검색결과
게시물 키워드""에 대한 9495개의 검색결과를 찾았습니다.
자동차·선박에서 나오는 미세먼지 원인 물질, 저비용?고효율의 친환경성 전환 촉매로 잡는다
- 미세먼지 생성원인인 질소산화물을 물과 질소로 고효율·지속적으로 바꾸는 촉매 개발 - 기존 대비 저비용 생산·독성 억제 효과 상승, 저온에서 향상된 성능?안정성 구현 최근 디젤을 연료로 사용하는 발전소 및 주요 운송수단들(자동차, 선박)에서 배출되는 질소산화물*(nitrogen oxide, NOX)에 대한 규제가 지속적으로 강화되고 있는데, 이는 질소산화물이 미세먼지를 생성시키는 주요 원인물질 중 하나이기 때문이다. 미세먼지를 줄이기 위한 방법은 질소산화물을 환원제인 암모니아와 촉매 상에서 반응시켜 환경 친화적인 물 및 질소 등으로 전환시키는 화학적 처리방법이 가장 친환경적이고 효율적이다. *질소산화물 : 연소과정에서 발생하는 질소와 산소의 화합물, 공해문제는 일산화질소(NO), 이산화질소(NO2)이다. 일반적으로 발전소 및 자동차 등에 적용되는 상용촉매의 경우, 300°C 이상의 고온에서는 질소산화물을 물로 바꾸는데 아주 높은 전환율을 나타낸다. 하지만 이 경우 사용온도가 300°C 이상의 고온 환경을 만들어야하는 등 막대한 비용이 든다. 또한 촉매가 고온에 노출될 때, 독성의 촉매성분이 증발되어 대기 중에 방출되는 문제점이 있어 일본을 비롯한 여러 국가에서는 고온에서 독성을 지닌 바나듐 등을 포함한 촉매의 사용을 제한하고 있다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구센터 하헌필, 김종식 박사팀은 기존 상용촉매의 단점을 극복한 촉매를 개발했다. 개발된 탈질촉매는 대기 중에 독성 방출을 억제하고, 300°C 이하의 상대적 저온 영역에서도 높은 효율을 유지한다. 이 촉매는 높은 안정성을 보이며, 저가로 제조 가능하여 대량 생산이 가능하다. KIST 하헌필, 김종식 박사팀이 개발한 촉매는 기존에 보고되지 않은 ‘구리바나듐 복합산화물’(Cu3V2O8)을 주촉매성분으로 사용하되, 촉매구조 개량을 통하여 독성의 촉매성분 증발이 억제되고, 자동차·선박 기준으로 상대적으로 저온인 230°C 에서도 상용촉매 대비 10~15% 향상된 질소산화물 전환율을 보이며, 배연가스에 포함되어 있는 이산화황이 존재하는 상황에서 촉매의 내구(안정)성이 약 4배 향상되었다. 특히, 연구진은 활성물질을 안정화시키는 재료설계 기법을 사용하여, 고온에서 대기 중으로 활성물질이 증발될 수 있는 가능성을 획기적으로 줄인 친환경 촉매를 개발했다고 밝혔다. KIST 김종식 박사는 “이번 연구를 통해 촉매구조 개량을 통하여 저비용으로 대량생산이 가능한 촉매를 개발했다. 독성의 촉매성분 승화가 억제되었고, 상대적으로 저온인 250 °C 이하에서 기존의 상용촉매 대비 향상된 성능과 효율을 보이며, 촉매의 내구(안정)성 또한 향상되는 장점들이 있다.”고 밝혔다. 연구책임자인 하헌필 박사(본부장)는 “본 연구에서 개발된 촉매를 발전소·자동차 등에 실제 장착 및 상용화를 위해 노력할 것이며, 현재 촉매 성능의 향상을 위한 촉매성분 최적화 연구를 진행 중이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원을 바탕으로 한 KIST 기관고유사업 및 한국연구재단 미래소재 디스커버리사업으로 수행되었으며, 연구결과는 촉매 분야 최고수준의 과학전문지인 ‘Applied Catalysis B: Environmental’(IF : 9.446, JCR 상위 1.020%) 최신호에 온라인 게재되었다. * (논문명) Exploration of surface properties of Sb-promoted copper vanadate catalysts for selective catalytic reduction of NOX by NH3 - (제1저자) 한국과학기술연구원 김종식 선임연구원 - (교신저자) 한국과학기술연구원 하헌필 책임연구원 <그림설명> <그림 1> 개발된 촉매 관련 key idea의 illustration: (a) 선택적 질소산화물 환원반응 관련 화학반응식 도식, (b and c) 선택적 질소산화물 환원반응 관련 촉매점들 위에서 NOX와 NH3의 변환과정 도식, (d) 주촉매점으로 적용 가능한 구리바나듐산염들 도식 (Cu1: Cu1V2O6; Cu2: Cu2V2O7; Cu3: Cu3V2O8; Cu5: Cu5V2O10), (e) 안티모니게 조촉매점 및 비바람직한 반응부산물 ((NH4)2SO4, (NH4)HSO4, H2SO4)의 형성 관련 화학반응식 도식
자동차·선박에서 나오는 미세먼지 원인 물질, 저비용?고효율의 친환경성 전환 촉매로 잡는다
