는 점에서 큰 의의가 있다.”라고 밝혔다. 또한 ㈜LG화학 유지영 CTO는 “국내 최고 수준의 탄소중립 기술을 보유한 KIST와 협력을 통해 관련 원천 기술 확보와 상용화를 앞당길 수 있을 것으로 기대하고 있다”며, “LG화학은 지속가능성을 선도하는 과학기업으로 탄소중립 관련 혁신 기술과 R&D 역량을 지속 강화해 나갈 것”이라고 밝혔다.?
KIST-LG화학, ‘전해질 범람’ 억제하는 은 나노 촉매 개발로 CCUS 상용화 앞당긴다
- 소수성 제어를 통해 전해질 범람 방지하는 은 나노 촉매 개발 - 전기화학 CO2 전환 기술의 실증 및 상용화를 위한 촉매 전략 제시 2050년 탄소중립 목표를 달성하기 위해 CCUS(Carbon Capture, Utilization, and Storage) 기술이 중요한 역할을 맡고 있다. 화력발전소, 정유·석유화학 공장 등에서 발생하는 CO2를 유용한 화합물로 전환하는 전기화학적 CCUS 기술의 필수 매개체인 전해질은 반응 속도와 효율성에 영향을 주는 핵심 요소이다. 그러나 이산화탄소 전해 장치의 환원 전극에서 전해질이 과도하게 흐르는 전해질 범람(electrolyte flooding) 현상은 CO2가 전극 촉매층에 전달되는 것을 방해해 CCUS 기술의 상용화에 걸림돌이 되고 있다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 오형석·이웅희 박사팀은 KIST 반도체기술연구단 황규원 박사팀, LG화학 노태근 박사 연구팀과 공동연구를 통해 이산화탄소 포집 장치의 전해질 범람을 억제할 수 있는 소수성 지질 유기물이 표면에 결합된 은 나노 촉매를 개발했다고 밝혔다. 은 촉매는 CO2를 플라스틱 등 석유화학제품의 원료인 일산화탄소로 전환하는 데 탁월한 성능을 보여 가장 활발히 연구되고 있다. 연구팀은 전해질 범람 문제를 해결하기 위해 은 나노입자 표면에 지질 유기물을 결합해 물 분자와 쉽게 결합하지 않는 소수성을 지니면서 주변 반응 환경을 제어할 수 있는 새로운 은 촉매를 개발했다. 합성된 은 나노입자는 약 7나노미터(nm·10억분의 1m) 크기의 정이십면체 구조를 가지며 입자 표면에 소수성 지질 유기물이 균일하게 결합해 있다. 또한, 기존 단위 면적당 1mg의 촉매량보다 적은 0.3mg으로도 높은 CO2 전환 활성을 보였다. 연구팀이 개발한 은 촉매는 균일한 소수성을 지니고 있어 전극 표면에 물이 과도하게 축적되는 것을 방지해 전해질 범람을 억제함으로써 과전압 조건에서도 CO2 전환 성능을 유지하고 내구성을 높일 수 있다. 연구팀은 CT 촬영을 통해 전압이 높아지는 조건에서도 전해질의 범람이 줄어드는 것을 관찰했다. 또한, 실제 3.4V의 전압 조건에서 기존 촉매는 약 81.5%의 일산화탄소에 대한 선택도와 12시간의 성능 유지를 보였지만, 새롭게 합성된 촉매는 약 95.5%의 선택도와 50시간 이상의 성능을 유지했다. 이번에 개발된 촉매를 활용할 경우, 적은 촉매량으로 장기간 전기화학적 CO2 전환이 가능하다는 점에서 촉매 비용을 절감하고 교체 주기를 늘려 CCUS를 통한 일산화탄소의 생산비용이 낮아질 것으로 기대된다. 공동연구팀은 석유화학 공정 등 대규모 생산시설에 적용할 수 있도록 전기화학적 CO2 전환 실증 시스템 적용 연구를 수행할 예정이다. KIST 오형석 책임연구원은 “전기화학 시스템에서 내적, 외적 요인을 모두 고려한 촉매 합성 전략을 제시했다는 점에서 의미가 있다”라며 “LG화학과 함께 진행된 이 연구 성과는 향후 전기화학적 CO2 전환 기술의 실증 및 상용화를 앞당길 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 Carbon to X 사업(2020M3H7A1098229), 창의형 융합연구사업(CAP21011-100)으로 수행됐다. 이번 연구 결과는 국제학술지 「Nature Communications」 (IF: 14.7, JCR 분야: 5.6%)에 게재됐다. * 논문명 : Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalyst for CO2 electrolysis [그림 1] 소수성 지질 유기물이 표면에 결합된 정이십면체 구조의 은 촉매 모식도 [그림 2] 상용 은 촉매와 합성된 은 촉매의 범람 정도 비교 모식도 [그림3] 전해질 범람을 막아 전기화학적 CO2 전환 성능을 높이는 소수성 은촉매를 개발한 KIST 연구팀
