검색결과
게시물 키워드""에 대한 9487개의 검색결과를 찾았습니다.
전자레인지 원리로 간편히 제작한 로듐 합금 촉매, 알칼리 연료전지 성능 향상시킨다
- 기존의 백금 촉매 대체가능한 로듐 합금 촉매 개발, 연료전지 상용화 기대 - 전자레인지(극초단파)의 원리를 응용한 친환경·초간편 양산 촉매 기술 알칼리 연료전지는 수소와 산소의 전기화학 반응에 의한 전기 에너지 발생 과정에서 물만 배출하여 차세대 친환경 에너지원으로 각광받고 있다. 알칼리 연료전지는 1960년대부터 우주발사체 전원 등에 이용되어 왔으며, 에너지 발생을 위한 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 최근 국내 연구진이 고가의 백금 대신 로듐(Rh, rhodium) 합금을 간편히 제조하여 연료전지 성능을 향상시키는데 성공했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종 박사팀은 서울대학교 기초과학연구원 나노입자연구단 성영은 교수와의 공동연구를 통해, 최근 전 세계적으로 차세대 연료전지로 각광을 받고 있는 고체 알칼리막 연료전지에 사용가능한 고성능 비백금계 로듐기반 나노 촉매를 개발했다고 밝혔다. 일반적으로 알칼리 연료전지에는 에너지 발생의 핵심 역할을 하게 되는 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용해왔으나, 높은 의존도 문제와 더불어 소재 자체의 안정성에 대한 한계가 제기되어 왔다. 연료전지용 소재는 장시간 산화 환경에 노출되기 때문에 소재의 안정성 및 내구성에 대한 엄격한 수준의 소재 기술이 요구되므로 촉매 전체의 내구성을 감소시키는 백금 및 팔라듐 합금은 치명적인 단점이 있었다. 이에 연구진은 소재 안정성이 뛰어나지만 성능이 낮은 것으로 알려진 로듐에 대해 연료전지용 촉매 연구를 진행한 결과, 로듐과 주석 합금 나노 입자가 연료전지의 전기화학적 산소 환원 반응에 있어서 우수한 특성을 갖는다는 것을 밝혀냈다. 현재까지 연료전지 촉매 분야에서 로듐은 백금의 보조 촉매 수준으로 사용되어 왔으나, 나노미터(nm) 수준에서의 재료의 표면 제어 기술을 사용하게 되면 고안정성 및 고활성 연료전지용 촉매 소재로 활용 가능하다는 것이 증명되었다. 연구진은 로듐과 주석의 합금 구조가 표면의 구조 변화로 활성점이 증대되면서 이용률이 상승하여 로듐 입자 대비 10배 이상 성능이 향상되고, 기존 백금 촉매 대비 4배의 성능이 향상됨을 밝혀냈다. 특히 개발된 촉매는 기존 합성법이 적게는 12시간, 많게는 48시간 소요되던 것과 달리, 일반 가정에서 사용하는 전자레인지와 동일한 원리(극초단파, micro wave)를 이용하여 10분 내에 간편히 제조할 수 있는 기술로 개발되었다. 기존 연료전지용 소재 합성법과 달리 화학 첨가물 투입 및 추가 공정 과정이 배제되기 때문에, 신속한 소재 제조 기술 및 공정 단순화 기술 결합이 가능하였다. 그러므로 시간당 촉매 제조 생산량이 높아 향후 소재 생산 공정에 있어서도 상업적 장벽을 크게 완화시킬 것으로 전망된다. KIST 유성종 박사는 “이번 연구는 연료전지용 촉매 성능 향상 뿐 아니라 기존 연료전지용 촉매에 대한 한정적 선택 환경을 극복하고 새로운 소재의 촉매 설계가 가능해졌다는 점이 핵심”이라 말하며, “향후 차세대 에너지 변환 소재의 설계 및 제조 공정 기술 발전에 기여할 수 있을 것으로 기대한다”라고 연구 의의를 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 신재생에너지핵심기술사업 한국연구재단, 산업통상자원부 지원으로 수행되었으며, 촉매 분야의 국제 학술저널인 미국화학회 촉매지(ACS Catalysis, IF : 10.614)에 9월 1일 온라인 게재되었다. <그림자료> 그림1. 로듐 합금 나노 입자 표면에서의 전기화학적 반응 모식도
전자레인지 원리로 간편히 제작한 로듐 합금 촉매, 알칼리 연료전지 성능 향상시킨다