- 미세먼지 생성원인인 질소산화물을 물과 질소로 고효율·지속적으로 바꾸는 촉매 개발 - 기존 대비 저비용 생산·독성 억제 효과 상승, 저온에서 향상된 성능?안정성 구현 최근 디젤을 연료로 사용하는 발전소 및 주요 운송수단들(자동차, 선박)에서 배출되는 질소산화물*(nitrogen oxide, NOX)에 대한 규제가 지속적으로 강화되고 있는데, 이는 질소산화물이 미세먼지를 생성시키는 주요 원인물질 중 하나이기 때문이다. 미세먼지를 줄이기 위한 방법은 질소산화물을 환원제인 암모니아와 촉매 상에서 반응시켜 환경 친화적인 물 및 질소 등으로 전환시키는 화학적 처리방법이 가장 친환경적이고 효율적이다. *질소산화물 : 연소과정에서 발생하는 질소와 산소의 화합물, 공해문제는 일산화질소(NO), 이산화질소(NO2)이다. 일반적으로 발전소 및 자동차 등에 적용되는 상용촉매의 경우, 300°C 이상의 고온에서는 질소산화물을 물로 바꾸는데 아주 높은 전환율을 나타낸다. 하지만 이 경우 사용온도가 300°C 이상의 고온 환경을 만들어야하는 등 막대한 비용이 든다. 또한 촉매가 고온에 노출될 때, 독성의 촉매성분이 증발되어 대기 중에 방출되는 문제점이 있어 일본을 비롯한 여러 국가에서는 고온에서 독성을 지닌 바나듐 등을 포함한 촉매의 사용을 제한하고 있다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구센터 하헌필, 김종식 박사팀은 기존 상용촉매의 단점을 극복한 촉매를 개발했다. 개발된 탈질촉매는 대기 중에 독성 방출을 억제하고, 300°C 이하의 상대적 저온 영역에서도 높은 효율을 유지한다. 이 촉매는 높은 안정성을 보이며, 저가로 제조 가능하여 대량 생산이 가능하다. KIST 하헌필, 김종식 박사팀이 개발한 촉매는 기존에 보고되지 않은 ‘구리바나듐 복합산화물’(Cu3V2O8)을 주촉매성분으로 사용하되, 촉매구조 개량을 통하여 독성의 촉매성분 증발이 억제되고, 자동차·선박 기준으로 상대적으로 저온인 230°C 에서도 상용촉매 대비 10~15% 향상된 질소산화물 전환율을 보이며, 배연가스에 포함되어 있는 이산화황이 존재하는 상황에서 촉매의 내구(안정)성이 약 4배 향상되었다. 특히, 연구진은 활성물질을 안정화시키는 재료설계 기법을 사용하여, 고온에서 대기 중으로 활성물질이 증발될 수 있는 가능성을 획기적으로 줄인 친환경 촉매를 개발했다고 밝혔다. KIST 김종식 박사는 “이번 연구를 통해 촉매구조 개량을 통하여 저비용으로 대량생산이 가능한 촉매를 개발했다. 독성의 촉매성분 승화가 억제되었고, 상대적으로 저온인 250 °C 이하에서 기존의 상용촉매 대비 향상된 성능과 효율을 보이며, 촉매의 내구(안정)성 또한 향상되는 장점들이 있다.”고 밝혔다. 연구책임자인 하헌필 박사(본부장)는 “본 연구에서 개발된 촉매를 발전소·자동차 등에 실제 장착 및 상용화를 위해 노력할 것이며, 현재 촉매 성능의 향상을 위한 촉매성분 최적화 연구를 진행 중이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원을 바탕으로 한 KIST 기관고유사업 및 한국연구재단 미래소재 디스커버리사업으로 수행되었으며, 연구결과는 촉매 분야 최고수준의 과학전문지인 ‘Applied Catalysis B: Environmental’(IF : 9.446, JCR 상위 1.020%) 최신호에 온라인 게재되었다. * (논문명) Exploration of surface properties of Sb-promoted copper vanadate catalysts for selective catalytic reduction of NOX by NH3 - (제1저자) 한국과학기술연구원 김종식 선임연구원 - (교신저자) 한국과학기술연구원 하헌필 책임연구원 <그림설명> <그림 1> 개발된 촉매 관련 key idea의 illustration: (a) 선택적 질소산화물 환원반응 관련 화학반응식 도식, (b and c) 선택적 질소산화물 환원반응 관련 촉매점들 위에서 NOX와 NH3의 변환과정 도식, (d) 주촉매점으로 적용 가능한 구리바나듐산염들 도식 (Cu1: Cu1V2O6; Cu2: Cu2V2O7; Cu3: Cu3V2O8; Cu5: Cu5V2O10), (e) 안티모니게 조촉매점 및 비바람직한 반응부산물 ((NH4)2SO4, (NH4)HSO4, H2SO4)의 형성 관련 화학반응식 도식
자동차·선박에서 나오는 미세먼지 원인 물질, 저비용?고효율의 친환경성 전환 촉매로 잡는다
- 미세먼지 생성원인인 질소산화물을 물과 질소로 고효율·지속적으로 바꾸는 촉매 개발 - 기존 대비 저비용 생산·독성 억제 효과 상승, 저온에서 향상된 성능?안정성 구현 최근 디젤을 연료로 사용하는 발전소 및 주요 운송수단들(자동차, 선박)에서 배출되는 질소산화물*(nitrogen oxide, NOX)에 대한 규제가 지속적으로 강화되고 있는데, 이는 질소산화물이 미세먼지를 생성시키는 주요 원인물질 중 하나이기 때문이다. 미세먼지를 줄이기 위한 방법은 질소산화물을 환원제인 암모니아와 촉매 상에서 반응시켜 환경 친화적인 물 및 질소 등으로 전환시키는 화학적 처리방법이 가장 친환경적이고 효율적이다. *질소산화물 : 연소과정에서 발생하는 질소와 산소의 화합물, 공해문제는 일산화질소(NO), 이산화질소(NO2)이다. 일반적으로 발전소 및 자동차 등에 적용되는 상용촉매의 경우, 300°C 이상의 고온에서는 질소산화물을 물로 바꾸는데 아주 높은 전환율을 나타낸다. 하지만 이 경우 사용온도가 300°C 이상의 고온 환경을 만들어야하는 등 막대한 비용이 든다. 또한 촉매가 고온에 노출될 때, 독성의 촉매성분이 증발되어 대기 중에 방출되는 문제점이 있어 일본을 비롯한 여러 국가에서는 고온에서 독성을 지닌 바나듐 등을 포함한 촉매의 사용을 제한하고 있다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구센터 하헌필, 김종식 박사팀은 기존 상용촉매의 단점을 극복한 촉매를 개발했다. 개발된 탈질촉매는 대기 중에 독성 방출을 억제하고, 300°C 이하의 상대적 저온 영역에서도 높은 효율을 유지한다. 