KIST-LG화학, ‘전해질 범람’ 억제하는 은 나노 촉매 개발로 CCUS 상용화 앞당긴다
- 소수성 제어를 통해 전해질 범람 방지하는 은 나노 촉매 개발 - 전기화학 CO2 전환 기술의 실증 및 상용화를 위한 촉매 전략 제시 2050년 탄소중립 목표를 달성하기 위해 CCUS(Carbon Capture, Utilization, and Storage) 기술이 중요한 역할을 맡고 있다. 화력발전소, 정유·석유화학 공장 등에서 발생하는 CO2를 유용한 화합물로 전환하는 전기화학적 CCUS 기술의 필수 매개체인 전해질은 반응 속도와 효율성에 영향을 주는 핵심 요소이다. 그러나 이산화탄소 전해 장치의 환원 전극에서 전해질이 과도하게 흐르는 전해질 범람(electrolyte flooding) 현상은 CO2가 전극 촉매층에 전달되는 것을 방해해 CCUS 기술의 상용화에 걸림돌이 되고 있다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 오형석·이웅희 박사팀은 KIST 반도체기술연구단 황규원 박사팀, LG화학 노태근 박사 연구팀과 공동연구를 통해 이산화탄소 포집 장치의 전해질 범람을 억제할 수 있는 소수성 지질 유기물이 표면에 결합된 은 나노 촉매를 개발했다고 밝혔다. 은 촉매는 CO2를 플라스틱 등 석유화학제품의 원료인 일산화탄소로 전환하는 데 탁월한 성능을 보여 가장 활발히 연구되고 있다. 연구팀은 전해질 범람 문제를 해결하기 위해 은 나노입자 표면에 지질 유기물을 결합해 물 분자와 쉽게 결합하지 않는 소수성을 지니면서 주변 반응 환경을 제어할 수 있는 새로운 은 촉매를 개발했다. 합성된 은 나노입자는 약 7나노미터(nm·10억분의 1m) 크기의 정이십면체 구조를 가지며 입자 표면에 소수성 지질 유기물이 균일하게 결합해 있다. 또한, 기존 단위 면적당 1mg의 촉매량보다 적은 0.3mg으로도 높은 CO2 전환 활성을 보였다. 연구팀이 개발한 은 촉매는 균일한 소수성을 지니고 있어 전극 표면에 물이 과도하게 축적되는 것을 방지해 전해질 범람을 억제함으로써 과전압 조건에서도 CO2 전환 성능을 유지하고 내구성을 높일 수 있다. 연구팀은 CT 촬영을 통해 전압이 높아지는 조건에서도 전해질의 범람이 줄어드는 것을 관찰했다. 또한, 실제 3.4V의 전압 조건에서 기존 촉매는 약 81.5%의 일산화탄소에 대한 선택도와 12시간의 성능 유지를 보였지만, 새롭게 합성된 촉매는 약 95.5%의 선택도와 50시간 이상의 성능을 유지했다. 이번에 개발된 촉매를 활용할 경우, 적은 촉매량으로 장기간 전기화학적 CO2 전환이 가능하다는 점에서 촉매 비용을 절감하고 교체 주기를 늘려 CCUS를 통한 일산화탄소의 생산비용이 낮아질 것으로 기대된다. 공동연구팀은 석유화학 공정 등 대규모 생산시설에 적용할 수 있도록 전기화학적 CO2 전환 실증 시스템 적용 연구를 수행할 예정이다. KIST 오형석 책임연구원은 “전기화학 시스템에서 내적, 외적 요인을 모두 고려한 촉매 합성 전략을 제시했다는 점에서 의미가 있다”라며 “LG화학과 함께 진행된 이 연구 성과는 향후 전기화학적 CO2 전환 기술의 실증 및 상용화를 앞당길 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 Carbon to X 사업(2020M3H7A1098229), 창의형 융합연구사업(CAP21011-100)으로 수행됐다. 이번 연구 결과는 국제학술지 「Nature Communications」 (IF: 14.7, JCR 분야: 5.6%)에 게재됐다. * 논문명 : Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalyst for CO2 electrolysis [그림 1] 소수성 지질 유기물이 표면에 결합된 정이십면체 구조의 은 촉매 모식도 [그림 2] 상용 은 촉매와 합성된 은 촉매의 범람 정도 비교 모식도 [그림3] 전해질 범람을 막아 전기화학적 CO2 전환 성능을 높이는 소수성 은촉매를 개발한 KIST 연구팀