- 기존의 백금 촉매 대체가능한 로듐 합금 촉매 개발, 연료전지 상용화 기대 - 전자레인지(극초단파)의 원리를 응용한 친환경·초간편 양산 촉매 기술 알칼리 연료전지는 수소와 산소의 전기화학 반응에 의한 전기 에너지 발생 과정에서 물만 배출하여 차세대 친환경 에너지원으로 각광받고 있다. 알칼리 연료전지는 1960년대부터 우주발사체 전원 등에 이용되어 왔으며, 에너지 발생을 위한 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 최근 국내 연구진이 고가의 백금 대신 로듐(Rh, rhodium) 합금을 간편히 제조하여 연료전지 성능을 향상시키는데 성공했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종 박사팀은 서울대학교 기초과학연구원 나노입자연구단 성영은 교수와의 공동연구를 통해, 최근 전 세계적으로 차세대 연료전지로 각광을 받고 있는 고체 알칼리막 연료전지에 사용가능한 고성능 비백금계 로듐기반 나노 촉매를 개발했다고 밝혔다. 일반적으로 알칼리 연료전지에는 에너지 발생의 핵심 역할을 하게 되는 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용해왔으나, 높은 의존도 문제와 더불어 소재 자체의 안정성에 대한 한계가 제기되어 왔다. 연료전지용 소재는 장시간 산화 환경에 노출되기 때문에 소재의 안정성 및 내구성에 대한 엄격한 수준의 소재 기술이 요구되므로 촉매 전체의 내구성을 감소시키는 백금 및 팔라듐 합금은 치명적인 단점이 있었다. 이에 연구진은 소재 안정성이 뛰어나지만 성능이 낮은 것으로 알려진 로듐에 대해 연료전지용 촉매 연구를 진행한 결과, 로듐과 주석 합금 나노 입자가 연료전지의 전기화학적 산소 환원 반응에 있어서 우수한 특성을 갖는다는 것을 밝혀냈다. 현재까지 연료전지 촉매 분야에서 로듐은 백금의 보조 촉매 수준으로 사용되어 왔으나, 나노미터(nm) 수준에서의 재료의 표면 제어 기술을 사용하게 되면 고안정성 및 고활성 연료전지용 촉매 소재로 활용 가능하다는 것이 증명되었다. 연구진은 로듐과 주석의 합금 구조가 표면의 구조 변화로 활성점이 증대되면서 이용률이 상승하여 로듐 입자 대비 10배 이상 성능이 향상되고, 기존 백금 촉매 대비 4배의 성능이 향상됨을 밝혀냈다. 특히 개발된 촉매는 기존 합성법이 적게는 12시간, 많게는 48시간 소요되던 것과 달리, 일반 가정에서 사용하는 전자레인지와 동일한 원리(극초단파, micro wave)를 이용하여 10분 내에 간편히 제조할 수 있는 기술로 개발되었다. 기존 연료전지용 소재 합성법과 달리 화학 첨가물 투입 및 추가 공정 과정이 배제되기 때문에, 신속한 소재 제조 기술 및 공정 단순화 기술 결합이 가능하였다. 그러므로 시간당 촉매 제조 생산량이 높아 향후 소재 생산 공정에 있어서도 상업적 장벽을 크게 완화시킬 것으로 전망된다. KIST 유성종 박사는 “이번 연구는 연료전지용 촉매 성능 향상 뿐 아니라 기존 연료전지용 촉매에 대한 한정적 선택 환경을 극복하고 새로운 소재의 촉매 설계가 가능해졌다는 점이 핵심”이라 말하며, “향후 차세대 에너지 변환 소재의 설계 및 제조 공정 기술 발전에 기여할 수 있을 것으로 기대한다”라고 연구 의의를 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 신재생에너지핵심기술사업 한국연구재단, 산업통상자원부 지원으로 수행되었으며, 촉매 분야의 국제 학술저널인 미국화학회 촉매지(ACS Catalysis, IF : 10.614)에 9월 1일 온라인 게재되었다. <그림자료> 그림1. 로듐 합금 나노 입자 표면에서의 전기화학적 반응 모식도
전자레인지 원리로 간편히 제작한 로듐 합금 촉매, 알칼리 연료전지 성능 향상시킨다