이 촉매는 높은 안정성을 보이며, 저가로 제조 가능하여 대량 생산이 가능하다. KIST 하헌필, 김종식 박사팀이 개발한 촉매는 기존에 보고되지 않은 ‘구리바나듐 복합산화물’(Cu3V2O8)을 주촉매성분으로 사용하되, 촉매구조 개량을 통하여 독성의 촉매성분 증발이 억제되고, 자동차·선박 기준으로 상대적으로 저온인 230°C 에서도 상용촉매 대비 10~15% 향상된 질소산화물 전환율을 보이며, 배연가스에 포함되어 있는 이산화황이 존재하는 상황에서 촉매의 내구(안정)성이 약 4배 향상되었다. 특히, 연구진은 활성물질을 안정화시키는 재료설계 기법을 사용하여, 고온에서 대기 중으로 활성물질이 증발될 수 있는 가능성을 획기적으로 줄인 친환경 촉매를 개발했다고 밝혔다. KIST 김종식 박사는 “이번 연구를 통해 촉매구조 개량을 통하여 저비용으로 대량생산이 가능한 촉매를 개발했다. 독성의 촉매성분 승화가 억제되었고, 상대적으로 저온인 250 °C 이하에서 기존의 상용촉매 대비 향상된 성능과 효율을 보이며, 촉매의 내구(안정)성 또한 향상되는 장점들이 있다.”고 밝혔다. 연구책임자인 하헌필 박사(본부장)는 “본 연구에서 개발된 촉매를 발전소·자동차 등에 실제 장착 및 상용화를 위해 노력할 것이며, 현재 촉매 성능의 향상을 위한 촉매성분 최적화 연구를 진행 중이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원을 바탕으로 한 KIST 기관고유사업 및 한국연구재단 미래소재 디스커버리사업으로 수행되었으며, 연구결과는 촉매 분야 최고수준의 과학전문지인 ‘Applied Catalysis B: Environmental’(IF : 9.446, JCR 상위 1.020%) 최신호에 온라인 게재되었다. * (논문명) Exploration of surface properties of Sb-promoted copper vanadate catalysts for selective catalytic reduction of NOX by NH3 - (제1저자) 한국과학기술연구원 김종식 선임연구원 - (교신저자) 한국과학기술연구원 하헌필 책임연구원 <그림설명> <그림 1> 개발된 촉매 관련 key idea의 illustration: (a) 선택적 질소산화물 환원반응 관련 화학반응식 도식, (b and c) 선택적 질소산화물 환원반응 관련 촉매점들 위에서 NOX와 NH3의 변환과정 도식, (d) 주촉매점으로 적용 가능한 구리바나듐산염들 도식 (Cu1: Cu1V2O6; Cu2: Cu2V2O7; Cu3: Cu3V2O8; Cu5: Cu5V2O10), (e) 안티모니게 조촉매점 및 비바람직한 반응부산물 ((NH4)2SO4, (NH4)HSO4, H2SO4)의 형성 관련 화학반응식 도식
자동차·선박에서 나오는 미세먼지 원인 물질, 저비용?고효율의 친환경성 전환 촉매로 잡는다
- 미세먼지 생성원인인 질소산화물을 물과 질소로 고효율·지속적으로 바꾸는 촉매 개발 - 기존 대비 저비용 생산·독성 억제 효과 상승, 저온에서 향상된 성능?안정성 구현 최근 디젤을 연료로 사용하는 발전소 및 주요 운송수단들(자동차, 선박)에서 배출되는 질소산화물*(nitrogen oxide, NOX)에 대한 규제가 지속적으로 강화되고 있는데, 이는 질소산화물이 미세먼지를 생성시키는 주요 원인물질 중 하나이기 때문이다. 미세먼지를 줄이기 위한 방법은 질소산화물을 환원제인 암모니아와 촉매 상에서 반응시켜 환경 친화적인 물 및 질소 등으로 전환시키는 화학적 처리방법이 가장 친환경적이고 효율적이다. *질소산화물 : 연소과정에서 발생하는 질소와 산소의 화합물, 공해문제는 일산화질소(NO), 이산화질소(NO2)이다. 일반적으로 발전소 및 자동차 등에 적용되는 상용촉매의 경우, 300°C 이상의 고온에서는 질소산화물을 물로 바꾸는데 아주 높은 전환율을 나타낸다. 하지만 이 경우 사용온도가 300°C 이상의 고온 환경을 만들어야하는 등 막대한 비용이 든다. 또한 촉매가 고온에 노출될 때, 독성의 촉매성분이 증발되어 대기 중에 방출되는 문제점이 있어 일본을 비롯한 여러 국가에서는 고온에서 독성을 지닌 바나듐 등을 포함한 촉매의 사용을 제한하고 있다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구센터 하헌필, 김종식 박사팀은 기존 상용촉매의 단점을 극복한 촉매를 개발했다. 개발된 탈질촉매는 대기 중에 독성 방출을 억제하고, 300°C 이하의 상대적 저온 영역에서도 높은 효율을 유지한다. 이 촉매는 높은 안정성을 보이며, 저가로 제조 가능하여 대량 생산이 가능하다. KIST 하헌필, 김종식 박사팀이 개발한 촉매는 기존에 보고되지 않은 ‘구리바나듐 복합산화물’(Cu3V2O8)을 주촉매성분으로 사용하되, 촉매구조 개량을 통하여 독성의 촉매성분 증발이 억제되고, 자동차·선박 기준으로 상대적으로 저온인 230°C 에서도 상용촉매 대비 10~15% 향상된 질소산화물 전환율을 보이며, 배연가스에 포함되어 있는 이산화황이 존재하는 상황에서 촉매의 내구(안정)성이 약 4배 향상되었다. 특히, 연구진은 활성물질을 안정화시키는 재료설계 기법을 사용하여, 고온에서 대기 중으로 활성물질이 증발될 수 있는 가능성을 획기적으로 줄인 친환경 촉매를 개발했다고 밝혔다. KIST 김종식 박사는 “이번 연구를 통해 촉매구조 개량을 통하여 저비용으로 대량생산이 가능한 촉매를 개발했다. 