KIST-LG화학, ‘전해질 범람’ 억제하는 은 나노 촉매 개발로 CCUS 상용화 앞당긴다
- 소수성 제어를 통해 전해질 범람 방지하는 은 나노 촉매 개발 - 전기화학 CO2 전환 기술의 실증 및 상용화를 위한 촉매 전략 제시 2050년 탄소중립 목표를 달성하기 위해 CCUS(Carbon Capture, Utilization, and Storage) 기술이 중요한 역할을 맡고 있다. 화력발전소, 정유·석유화학 공장 등에서 발생하는 CO2를 유용한 화합물로 전환하는 전기화학적 CCUS 기술의 필수 매개체인 전해질은 반응 속도와 효율성에 영향을 주는 핵심 요소이다. 그러나 이산화탄소 전해 장치의 환원 전극에서 전해질이 과도하게 흐르는 전해질 범람(electrolyte flooding) 현상은 CO2가 전극 촉매층에 전달되는 것을 방해해 CCUS 기술의 상용화에 걸림돌이 되고 있다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 오형석·이웅희 박사팀은 KIST 반도체기술연구단 황규원 박사팀, LG화학 노태근 박사 연구팀과 공동연구를 통해 이산화탄소 포집 장치의 전해질 범람을 억제할 수 있는 소수성 지질 유기물이 표면에 결합된 은 나노 촉매를 개발했다고 밝혔다. 은 촉매는 CO2를 플라스틱 등 석유화학제품의 원료인 일산화탄소로 전환하는 데 탁월한 성능을 보여 가장 활발히 연구되고 있다. 연구팀은 전해질 범람 문제를 해결하기 위해 은 나노입자 표면에 지질 유기물을 결합해 물 분자와 쉽게 결합하지 않는 소수성을 지니면서 주변 반응 환경을 제어할 수 있는 새로운 은 촉매를 개발했다. 합성된 은 나노입자는 약 7나노미터(nm·10억분의 1m) 크기의 정이십면체 구조를 가지며 입자 표면에 소수성 지질 유기물이 균일하게 결합해 있다. 또한, 기존 단위 면적당 1mg의 촉매량보다 적은 0.3mg으로도 높은 CO2 전환 활성을 보였다. 연구팀이 개발한 은 촉매는 균일한 소수성을 지니고 있어 전극 표면에 물이 과도하게 축적되는 것을 방지해 전해질 범람을 억제함으로써 과전압 조건에서도 CO2 전환 성능을 유지하고 내구성을 높일 수 있다. 연구팀은 CT 촬영을 통해 전압이 높아지는 조건에서도 전해질의 범람이 줄어드는 것을 관찰했다. 또한, 실제 3.4V의 전압 조건에서 기존 촉매는 약 81.5%의 일산화탄소에 대한 선택도와 12시간의 성능 유지를 보였지만, 새롭게 합성된 촉매는 약 95.5%의 선택도와 50시간 이상의 성능을 유지했다. 이번에 개발된 촉매를 활용할 경우, 적은 촉매량으로 장기간 전기화학적 CO2 전환이 가능하다는 점에서 촉매 비용을 절감하고 교체 주기를 늘려 CCUS를 통한 일산화탄소의 생산비용이 낮아질 것으로 기대된다. 공동연구팀은 석유화학 공정 등 대규모 생산시설에 적용할 수 있도록 전기화학적 CO2 전환 실증 시스템 적용 연구를 수행할 예정이다. KIST 오형석 책임연구원은 “전기화학 시스템에서 내적, 외적 요인을 모두 고려한 촉매 합성 전략을 제시했다는 점에서 의미가 있다”라며 “LG화학과 함께 진행된 이 연구 성과는 향후 전기화학적 CO2 전환 기술의 실증 및 상용화를 앞당길 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 Carbon to X 사업(2020M3H7A1098229), 창의형 융합연구사업(CAP21011-100)으로 수행됐다. 이번 연구 결과는 국제학술지 「Nature Communications」 (IF: 14.7, JCR 분야: 5.6%)에 게재됐다. * 논문명 : Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalyst for CO2 electrolysis [그림 1] 소수성 지질 유기물이 표면에 결합된 정이십면체 구조의 은 촉매 모식도 [그림 2] 상용 은 촉매와 합성된 은 촉매의 범람 정도 비교 모식도 [그림3] 전해질 범람을 막아 전기화학적 CO2 전환 성능을 높이는 소수성 은촉매를 개발한 KIST 연구팀