- 기존의 백금 촉매 대체가능한 로듐 합금 촉매 개발, 연료전지 상용화 기대 - 전자레인지(극초단파)의 원리를 응용한 친환경·초간편 양산 촉매 기술 알칼리 연료전지는 수소와 산소의 전기화학 반응에 의한 전기 에너지 발생 과정에서 물만 배출하여 차세대 친환경 에너지원으로 각광받고 있다. 알칼리 연료전지는 1960년대부터 우주발사체 전원 등에 이용되어 왔으며, 에너지 발생을 위한 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 최근 국내 연구진이 고가의 백금 대신 로듐(Rh, rhodium) 합금을 간편히 제조하여 연료전지 성능을 향상시키는데 성공했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종 박사팀은 서울대학교 기초과학연구원 나노입자연구단 성영은 교수와의 공동연구를 통해, 최근 전 세계적으로 차세대 연료전지로 각광을 받고 있는 고체 알칼리막 연료전지에 사용가능한 고성능 비백금계 로듐기반 나노 촉매를 개발했다고 밝혔다. 일반적으로 알칼리 연료전지에는 에너지 발생의 핵심 역할을 하게 되는 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용해왔으나, 높은 의존도 문제와 더불어 소재 자체의 안정성에 대한 한계가 제기되어 왔다. 연료전지용 소재는 장시간 산화 환경에 노출되기 때문에 소재의 안정성 및 내구성에 대한 엄격한 수준의 소재 기술이 요구되므로 촉매 전체의 내구성을 감소시키는 백금 및 팔라듐 합금은 치명적인 단점이 있었다. 이에 연구진은 소재 안정성이 뛰어나지만 성능이 낮은 것으로 알려진 로듐에 대해 연료전지용 촉매 연구를 진행한 결과, 로듐과 주석 합금 나노 입자가 연료전지의 전기화학적 산소 환원 반응에 있어서 우수한 특성을 갖는다는 것을 밝혀냈다. 현재까지 연료전지 촉매 분야에서 로듐은 백금의 보조 촉매 수준으로 사용되어 왔으나, 나노미터(nm) 수준에서의 재료의 표면 제어 기술을 사용하게 되면 고안정성 및 고활성 연료전지용 촉매 소재로 활용 가능하다는 것이 증명되었다. 연구진은 로듐과 주석의 합금 구조가 표면의 구조 변화로 활성점이 증대되면서 이용률이 상승하여 로듐 입자 대비 10배 이상 성능이 향상되고, 기존 백금 촉매 대비 4배의 성능이 향상됨을 밝혀냈다. 특히 개발된 촉매는 기존 합성법이 적게는 12시간, 많게는 48시간 소요되던 것과 달리, 일반 가정에서 사용하는 전자레인지와 동일한 원리(극초단파, micro wave)를 이용하여 10분 내에 간편히 제조할 수 있는 기술로 개발되었다. 기존 연료전지용 소재 합성법과 달리 화학 첨가물 투입 및 추가 공정 과정이 배제되기 때문에, 신속한 소재 제조 기술 및 공정 단순화 기술 결합이 가능하였다. 그러므로 시간당 촉매 제조 생산량이 높아 향후 소재 생산 공정에 있어서도 상업적 장벽을 크게 완화시킬 것으로 전망된다. KIST 유성종 박사는 “이번 연구는 연료전지용 촉매 성능 향상 뿐 아니라 기존 연료전지용 촉매에 대한 한정적 선택 환경을 극복하고 새로운 소재의 촉매 설계가 가능해졌다는 점이 핵심”이라 말하며, “향후 차세대 에너지 변환 소재의 설계 및 제조 공정 기술 발전에 기여할 수 있을 것으로 기대한다”라고 연구 의의를 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 신재생에너지핵심기술사업 한국연구재단, 산업통상자원부 지원으로 수행되었으며, 촉매 분야의 국제 학술저널인 미국화학회 촉매지(ACS Catalysis, IF : 10.614)에 9월 1일 온라인 게재되었다. <그림자료> 그림1. 로듐 합금 나노 입자 표면에서의 전기화학적 반응 모식도
전자레인지 원리로 간편히 제작한 로듐 합금 촉매, 알칼리 연료전지 성능 향상시킨다