독성의 촉매성분 승화가 억제되었고, 상대적으로 저온인 250 °C 이하에서 기존의 상용촉매 대비 향상된 성능과 효율을 보이며, 촉매의 내구(안정)성 또한 향상되는 장점들이 있다.”고 밝혔다. 연구책임자인 하헌필 박사(본부장)는 “본 연구에서 개발된 촉매를 발전소·자동차 등에 실제 장착 및 상용화를 위해 노력할 것이며, 현재 촉매 성능의 향상을 위한 촉매성분 최적화 연구를 진행 중이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원을 바탕으로 한 KIST 기관고유사업 및 한국연구재단 미래소재 디스커버리사업으로 수행되었으며, 연구결과는 촉매 분야 최고수준의 과학전문지인 ‘Applied Catalysis B: Environmental’(IF : 9.446, JCR 상위 1.020%) 최신호에 온라인 게재되었다. * (논문명) Exploration of surface properties of Sb-promoted copper vanadate catalysts for selective catalytic reduction of NOX by NH3 - (제1저자) 한국과학기술연구원 김종식 선임연구원 - (교신저자) 한국과학기술연구원 하헌필 책임연구원 <그림설명> <그림 1> 개발된 촉매 관련 key idea의 illustration: (a) 선택적 질소산화물 환원반응 관련 화학반응식 도식, (b and c) 선택적 질소산화물 환원반응 관련 촉매점들 위에서 NOX와 NH3의 변환과정 도식, (d) 주촉매점으로 적용 가능한 구리바나듐산염들 도식 (Cu1: Cu1V2O6; Cu2: Cu2V2O7; Cu3: Cu3V2O8; Cu5: Cu5V2O10), (e) 안티모니게 조촉매점 및 비바람직한 반응부산물 ((NH4)2SO4, (NH4)HSO4, H2SO4)의 형성 관련 화학반응식 도식
자성물질 없이 구동되는 ‘스핀 트랜지스터’ 개발, 집적화 한계 넘는 차세대 반도체 가능성 보인다
- 별도의 자성전극 없이 반도체 자체만으로 구동되는 스핀 트랜지스터 기술 - 100배 향상된 신호로 향후 집적화 한계 넘는 차세대 반도체 연구에 기여 트랜지스터는 반도체 소자의 핵심요소로, 전기 신호를 증폭하거나 차단·전달하는 ‘스위치’ 역할을 한다. 컴퓨터 성능은 정보를 처리하는 트랜지스터의 수가 좌우하는데, 초기 컴퓨터한 대에 2,300개 정도였던 트랜지스터 수는 현재 수십 억 개에 이른다. 하지만 손톱만한 크기의 프로세서에 더 많은 트랜지스터를 집적하는 것이 이제 물리적 한계에 이르렀고, 폭증하는 데이터양을 따라잡지 못하게 되었다. 그리하여 차세대 트랜지스터로 주목받는 반도체내의 전자의 스핀(spin, 회전과 유사한 전자의 양자역학적 상태로 전자의 자성적 방향)을이용한 ‘스핀 트랜지스터’가 새로운 해결책으로 부상하고 있다. 최근 국내 연구진이 스핀 트랜지스터 상용화의 최대 걸림돌인 강자성 전극 문제를 최초로 해결해 국내외 반도체 산업계의 관심이 고조되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 구현철 박사 연구팀은 기존 스핀트랜지스터의 구동을 위해 반드시 필요했던 자기장과 자성체를 모두 제거하고도 초고속 반도체 채널만으로 스핀을 생성, 제어, 감지하는 동작이 구현되는 새로운 스핀 트랜지스터 개발에 성공했다고 밝혔다. 스핀 트랜지스터는 전자의 이동량을 이용하는 기존 산화금속반도체(MOS) 트랜지스터와달리 전자의 스핀을 이용해 신호를 제어한다. 전류를 흘렸다가 차단하는 것이 아니라 전자의 스핀만 바꾸면 되므로 속도가 빠르고 전력 소모가 매우 낮게 만들어질 수 있는 잠재력이있다. 스핀 트랜지스터(spin transistor)는 전자가 회전하는 방향에 따라 디지털 신호를 구분할수 있어 정보처리 속도가 획기적으로 빨라진다. 또한 저전력에도 구동이 가능해 실리콘 반도체를 대체하는 차세대 반도체로서 기대를 모았다. 반면 높은 가능성에도 불구하고 전자의움직임을 유도하는 자기장과 자성체가 필요한 점이 단점으로 지적되었고, 실제 기존의 스핀트랜지스터는 강자성체와 반도체 사이의 접합면에서 대부분의 신호를 잃어 실제 소자로 상용화가 어려운 상태였다. KIST 연구팀은 자기장과 자성체를 모두 제거하고, 반도체 채널만으로 이루어진 스핀 트랜지스터를 개발하였다. 연구진은 자성물질로 인한 반도체 내에 스핀이 주입되는 것을 배제시키고, 반도체 자체에서 스핀 정보를 발생시키고 게이트 전압으로 방향을 제어해 다시 전기적으로 읽을 수 있도록 한 것이다. 이를 통해 KIST 연구팀은 스핀 트랜지스터의 약점이었던 신호 전달을 100배 이상 향상시켰다. 여기에는 스핀 정보를 전기적 정보로 전환하는 스핀 홀 효과가 이용됐다. KIST 연구진은 자성물질로 인한 노이즈와 전력소비를 획기적으로 줄였다. 또한 스핀트랜지스터가 초고속 III-V족 반도체*를 사용하는 전자소재로서 반도체 산업 전반에 다양하게활용될 수 있는 길을 열었다. 또한 논리소자 동작을 위해 두 가지 종류의 각기 다른 물질을첨가한 트랜지스터가 필요했으나, 부가적인 물질의 첨가 없이 논리 동작 구현이 가능하게하여 공정비용을 획기적으로 절감할 수 있게 될 것으로 전망된다. * III-V족 반도체 : Si(실리콘), Ge(게르마늄) 등의 반도체 대표 원소에 P(인), B(붕소) 등의III-V족 화합물을 침투시켜 전기저항을 조절하는 반도체. KIST 구현철 박사는 “이번에 개발한 스핀 트랜지스터는 스핀 관련 전자소자에 반드시 강자성체와 자기장이 필요하다는 고정관념을 깬 것”이라며 “반도체 자체에서 스핀을 생성시키는새로운 패러다임을 제시하여 스핀 트랜지스터 실용화에 크게 기여할 것으로 기대된다.”고밝혔다. 본 연구는 삼성전자 미래기술육성센터 지원사업과 과학기술정보통신부(장관 유영민)가 지원한 KIST 기관고유사업으로 수행되었으며, 연구 결과는 나노분야의 세계적인 학술지‘Nano Letters’ (IF: 12.080, JCR 상위분야 5.822%) 최신호에 게재되었다. <그림설명> [그림 1] (a) 강자성체 없는 스핀트랜지스터의 개략도 (b) 개발한 트랜지스터의 실제 전자현미경 사진