KIST-LG화학, ‘전해질 범람’ 억제하는 은 나노 촉매 개발로 CCUS 상용화 앞당긴다
- 소수성 제어를 통해 전해질 범람 방지하는 은 나노 촉매 개발 - 전기화학 CO2 전환 기술의 실증 및 상용화를 위한 촉매 전략 제시 2050년 탄소중립 목표를 달성하기 위해 CCUS(Carbon Capture, Utilization, and Storage) 기술이 중요한 역할을 맡고 있다. 화력발전소, 정유·석유화학 공장 등에서 발생하는 CO2를 유용한 화합물로 전환하는 전기화학적 CCUS 기술의 필수 매개체인 전해질은 반응 속도와 효율성에 영향을 주는 핵심 요소이다. 그러나 이산화탄소 전해 장치의 환원 전극에서 전해질이 과도하게 흐르는 전해질 범람(electrolyte flooding) 현상은 CO2가 전극 촉매층에 전달되는 것을 방해해 CCUS 기술의 상용화에 걸림돌이 되고 있다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 오형석·이웅희 박사팀은 KIST 반도체기술연구단 황규원 박사팀, LG화학 노태근 박사 연구팀과 공동연구를 통해 이산화탄소 포집 장치의 전해질 범람을 억제할 수 있는 소수성 지질 유기물이 표면에 결합된 은 나노 촉매를 개발했다고 밝혔다. 은 촉매는 CO2를 플라스틱 등 석유화학제품의 원료인 일산화탄소로 전환하는 데 탁월한 성능을 보여 가장 활발히 연구되고 있다. 연구팀은 전해질 범람 문제를 해결하기 위해 은 나노입자 표면에 지질 유기물을 결합해 물 분자와 쉽게 결합하지 않는 소수성을 지니면서 주변 반응 환경을 제어할 수 있는 새로운 은 촉매를 개발했다. 합성된 은 나노입자는 약 7나노미터(nm·10억분의 1m) 크기의 정이십면체 구조를 가지며 입자 표면에 소수성 지질 유기물이 균일하게 결합해 있다. 또한, 기존 단위 면적당 1mg의 촉매량보다 적은 0.3mg으로도 높은 CO2 전환 활성을 보였다. 연구팀이 개발한 은 촉매는 균일한 소수성을 지니고 있어 전극 표면에 물이 과도하게 축적되는 것을 방지해 전해질 범람을 억제함으로써 과전압 조건에서도 CO2 전환 성능을 유지하고 내구성을 높일 수 있다. 연구팀은 CT 촬영을 통해 전압이 높아지는 조건에서도 전해질의 범람이 줄어드는 것을 관찰했다. 또한, 실제 3.4V의 전압 조건에서 기존 촉매는 약 81.5%의 일산화탄소에 대한 선택도와 12시간의 성능 유지를 보였지만, 새롭게 합성된 촉매는 약 95.5%의 선택도와 50시간 이상의 성능을 유지했다. 이번에 개발된 촉매를 활용할 경우, 적은 촉매량으로 장기간 전기화학적 CO2 전환이 가능하다는 점에서 촉매 비용을 절감하고 교체 주기를 늘려 CCUS를 통한 일산화탄소의 생산비용이 낮아질 것으로 기대된다. 공동연구팀은 석유화학 공정 등 대규모 생산시설에 적용할 수 있도록 전기화학적 CO2 전환 실증 시스템 적용 연구를 수행할 예정이다. KIST 오형석 책임연구원은 “전기화학 시스템에서 내적, 외적 요인을 모두 고려한 촉매 합성 전략을 제시했다는 점에서 의미가 있다”라며 “LG화학과 함께 진행된 이 연구 성과는 향후 전기화학적 CO2 전환 기술의 실증 및 상용화를 앞당길 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 Carbon to X 사업(2020M3H7A1098229), 창의형 융합연구사업(CAP21011-100)으로 수행됐다. 이번 연구 결과는 국제학술지 「Nature Communications」 (IF: 14.7, JCR 분야: 5.6%)에 게재됐다. * 논문명 : Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalyst for CO2 electrolysis [그림 1] 소수성 지질 유기물이 표면에 결합된 정이십면체 구조의 은 촉매 모식도 [그림 2] 상용 은 촉매와 합성된 은 촉매의 범람 정도 비교 모식도 [그림3] 전해질 범람을 막아 전기화학적 CO2 전환 성능을 높이는 소수성 은촉매를 개발한 KIST 연구팀