- 기존의 백금 촉매 대체가능한 로듐 합금 촉매 개발, 연료전지 상용화 기대 - 전자레인지(극초단파)의 원리를 응용한 친환경·초간편 양산 촉매 기술 알칼리 연료전지는 수소와 산소의 전기화학 반응에 의한 전기 에너지 발생 과정에서 물만 배출하여 차세대 친환경 에너지원으로 각광받고 있다. 알칼리 연료전지는 1960년대부터 우주발사체 전원 등에 이용되어 왔으며, 에너지 발생을 위한 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 최근 국내 연구진이 고가의 백금 대신 로듐(Rh, rhodium) 합금을 간편히 제조하여 연료전지 성능을 향상시키는데 성공했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종 박사팀은 서울대학교 기초과학연구원 나노입자연구단 성영은 교수와의 공동연구를 통해, 최근 전 세계적으로 차세대 연료전지로 각광을 받고 있는 고체 알칼리막 연료전지에 사용가능한 고성능 비백금계 로듐기반 나노 촉매를 개발했다고 밝혔다. 일반적으로 알칼리 연료전지에는 에너지 발생의 핵심 역할을 하게 되는 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용해왔으나, 높은 의존도 문제와 더불어 소재 자체의 안정성에 대한 한계가 제기되어 왔다. 연료전지용 소재는 장시간 산화 환경에 노출되기 때문에 소재의 안정성 및 내구성에 대한 엄격한 수준의 소재 기술이 요구되므로 촉매 전체의 내구성을 감소시키는 백금 및 팔라듐 합금은 치명적인 단점이 있었다. 이에 연구진은 소재 안정성이 뛰어나지만 성능이 낮은 것으로 알려진 로듐에 대해 연료전지용 촉매 연구를 진행한 결과, 로듐과 주석 합금 나노 입자가 연료전지의 전기화학적 산소 환원 반응에 있어서 우수한 특성을 갖는다는 것을 밝혀냈다. 현재까지 연료전지 촉매 분야에서 로듐은 백금의 보조 촉매 수준으로 사용되어 왔으나, 나노미터(nm) 수준에서의 재료의 표면 제어 기술을 사용하게 되면 고안정성 및 고활성 연료전지용 촉매 소재로 활용 가능하다는 것이 증명되었다. 연구진은 로듐과 주석의 합금 구조가 표면의 구조 변화로 활성점이 증대되면서 이용률이 상승하여 로듐 입자 대비 10배 이상 성능이 향상되고, 기존 백금 촉매 대비 4배의 성능이 향상됨을 밝혀냈다. 특히 개발된 촉매는 기존 합성법이 적게는 12시간, 많게는 48시간 소요되던 것과 달리, 일반 가정에서 사용하는 전자레인지와 동일한 원리(극초단파, micro wave)를 이용하여 10분 내에 간편히 제조할 수 있는 기술로 개발되었다. 기존 연료전지용 소재 합성법과 달리 화학 첨가물 투입 및 추가 공정 과정이 배제되기 때문에, 신속한 소재 제조 기술 및 공정 단순화 기술 결합이 가능하였다. 그러므로 시간당 촉매 제조 생산량이 높아 향후 소재 생산 공정에 있어서도 상업적 장벽을 크게 완화시킬 것으로 전망된다. KIST 유성종 박사는 “이번 연구는 연료전지용 촉매 성능 향상 뿐 아니라 기존 연료전지용 촉매에 대한 한정적 선택 환경을 극복하고 새로운 소재의 촉매 설계가 가능해졌다는 점이 핵심”이라 말하며, “향후 차세대 에너지 변환 소재의 설계 및 제조 공정 기술 발전에 기여할 수 있을 것으로 기대한다”라고 연구 의의를 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 신재생에너지핵심기술사업 한국연구재단, 산업통상자원부 지원으로 수행되었으며, 촉매 분야의 국제 학술저널인 미국화학회 촉매지(ACS Catalysis, IF : 10.614)에 9월 1일 온라인 게재되었다. <그림자료> 그림1. 로듐 합금 나노 입자 표면에서의 전기화학적 반응 모식도
전자레인지 원리로 간편히 제작한 로듐 합금 촉매, 알칼리 연료전지 성능 향상시킨다
- 기존의 백금 촉매 대체가능한 로듐 합금 촉매 개발, 연료전지 상용화 기대 - 전자레인지(극초단파)의 원리를 응용한 친환경·초간편 양산 촉매 기술 알칼리 연료전지는 수소와 산소의 전기화학 반응에 의한 전기 에너지 발생 과정에서 물만 배출하여 차세대 친환경 에너지원으로 각광받고 있다. 알칼리 연료전지는 1960년대부터 우주발사체 전원 등에 이용되어 왔으며, 에너지 발생을 위한 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 최근 국내 연구진이 고가의 백금 대신 로듐(Rh, rhodium) 합금을 간편히 제조하여 연료전지 성능을 향상시키는데 성공했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종 박사팀은 서울대학교 기초과학연구원 나노입자연구단 성영은 교수와의 공동연구를 통해, 최근 전 세계적으로 차세대 연료전지로 각광을 받고 있는 고체 알칼리막 연료전지에 사용가능한 고성능 비백금계 로듐기반 나노 촉매를 개발했다고 밝혔다. 