자성물질 없이 구동되는 ‘스핀 트랜지스터’ 개발, 집적화 한계 넘는 차세대 반도체 가능성 보인다
- 별도의 자성전극 없이 반도체 자체만으로 구동되는 스핀 트랜지스터 기술 - 100배 향상된 신호로 향후 집적화 한계 넘는 차세대 반도체 연구에 기여 트랜지스터는 반도체 소자의 핵심요소로, 전기 신호를 증폭하거나 차단·전달하는 ‘스위치’ 역할을 한다. 컴퓨터 성능은 정보를 처리하는 트랜지스터의 수가 좌우하는데, 초기 컴퓨터한 대에 2,300개 정도였던 트랜지스터 수는 현재 수십 억 개에 이른다. 하지만 손톱만한 크기의 프로세서에 더 많은 트랜지스터를 집적하는 것이 이제 물리적 한계에 이르렀고, 폭증하는 데이터양을 따라잡지 못하게 되었다. 그리하여 차세대 트랜지스터로 주목받는 반도체내의 전자의 스핀(spin, 회전과 유사한 전자의 양자역학적 상태로 전자의 자성적 방향)을이용한 ‘스핀 트랜지스터’가 새로운 해결책으로 부상하고 있다. 최근 국내 연구진이 스핀 트랜지스터 상용화의 최대 걸림돌인 강자성 전극 문제를 최초로 해결해 국내외 반도체 산업계의 관심이 고조되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 구현철 박사 연구팀은 기존 스핀트랜지스터의 구동을 위해 반드시 필요했던 자기장과 자성체를 모두 제거하고도 초고속 반도체 채널만으로 스핀을 생성, 제어, 감지하는 동작이 구현되는 새로운 스핀 트랜지스터 개발에 성공했다고 밝혔다. 스핀 트랜지스터는 전자의 이동량을 이용하는 기존 산화금속반도체(MOS) 트랜지스터와달리 전자의 스핀을 이용해 신호를 제어한다. 전류를 흘렸다가 차단하는 것이 아니라 전자의 스핀만 바꾸면 되므로 속도가 빠르고 전력 소모가 매우 낮게 만들어질 수 있는 잠재력이있다. 스핀 트랜지스터(spin transistor)는 전자가 회전하는 방향에 따라 디지털 신호를 구분할수 있어 정보처리 속도가 획기적으로 빨라진다. 또한 저전력에도 구동이 가능해 실리콘 반도체를 대체하는 차세대 반도체로서 기대를 모았다. 반면 높은 가능성에도 불구하고 전자의움직임을 유도하는 자기장과 자성체가 필요한 점이 단점으로 지적되었고, 실제 기존의 스핀트랜지스터는 강자성체와 반도체 사이의 접합면에서 대부분의 신호를 잃어 실제 소자로 상용화가 어려운 상태였다. KIST 연구팀은 자기장과 자성체를 모두 제거하고, 반도체 채널만으로 이루어진 스핀 트랜지스터를 개발하였다. 연구진은 자성물질로 인한 반도체 내에 스핀이 주입되는 것을 배제시키고, 반도체 자체에서 스핀 정보를 발생시키고 게이트 전압으로 방향을 제어해 다시 전기적으로 읽을 수 있도록 한 것이다. 이를 통해 KIST 연구팀은 스핀 트랜지스터의 약점이었던 신호 전달을 100배 이상 향상시켰다. 여기에는 스핀 정보를 전기적 정보로 전환하는 스핀 홀 효과가 이용됐다. KIST 연구진은 자성물질로 인한 노이즈와 전력소비를 획기적으로 줄였다. 또한 스핀트랜지스터가 초고속 III-V족 반도체*를 사용하는 전자소재로서 반도체 산업 전반에 다양하게활용될 수 있는 길을 열었다. 또한 논리소자 동작을 위해 두 가지 종류의 각기 다른 물질을첨가한 트랜지스터가 필요했으나, 부가적인 물질의 첨가 없이 논리 동작 구현이 가능하게하여 공정비용을 획기적으로 절감할 수 있게 될 것으로 전망된다. * III-V족 반도체 : Si(실리콘), Ge(게르마늄) 등의 반도체 대표 원소에 P(인), B(붕소) 등의III-V족 화합물을 침투시켜 전기저항을 조절하는 반도체. KIST 구현철 박사는 “이번에 개발한 스핀 트랜지스터는 스핀 관련 전자소자에 반드시 강자성체와 자기장이 필요하다는 고정관념을 깬 것”이라며 “반도체 자체에서 스핀을 생성시키는새로운 패러다임을 제시하여 스핀 트랜지스터 실용화에 크게 기여할 것으로 기대된다.”고밝혔다. 본 연구는 삼성전자 미래기술육성센터 지원사업과 과학기술정보통신부(장관 유영민)가 지원한 KIST 기관고유사업으로 수행되었으며, 연구 결과는 나노분야의 세계적인 학술지‘Nano Letters’ (IF: 12.080, JCR 상위분야 5.822%) 최신호에 게재되었다. <그림설명> [그림 1] (a) 강자성체 없는 스핀트랜지스터의 개략도 (b) 개발한 트랜지스터의 실제 전자현미경 사진
자성물질 없이 구동되는 ‘스핀 트랜지스터’ 개발, 집적화 한계 넘는 차세대 반도체 가능성 보인다