KIST-LG화학, ‘전해질 범람’ 억제하는 은 나노 촉매 개발로 CCUS 상용화 앞당긴다
- 소수성 제어를 통해 전해질 범람 방지하는 은 나노 촉매 개발 - 전기화학 CO2 전환 기술의 실증 및 상용화를 위한 촉매 전략 제시 2050년 탄소중립 목표를 달성하기 위해 CCUS(Carbon Capture, Utilization, and Storage) 기술이 중요한 역할을 맡고 있다. 화력발전소, 정유·석유화학 공장 등에서 발생하는 CO2를 유용한 화합물로 전환하는 전기화학적 CCUS 기술의 필수 매개체인 전해질은 반응 속도와 효율성에 영향을 주는 핵심 요소이다. 그러나 이산화탄소 전해 장치의 환원 전극에서 전해질이 과도하게 흐르는 전해질 범람(electrolyte flooding) 현상은 CO2가 전극 촉매층에 전달되는 것을 방해해 CCUS 기술의 상용화에 걸림돌이 되고 있다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 오형석·이웅희 박사팀은 KIST 반도체기술연구단 황규원 박사팀, LG화학 노태근 박사 연구팀과 공동연구를 통해 이산화탄소 포집 장치의 전해질 범람을 억제할 수 있는 소수성 지질 유기물이 표면에 결합된 은 나노 촉매를 개발했다고 밝혔다. 은 촉매는 CO2를 플라스틱 등 석유화학제품의 원료인 일산화탄소로 전환하는 데 탁월한 성능을 보여 가장 활발히 연구되고 있다. 연구팀은 전해질 범람 문제를 해결하기 위해 은 나노입자 표면에 지질 유기물을 결합해 물 분자와 쉽게 결합하지 않는 소수성을 지니면서 주변 반응 환경을 제어할 수 있는 새로운 은 촉매를 개발했다. 합성된 은 나노입자는 약 7나노미터(nm·10억분의 1m) 크기의 정이십면체 구조를 가지며 입자 표면에 소수성 지질 유기물이 균일하게 결합해 있다. 또한, 기존 단위 면적당 1mg의 촉매량보다 적은 0.3mg으로도 높은 CO2 전환 활성을 보였다. 연구팀이 개발한 은 촉매는 균일한 소수성을 지니고 있어 전극 표면에 물이 과도하게 축적되는 것을 방지해 전해질 범람을 억제함으로써 과전압 조건에서도 CO2 전환 성능을 유지하고 내구성을 높일 수 있다. 연구팀은 CT 촬영을 통해 전압이 높아지는 조건에서도 전해질의 범람이 줄어드는 것을 관찰했다. 또한, 실제 3.4V의 전압 조건에서 기존 촉매는 약 81.5%의 일산화탄소에 대한 선택도와 12시간의 성능 유지를 보였지만, 새롭게 합성된 촉매는 약 95.5%의 선택도와 50시간 이상의 성능을 유지했다. 이번에 개발된 촉매를 활용할 경우, 적은 촉매량으로 장기간 전기화학적 CO2 전환이 가능하다는 점에서 촉매 비용을 절감하고 교체 주기를 늘려 CCUS를 통한 일산화탄소의 생산비용이 낮아질 것으로 기대된다. 공동연구팀은 석유화학 공정 등 대규모 생산시설에 적용할 수 있도록 전기화학적 CO2 전환 실증 시스템 적용 연구를 수행할 예정이다. KIST 오형석 책임연구원은 “전기화학 시스템에서 내적, 외적 요인을 모두 고려한 촉매 합성 전략을 제시했다는 점에서 의미가 있다”라며 “LG화학과 함께 진행된 이 연구 성과는 향후 전기화학적 CO2 전환 기술의 실증 및 상용화를 앞당길 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 Carbon to X 사업(2020M3H7A1098229), 창의형 융합연구사업(CAP21011-100)으로 수행됐다. 이번 연구 결과는 국제학술지 「Nature Communications」 (IF: 14.7, JCR 분야: 5.6%)에 게재됐다. * 논문명 : Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalyst for CO2 electrolysis [그림 1] 소수성 지질 유기물이 표면에 결합된 정이십면체 구조의 은 촉매 모식도 [그림 2] 상용 은 촉매와 합성된 은 촉매의 범람 정도 비교 모식도 [그림3] 전해질 범람을 막아 전기화학적 CO2 전환 성능을 높이는 소수성 은촉매를 개발한 KIST 연구팀
KIST-LG화학, ‘전해질 범람’ 억제하는 은 나노 촉매 개발로 CCUS 상용화 앞당긴다
- 소수성 제어를 통해 전해질 범람 방지하는 은 나노 촉매 개발 - 전기화학 CO2 전환 기술의 실증 및 상용화를 위한 촉매 전략 제시 2050년 탄소중립 목표를 달성하기 위해 CCUS(Carbon Capture, Utilization, and Storage) 기술이 중요한 역할을 맡고 있다. 화력발전소, 정유·석유화학 공장 등에서 발생하는 CO2를 유용한 화합물로 전환하는 전기화학적 CCUS 기술의 필수 매개체인 전해질은 반응 속도와 효율성에 영향을 주는 핵심 요소이다. 그러나 이산화탄소 전해 장치의 환원 전극에서 전해질이 과도하게 흐르는 전해질 범람(electrolyte flooding) 현상은 CO2가 전극 촉매층에 전달되는 것을 방해해 CCUS 기술의 상용화에 걸림돌이 되고 있다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 오형석·이웅희 박사팀은 KIST 반도체기술연구단 황규원 박사팀, LG화학 노태근 박사 연구팀과 공동연구를 통해 이산화탄소 포집 장치의 전해질 범람을 억제할 수 있는 소수성 지질 유기물이 표면에 결합된 은 나노 촉매를 개발했다고 밝혔다. 은 촉매는 CO2를 플라스틱 등 석유화학제품의 원료인 일산화탄소로 전환하는 데 탁월한 성능을 보여 가장 활발히 연구되고 있다. 연구팀은 전해질 범람 문제를 해결하기 위해 은 나노입자 표면에 지질 유기물을 결합해 물 분자와 쉽게 결합하지 않는 소수성을 지니면서 주변 반응 환경을 제어할 수 있는 새로운 은 촉매를 개발했다. 합성된 은 나노입자는 약 7나노미터(nm·10억분의 1m) 크기의 정이십면체 구조를 가지며 입자 표면에 소수성 지질 유기물이 균일하게 결합해 있다. 또한, 기존 단위 면적당 1mg의 촉매량보다 적은 0.3mg으로도 높은 CO2 전환 활성을 보였다. 연구팀이 개발한 은 촉매는 균일한 소수성을 지니고 있어 전극 표면에 물이 과도하게 축적되는 것을 방지해 전해질 범람을 억제함으로써 과전압 조건에서도 CO2 전환 성능을 유지하고 내구성을 높일 수 있다. 연구팀은 CT 촬영을 통해 전압이 높아지는 조건에서도 전해질의 범람이 줄어드는 것을 관찰했다. 또한, 실제 3.4V의 전압 조건에서 기존 촉매는 약 81.5%의 일산화탄소에 대한 선택도와 12시간의 성능 유지를 보였지만, 새롭게 합성된 촉매는 약 95.5%의 선택도와 50시간 이상의 성능을 유지했다. 이번에 개발된 촉매를 활용할 경우, 적은 촉매량으로 장기간 전기화학적 CO2 전환이 가능하다는 점에서 촉매 비용을 절감하고 교체 주기를 늘려 CCUS를 통한 일산화탄소의 생산비용이 낮아질 것으로 기대된다. 공동연구팀은 석유화학 공정 등 대규모 생산시설에 적용할 수 있도록 전기화학적 CO2 전환 실증 시스템 적용 연구를 수행할 예정이다. KIST 오형석 책임연구원은 “전기화학 시스템에서 내적, 외적 요인을 모두 고려한 촉매 합성 전략을 제시했다는 점에서 의미가 있다”라며 “LG화학과 함께 진행된 이 연구 성과는 향후 전기화학적 CO2 전환 기술의 실증 및 상용화를 앞당길 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 Carbon to X 사업(2020M3H7A1098229), 창의형 융합연구사업(CAP21011-100)으로 수행됐다. 이번 연구 결과는 국제학술지 「Nature Communications」 (IF: 14.7, JCR 분야: 5.6%)에 게재됐다. * 논문명 : Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalyst for CO2 electrolysis [그림 1] 소수성 지질 유기물이 표면에 결합된 정이십면체 구조의 은 촉매 모식도 [그림 2] 상용 은 촉매와 합성된 은 촉매의 범람 정도 비교 모식도 [그림3] 전해질 범람을 막아 전기화학적 CO2 전환 성능을 높이는 소수성 은촉매를 개발한 KIST 연구팀