- 별도의 자성전극 없이 반도체 자체만으로 구동되는 스핀 트랜지스터 기술 - 100배 향상된 신호로 향후 집적화 한계 넘는 차세대 반도체 연구에 기여 트랜지스터는 반도체 소자의 핵심요소로, 전기 신호를 증폭하거나 차단·전달하는 ‘스위치’ 역할을 한다. 컴퓨터 성능은 정보를 처리하는 트랜지스터의 수가 좌우하는데, 초기 컴퓨터한 대에 2,300개 정도였던 트랜지스터 수는 현재 수십 억 개에 이른다. 하지만 손톱만한 크기의 프로세서에 더 많은 트랜지스터를 집적하는 것이 이제 물리적 한계에 이르렀고, 폭증하는 데이터양을 따라잡지 못하게 되었다. 그리하여 차세대 트랜지스터로 주목받는 반도체내의 전자의 스핀(spin, 회전과 유사한 전자의 양자역학적 상태로 전자의 자성적 방향)을이용한 ‘스핀 트랜지스터’가 새로운 해결책으로 부상하고 있다. 최근 국내 연구진이 스핀 트랜지스터 상용화의 최대 걸림돌인 강자성 전극 문제를 최초로 해결해 국내외 반도체 산업계의 관심이 고조되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 구현철 박사 연구팀은 기존 스핀트랜지스터의 구동을 위해 반드시 필요했던 자기장과 자성체를 모두 제거하고도 초고속 반도체 채널만으로 스핀을 생성, 제어, 감지하는 동작이 구현되는 새로운 스핀 트랜지스터 개발에 성공했다고 밝혔다. 스핀 트랜지스터는 전자의 이동량을 이용하는 기존 산화금속반도체(MOS) 트랜지스터와달리 전자의 스핀을 이용해 신호를 제어한다. 전류를 흘렸다가 차단하는 것이 아니라 전자의 스핀만 바꾸면 되므로 속도가 빠르고 전력 소모가 매우 낮게 만들어질 수 있는 잠재력이있다. 스핀 트랜지스터(spin transistor)는 전자가 회전하는 방향에 따라 디지털 신호를 구분할수 있어 정보처리 속도가 획기적으로 빨라진다. 또한 저전력에도 구동이 가능해 실리콘 반도체를 대체하는 차세대 반도체로서 기대를 모았다. 반면 높은 가능성에도 불구하고 전자의움직임을 유도하는 자기장과 자성체가 필요한 점이 단점으로 지적되었고, 실제 기존의 스핀트랜지스터는 강자성체와 반도체 사이의 접합면에서 대부분의 신호를 잃어 실제 소자로 상용화가 어려운 상태였다. KIST 연구팀은 자기장과 자성체를 모두 제거하고, 반도체 채널만으로 이루어진 스핀 트랜지스터를 개발하였다. 연구진은 자성물질로 인한 반도체 내에 스핀이 주입되는 것을 배제시키고, 반도체 자체에서 스핀 정보를 발생시키고 게이트 전압으로 방향을 제어해 다시 전기적으로 읽을 수 있도록 한 것이다. 이를 통해 KIST 연구팀은 스핀 트랜지스터의 약점이었던 신호 전달을 100배 이상 향상시켰다. 여기에는 스핀 정보를 전기적 정보로 전환하는 스핀 홀 효과가 이용됐다. KIST 연구진은 자성물질로 인한 노이즈와 전력소비를 획기적으로 줄였다. 또한 스핀트랜지스터가 초고속 III-V족 반도체*를 사용하는 전자소재로서 반도체 산업 전반에 다양하게활용될 수 있는 길을 열었다. 또한 논리소자 동작을 위해 두 가지 종류의 각기 다른 물질을첨가한 트랜지스터가 필요했으나, 부가적인 물질의 첨가 없이 논리 동작 구현이 가능하게하여 공정비용을 획기적으로 절감할 수 있게 될 것으로 전망된다. * III-V족 반도체 : Si(실리콘), Ge(게르마늄) 등의 반도체 대표 원소에 P(인), B(붕소) 등의III-V족 화합물을 침투시켜 전기저항을 조절하는 반도체. KIST 구현철 박사는 “이번에 개발한 스핀 트랜지스터는 스핀 관련 전자소자에 반드시 강자성체와 자기장이 필요하다는 고정관념을 깬 것”이라며 “반도체 자체에서 스핀을 생성시키는새로운 패러다임을 제시하여 스핀 트랜지스터 실용화에 크게 기여할 것으로 기대된다.”고밝혔다. 본 연구는 삼성전자 미래기술육성센터 지원사업과 과학기술정보통신부(장관 유영민)가 지원한 KIST 기관고유사업으로 수행되었으며, 연구 결과는 나노분야의 세계적인 학술지‘Nano Letters’ (IF: 12.080, JCR 상위분야 5.822%) 최신호에 게재되었다. <그림설명> [그림 1] (a) 강자성체 없는 스핀트랜지스터의 개략도 (b) 개발한 트랜지스터의 실제 전자현미경 사진
자성물질 없이 구동되는 ‘스핀 트랜지스터’ 개발, 집적화 한계 넘는 차세대 반도체 가능성 보인다
- 별도의 자성전극 없이 반도체 자체만으로 구동되는 스핀 트랜지스터 기술 - 100배 향상된 신호로 향후 집적화 한계 넘는 차세대 반도체 연구에 기여 트랜지스터는 반도체 소자의 핵심요소로, 전기 신호를 증폭하거나 차단·전달하는 ‘스위치’ 역할을 한다. 컴퓨터 성능은 정보를 처리하는 트랜지스터의 수가 좌우하는데, 초기 컴퓨터한 대에 2,300개 정도였던 트랜지스터 수는 현재 수십 억 개에 이른다. 하지만 손톱만한 크기의 프로세서에 더 많은 트랜지스터를 집적하는 것이 이제 물리적 한계에 이르렀고, 폭증하는 데이터양을 따라잡지 못하게 되었다. 그리하여 차세대 트랜지스터로 주목받는 반도체내의 전자의 스핀(spin, 회전과 유사한 전자의 양자역학적 상태로 전자의 자성적 방향)을이용한 ‘스핀 트랜지스터’가 새로운 해결책으로 부상하고 있다. 최근 국내 연구진이 스핀 트랜지스터 상용화의 최대 걸림돌인 강자성 전극 문제를 최초로 해결해 국내외 반도체 산업계의 관심이 고조되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 구현철 박사 연구팀은 기존 스핀트랜지스터의 구동을 위해 반드시 필요했던 자기장과 자성체를 모두 제거하고도 초고속 반도체 채널만으로 스핀을 생성, 제어, 감지하는 동작이 구현되는 새로운 스핀 트랜지스터 개발에 성공했다고 밝혔다. 스핀 트랜지스터는 전자의 이동량을 이용하는 기존 산화금속반도체(MOS) 트랜지스터와달리 전자의 스핀을 이용해 신호를 제어한다. 전류를 흘렸다가 차단하는 것이 아니라 전자의 스핀만 바꾸면 되므로 속도가 빠르고 전력 소모가 매우 낮게 만들어질 수 있는 잠재력이있다. 