KIST-LG화학, ‘전해질 범람’ 억제하는 은 나노 촉매 개발로 CCUS 상용화 앞당긴다
- 소수성 제어를 통해 전해질 범람 방지하는 은 나노 촉매 개발 - 전기화학 CO2 전환 기술의 실증 및 상용화를 위한 촉매 전략 제시 2050년 탄소중립 목표를 달성하기 위해 CCUS(Carbon Capture, Utilization, and Storage) 기술이 중요한 역할을 맡고 있다. 화력발전소, 정유·석유화학 공장 등에서 발생하는 CO2를 유용한 화합물로 전환하는 전기화학적 CCUS 기술의 필수 매개체인 전해질은 반응 속도와 효율성에 영향을 주는 핵심 요소이다. 그러나 이산화탄소 전해 장치의 환원 전극에서 전해질이 과도하게 흐르는 전해질 범람(electrolyte flooding) 현상은 CO2가 전극 촉매층에 전달되는 것을 방해해 CCUS 기술의 상용화에 걸림돌이 되고 있다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 오형석·이웅희 박사팀은 KIST 반도체기술연구단 황규원 박사팀, LG화학 노태근 박사 연구팀과 공동연구를 통해 이산화탄소 포집 장치의 전해질 범람을 억제할 수 있는 소수성 지질 유기물이 표면에 결합된 은 나노 촉매를 개발했다고 밝혔다. 은 촉매는 CO2를 플라스틱 등 석유화학제품의 원료인 일산화탄소로 전환하는 데 탁월한 성능을 보여 가장 활발히 연구되고 있다. 연구팀은 전해질 범람 문제를 해결하기 위해 은 나노입자 표면에 지질 유기물을 결합해 물 분자와 쉽게 결합하지 않는 소수성을 지니면서 주변 반응 환경을 제어할 수 있는 새로운 은 촉매를 개발했다. 합성된 은 나노입자는 약 7나노미터(nm·10억분의 1m) 크기의 정이십면체 구조를 가지며 입자 표면에 소수성 지질 유기물이 균일하게 결합해 있다. 또한, 기존 단위 면적당 1mg의 촉매량보다 적은 0.3mg으로도 높은 CO2 전환 활성을 보였다. 연구팀이 개발한 은 촉매는 균일한 소수성을 지니고 있어 전극 표면에 물이 과도하게 축적되는 것을 방지해 전해질 범람을 억제함으로써 과전압 조건에서도 CO2 전환 성능을 유지하고 내구성을 높일 수 있다. 연구팀은 CT 촬영을 통해 전압이 높아지는 조건에서도 전해질의 범람이 줄어드는 것을 관찰했다. 또한, 실제 3.4V의 전압 조건에서 기존 촉매는 약 81.5%의 일산화탄소에 대한 선택도와 12시간의 성능 유지를 보였지만, 새롭게 합성된 촉매는 약 95.5%의 선택도와 50시간 이상의 성능을 유지했다. 이번에 개발된 촉매를 활용할 경우, 적은 촉매량으로 장기간 전기화학적 CO2 전환이 가능하다는 점에서 촉매 비용을 절감하고 교체 주기를 늘려 CCUS를 통한 일산화탄소의 생산비용이 낮아질 것으로 기대된다. 공동연구팀은 석유화학 공정 등 대규모 생산시설에 적용할 수 있도록 전기화학적 CO2 전환 실증 시스템 적용 연구를 수행할 예정이다. KIST 오형석 책임연구원은 “전기화학 시스템에서 내적, 외적 요인을 모두 고려한 촉매 합성 전략을 제시했다는 점에서 의미가 있다”라며 “LG화학과 함께 진행된 이 연구 성과는 향후 전기화학적 CO2 전환 기술의 실증 및 상용화를 앞당길 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 Carbon to X 사업(2020M3H7A1098229), 창의형 융합연구사업(CAP21011-100)으로 수행됐다. 이번 연구 결과는 국제학술지 「Nature Communications」 (IF: 14.7, JCR 분야: 5.6%)에 게재됐다. * 논문명 : Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalyst for CO2 electrolysis [그림 1] 소수성 지질 유기물이 표면에 결합된 정이십면체 구조의 은 촉매 모식도 [그림 2] 상용 은 촉매와 합성된 은 촉매의 범람 정도 비교 모식도 [그림3] 전해질 범람을 막아 전기화학적 CO2 전환 성능을 높이는 소수성 은촉매를 개발한 KIST 연구팀
KIST-LG화학, ‘전해질 범람’ 억제하는 은 나노 촉매 개발로 CCUS 상용화 앞당긴다
- 소수성 제어를 통해 전해질 범람 방지하는 은 나노 촉매 개발 - 전기화학 CO2 전환 기술의 실증 및 상용화를 위한 촉매 전략 제시 2050년 탄소중립 목표를 달성하기 위해 CCUS(Carbon Capture, Utilization, and Storage) 기술이 중요한 역할을 맡고 있다. 화력발전소, 정유·석유화학 공장 등에서 발생하는 CO2를 유용한 화합물로 전환하는 전기화학적 CCUS 기술의 필수 매개체인 전해질은 반응 속도와 효율성에 영향을 주는 핵심 요소이다. 그러나 이산화탄소 전해 장치의 환원 전극에서 전해질이 과도하게 흐르는 전해질 범람(electrolyte flooding) 현상은 CO2가 전극 촉매층에 전달되는 것을 방해해 CCUS 기술의 상용화에 걸림돌이 되고 있다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 오형석·이웅희 박사팀은 KIST 반도체기술연구단 황규원 박사팀, LG화학 노태근 박사 연구팀과 공동연구를 통해 이산화탄소 포집 장치의 전해질 범람을 억제할 수 있는 소수성 지질 유기물이 표면에 결합된 은 나노 촉매를 개발했다고 밝혔다. 은 촉매는 CO2를 플라스틱 등 석유화학제품의 원료인 일산화탄소로 전환하는 데 탁월한 성능을 보여 가장 활발히 연구되고 있다. 연구팀은 전해질 범람 문제를 해결하기 위해 은 나노입자 표면에 지질 유기물을 결합해 물 분자와 쉽게 결합하지 않는 소수성을 지니면서 주변 반응 환경을 제어할 수 있는 새로운 은 촉매를 개발했다. 합성된 은 나노입자는 약 7나노미터(nm·10억분의 1m) 크기의 정이십면체 구조를 가지며 입자 표면에 소수성 지질 유기물이 균일하게 결합해 있다. 또한, 기존 단위 면적당 1mg의 촉매량보다 적은 0.3mg으로도 높은 CO2 전환 활성을 보였다. 연구팀이 개발한 은 촉매는 균일한 소수성을 지니고 있어 전극 표면에 물이 과도하게 축적되는 것을 방지해 전해질 범람을 억제함으로써 과전압 조건에서도 CO2 전환 성능을 유지하고 내구성을 높일 수 있다. 연구팀은 CT 촬영을 통해 전압이 높아지는 조건에서도 전해질의 범람이 줄어드는 것을 관찰했다. 또한, 실제 3.4V의 전압 조건에서 기존 촉매는 약 81.5%의 일산화탄소에 대한 선택도와 12시간의 성능 유지를 보였지만, 새롭게 합성된 촉매는 약 95.5%의 선택도와 50시간 이상의 성능을 유지했다. 이번에 개발된 촉매를 활용할 경우, 적은 촉매량으로 장기간 전기화학적 CO2 전환이 가능하다는 점에서 촉매 비용을 절감하고 교체 주기를 늘려 CCUS를 통한 일산화탄소의 생산비용이 낮아질 것으로 기대된다. 공동연구팀은 석유화학 공정 등 대규모 생산시설에 적용할 수 있도록 전기화학적 CO2 전환 실증 시스템 적용 연구를 수행할 예정이다. KIST 오형석 책임연구원은 “전기화학 시스템에서 내적, 외적 요인을 모두 고려한 촉매 합성 전략을 제시했다는 점에서 의미가 있다”라며 “LG화학과 함께 진행된 이 연구 성과는 향후 전기화학적 CO2 전환 기술의 실증 및 상용화를 앞당길 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 Carbon to X 사업(2020M3H7A1098229), 창의형 융합연구사업(CAP21011-100)으로 수행됐다. 이번 연구 결과는 국제학술지 「Nature Communications」 (IF: 14.7, JCR 분야: 5.6%)에 게재됐다. * 논문명 : Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalyst for CO2 electrolysis [그림 1] 소수성 지질 유기물이 표면에 결합된 정이십면체 구조의 은 촉매 모식도 [그림 2] 상용 은 촉매와 합성된 은 촉매의 범람 정도 비교 모식도 [그림3] 전해질 범람을 막아 전기화학적 CO2 전환 성능을 높이는 소수성 은촉매를 개발한 KIST 연구팀