스핀 트랜지스터(spin transistor)는 전자가 회전하는 방향에 따라 디지털 신호를 구분할수 있어 정보처리 속도가 획기적으로 빨라진다. 또한 저전력에도 구동이 가능해 실리콘 반도체를 대체하는 차세대 반도체로서 기대를 모았다. 반면 높은 가능성에도 불구하고 전자의움직임을 유도하는 자기장과 자성체가 필요한 점이 단점으로 지적되었고, 실제 기존의 스핀트랜지스터는 강자성체와 반도체 사이의 접합면에서 대부분의 신호를 잃어 실제 소자로 상용화가 어려운 상태였다. KIST 연구팀은 자기장과 자성체를 모두 제거하고, 반도체 채널만으로 이루어진 스핀 트랜지스터를 개발하였다. 연구진은 자성물질로 인한 반도체 내에 스핀이 주입되는 것을 배제시키고, 반도체 자체에서 스핀 정보를 발생시키고 게이트 전압으로 방향을 제어해 다시 전기적으로 읽을 수 있도록 한 것이다. 이를 통해 KIST 연구팀은 스핀 트랜지스터의 약점이었던 신호 전달을 100배 이상 향상시켰다. 여기에는 스핀 정보를 전기적 정보로 전환하는 스핀 홀 효과가 이용됐다. KIST 연구진은 자성물질로 인한 노이즈와 전력소비를 획기적으로 줄였다. 또한 스핀트랜지스터가 초고속 III-V족 반도체*를 사용하는 전자소재로서 반도체 산업 전반에 다양하게활용될 수 있는 길을 열었다. 또한 논리소자 동작을 위해 두 가지 종류의 각기 다른 물질을첨가한 트랜지스터가 필요했으나, 부가적인 물질의 첨가 없이 논리 동작 구현이 가능하게하여 공정비용을 획기적으로 절감할 수 있게 될 것으로 전망된다. * III-V족 반도체 : Si(실리콘), Ge(게르마늄) 등의 반도체 대표 원소에 P(인), B(붕소) 등의III-V족 화합물을 침투시켜 전기저항을 조절하는 반도체. KIST 구현철 박사는 “이번에 개발한 스핀 트랜지스터는 스핀 관련 전자소자에 반드시 강자성체와 자기장이 필요하다는 고정관념을 깬 것”이라며 “반도체 자체에서 스핀을 생성시키는새로운 패러다임을 제시하여 스핀 트랜지스터 실용화에 크게 기여할 것으로 기대된다.”고밝혔다. 본 연구는 삼성전자 미래기술육성센터 지원사업과 과학기술정보통신부(장관 유영민)가 지원한 KIST 기관고유사업으로 수행되었으며, 연구 결과는 나노분야의 세계적인 학술지‘Nano Letters’ (IF: 12.080, JCR 상위분야 5.822%) 최신호에 게재되었다. <그림설명> [그림 1] (a) 강자성체 없는 스핀트랜지스터의 개략도 (b) 개발한 트랜지스터의 실제 전자현미경 사진
자성물질 없이 구동되는 ‘스핀 트랜지스터’ 개발, 집적화 한계 넘는 차세대 반도체 가능성 보인다
- 별도의 자성전극 없이 반도체 자체만으로 구동되는 스핀 트랜지스터 기술 - 100배 향상된 신호로 향후 집적화 한계 넘는 차세대 반도체 연구에 기여 트랜지스터는 반도체 소자의 핵심요소로, 전기 신호를 증폭하거나 차단·전달하는 ‘스위치’ 역할을 한다. 컴퓨터 성능은 정보를 처리하는 트랜지스터의 수가 좌우하는데, 초기 컴퓨터한 대에 2,300개 정도였던 트랜지스터 수는 현재 수십 억 개에 이른다. 하지만 손톱만한 크기의 프로세서에 더 많은 트랜지스터를 집적하는 것이 이제 물리적 한계에 이르렀고, 폭증하는 데이터양을 따라잡지 못하게 되었다. 그리하여 차세대 트랜지스터로 주목받는 반도체내의 전자의 스핀(spin, 회전과 유사한 전자의 양자역학적 상태로 전자의 자성적 방향)을이용한 ‘스핀 트랜지스터’가 새로운 해결책으로 부상하고 있다. 최근 국내 연구진이 스핀 트랜지스터 상용화의 최대 걸림돌인 강자성 전극 문제를 최초로 해결해 국내외 반도체 산업계의 관심이 고조되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 구현철 박사 연구팀은 기존 스핀트랜지스터의 구동을 위해 반드시 필요했던 자기장과 자성체를 모두 제거하고도 초고속 반도체 채널만으로 스핀을 생성, 제어, 감지하는 동작이 구현되는 새로운 스핀 트랜지스터 개발에 성공했다고 밝혔다. 스핀 트랜지스터는 전자의 이동량을 이용하는 기존 산화금속반도체(MOS) 트랜지스터와달리 전자의 스핀을 이용해 신호를 제어한다. 전류를 흘렸다가 차단하는 것이 아니라 전자의 스핀만 바꾸면 되므로 속도가 빠르고 전력 소모가 매우 낮게 만들어질 수 있는 잠재력이있다. 스핀 트랜지스터(spin transistor)는 전자가 회전하는 방향에 따라 디지털 신호를 구분할수 있어 정보처리 속도가 획기적으로 빨라진다. 또한 저전력에도 구동이 가능해 실리콘 반도체를 대체하는 차세대 반도체로서 기대를 모았다. 반면 높은 가능성에도 불구하고 전자의움직임을 유도하는 자기장과 자성체가 필요한 점이 단점으로 지적되었고, 실제 기존의 스핀트랜지스터는 강자성체와 반도체 사이의 접합면에서 대부분의 신호를 잃어 실제 소자로 상용화가 어려운 상태였다. KIST 연구팀은 자기장과 자성체를 모두 제거하고, 반도체 채널만으로 이루어진 스핀 트랜지스터를 개발하였다. 연구진은 자성물질로 인한 반도체 내에 스핀이 주입되는 것을 배제시키고, 반도체 자체에서 스핀 정보를 발생시키고 게이트 전압으로 방향을 제어해 다시 전기적으로 읽을 수 있도록 한 것이다. 이를 통해 KIST 연구팀은 스핀 트랜지스터의 약점이었던 신호 전달을 100배 이상 향상시켰다. 여기에는 스핀 정보를 전기적 정보로 전환하는 스핀 홀 효과가 이용됐다. KIST 연구진은 자성물질로 인한 노이즈와 전력소비를 획기적으로 줄였다. 또한 스핀트랜지스터가 초고속 III-V족 반도체*를 사용하는 전자소재로서 반도체 산업 전반에 다양하게활용될 수 있는 길을 열었다. 또한 논리소자 동작을 위해 두 가지 종류의 각기 다른 물질을첨가한 트랜지스터가 필요했으나, 부가적인 물질의 첨가 없이 논리 동작 구현이 가능하게하여 공정비용을 획기적으로 절감할 수 있게 될 것으로 전망된다. * III-V족 반도체 : Si(실리콘), Ge(게르마늄) 등의 반도체 대표 원소에 P(인), B(붕소) 등의III-V족 화합물을 침투시켜 전기저항을 조절하는 반도체. KIST 구현철 박사는 “이번에 개발한 스핀 트랜지스터는 스핀 관련 전자소자에 반드시 강자성체와 자기장이 필요하다는 고정관념을 깬 것”이라며 “반도체 자체에서 스핀을 생성시키는새로운 패러다임을 제시하여 스핀 트랜지스터 실용화에 크게 기여할 것으로 기대된다.”고밝혔다. 본 연구는 삼성전자 미래기술육성센터 지원사업과 과학기술정보통신부(장관 유영민)가 지원한 KIST 기관고유사업으로 수행되었으며, 연구 결과는 나노분야의 세계적인 학술지‘Nano Letters’ (IF: 12.080, JCR 상위분야 5.822%) 최신호에 게재되었다. <그림설명> [그림 1] (a) 강자성체 없는 스핀트랜지스터의 개략도 (b) 개발한 트랜지스터의 실제 전자현미경 사진
자성물질 없이 구동되는 ‘스핀 트랜지스터’ 개발, 집적화 한계 넘는 차세대 반도체 가능성 보인다
- 별도의 자성전극 없이 반도체 자체만으로 구동되는 스핀 트랜지스터 기술 - 100배 향상된 신호로 향후 집적화 한계 넘는 차세대 반도체 연구에 기여 트랜지스터는 반도체 소자의 핵심요소로, 전기 신호를 증폭하거나 차단·전달하는 ‘스위치’ 역할을 한다. 컴퓨터 성능은 정보를 처리하는 트랜지스터의 수가 좌우하는데, 초기 컴퓨터한 대에 2,300개 정도였던 트랜지스터 수는 현재 수십 억 개에 이른다. 하지만 손톱만한 크기의 프로세서에 더 많은 트랜지스터를 집적하는 것이 이제 물리적 한계에 이르렀고, 폭증하는 데이터양을 따라잡지 못하게 되었다. 그리하여 차세대 트랜지스터로 주목받는 반도체내의 전자의 스핀(spin, 회전과 유사한 전자의 양자역학적 상태로 전자의 자성적 방향)을이용한 ‘스핀 트랜지스터’가 새로운 해결책으로 부상하고 있다. 최근 국내 연구진이 스핀 트랜지스터 상용화의 최대 걸림돌인 강자성 전극 문제를 최초로 해결해 국내외 반도체 산업계의 관심이 고조되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 구현철 박사 연구팀은 기존 스핀트랜지스터의 구동을 위해 반드시 필요했던 자기장과 자성체를 모두 제거하고도 초고속 반도체 채널만으로 스핀을 생성, 제어, 감지하는 동작이 구현되는 새로운 스핀 트랜지스터 개발에 성공했다고 밝혔다. 스핀 트랜지스터는 전자의 이동량을 이용하는 기존 산화금속반도체(MOS) 트랜지스터와달리 전자의 스핀을 이용해 신호를 제어한다. 전류를 흘렸다가 차단하는 것이 아니라 전자의 스핀만 바꾸면 되므로 속도가 빠르고 전력 소모가 매우 낮게 만들어질 수 있는 잠재력이있다. 스핀 트랜지스터(spin transistor)는 전자가 회전하는 방향에 따라 디지털 신호를 구분할수 있어 정보처리 속도가 획기적으로 빨라진다. 또한 저전력에도 구동이 가능해 실리콘 반도체를 대체하는 차세대 반도체로서 기대를 모았다. 반면 높은 가능성에도 불구하고 전자의움직임을 유도하는 자기장과 자성체가 필요한 점이 단점으로 지적되었고, 실제 기존의 스핀트랜지스터는 강자성체와 반도체 사이의 접합면에서 대부분의 신호를 잃어 실제 소자로 상용화가 어려운 상태였다. KIST 연구팀은 자기장과 자성체를 모두 제거하고, 반도체 채널만으로 이루어진 스핀 트랜지스터를 개발하였다. 연구진은 자성물질로 인한 반도체 내에 스핀이 주입되는 것을 배제시키고, 반도체 자체에서 스핀 정보를 발생시키고 게이트 전압으로 방향을 제어해 다시 전기적으로 읽을 수 있도록 한 것이다. 이를 통해 KIST 연구팀은 스핀 트랜지스터의 약점이었던 신호 전달을 100배 이상 향상시켰다. 여기에는 스핀 정보를 전기적 정보로 전환하는 스핀 홀 효과가 이용됐다. KIST 연구진은 자성물질로 인한 노이즈와 전력소비를 획기적으로 줄였다. 또한 스핀트랜지스터가 초고속 III-V족 반도체*를 사용하는 전자소재로서 반도체 산업 전반에 다양하게활용될 수 있는 길을 열었다. 또한 논리소자 동작을 위해 두 가지 종류의 각기 다른 물질을첨가한 트랜지스터가 필요했으나, 부가적인 물질의 첨가 없이 논리 동작 구현이 가능하게하여 공정비용을 획기적으로 절감할 수 있게 될 것으로 전망된다. * III-V족 반도체 : Si(실리콘), Ge(게르마늄) 등의 반도체 대표 원소에 P(인), B(붕소) 등의III-V족 화합물을 침투시켜 전기저항을 조절하는 반도체. KIST 구현철 박사는 “이번에 개발한 스핀 트랜지스터는 스핀 관련 전자소자에 반드시 강자성체와 자기장이 필요하다는 고정관념을 깬 것”이라며 “반도체 자체에서 스핀을 생성시키는새로운 패러다임을 제시하여 스핀 트랜지스터 실용화에 크게 기여할 것으로 기대된다.”고밝혔다. 본 연구는 삼성전자 미래기술육성센터 지원사업과 과학기술정보통신부(장관 유영민)가 지원한 KIST 기관고유사업으로 수행되었으며, 연구 결과는 나노분야의 세계적인 학술지‘Nano Letters’ (IF: 12.080, JCR 상위분야 5.822%) 최신호에 게재되었다. <그림설명> [그림 1] (a) 강자성체 없는 스핀트랜지스터의 개략도 (b) 개발한 트랜지스터의 실제 전자현미경 사진