일반적으로 알칼리 연료전지에는 에너지 발생의 핵심 역할을 하게 되는 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용해왔으나, 높은 의존도 문제와 더불어 소재 자체의 안정성에 대한 한계가 제기되어 왔다. 연료전지용 소재는 장시간 산화 환경에 노출되기 때문에 소재의 안정성 및 내구성에 대한 엄격한 수준의 소재 기술이 요구되므로 촉매 전체의 내구성을 감소시키는 백금 및 팔라듐 합금은 치명적인 단점이 있었다. 이에 연구진은 소재 안정성이 뛰어나지만 성능이 낮은 것으로 알려진 로듐에 대해 연료전지용 촉매 연구를 진행한 결과, 로듐과 주석 합금 나노 입자가 연료전지의 전기화학적 산소 환원 반응에 있어서 우수한 특성을 갖는다는 것을 밝혀냈다. 현재까지 연료전지 촉매 분야에서 로듐은 백금의 보조 촉매 수준으로 사용되어 왔으나, 나노미터(nm) 수준에서의 재료의 표면 제어 기술을 사용하게 되면 고안정성 및 고활성 연료전지용 촉매 소재로 활용 가능하다는 것이 증명되었다. 연구진은 로듐과 주석의 합금 구조가 표면의 구조 변화로 활성점이 증대되면서 이용률이 상승하여 로듐 입자 대비 10배 이상 성능이 향상되고, 기존 백금 촉매 대비 4배의 성능이 향상됨을 밝혀냈다. 특히 개발된 촉매는 기존 합성법이 적게는 12시간, 많게는 48시간 소요되던 것과 달리, 일반 가정에서 사용하는 전자레인지와 동일한 원리(극초단파, micro wave)를 이용하여 10분 내에 간편히 제조할 수 있는 기술로 개발되었다. 기존 연료전지용 소재 합성법과 달리 화학 첨가물 투입 및 추가 공정 과정이 배제되기 때문에, 신속한 소재 제조 기술 및 공정 단순화 기술 결합이 가능하였다. 그러므로 시간당 촉매 제조 생산량이 높아 향후 소재 생산 공정에 있어서도 상업적 장벽을 크게 완화시킬 것으로 전망된다. KIST 유성종 박사는 “이번 연구는 연료전지용 촉매 성능 향상 뿐 아니라 기존 연료전지용 촉매에 대한 한정적 선택 환경을 극복하고 새로운 소재의 촉매 설계가 가능해졌다는 점이 핵심”이라 말하며, “향후 차세대 에너지 변환 소재의 설계 및 제조 공정 기술 발전에 기여할 수 있을 것으로 기대한다”라고 연구 의의를 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 신재생에너지핵심기술사업 한국연구재단, 산업통상자원부 지원으로 수행되었으며, 촉매 분야의 국제 학술저널인 미국화학회 촉매지(ACS Catalysis, IF : 10.614)에 9월 1일 온라인 게재되었다. <그림자료> 그림1. 로듐 합금 나노 입자 표면에서의 전기화학적 반응 모식도
전자레인지 원리로 간편히 제작한 로듐 합금 촉매, 알칼리 연료전지 성능 향상시킨다
- 기존의 백금 촉매 대체가능한 로듐 합금 촉매 개발, 연료전지 상용화 기대 - 전자레인지(극초단파)의 원리를 응용한 친환경·초간편 양산 촉매 기술 알칼리 연료전지는 수소와 산소의 전기화학 반응에 의한 전기 에너지 발생 과정에서 물만 배출하여 차세대 친환경 에너지원으로 각광받고 있다. 알칼리 연료전지는 1960년대부터 우주발사체 전원 등에 이용되어 왔으며, 에너지 발생을 위한 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 최근 국내 연구진이 고가의 백금 대신 로듐(Rh, rhodium) 합금을 간편히 제조하여 연료전지 성능을 향상시키는데 성공했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종 박사팀은 서울대학교 기초과학연구원 나노입자연구단 성영은 교수와의 공동연구를 통해, 최근 전 세계적으로 차세대 연료전지로 각광을 받고 있는 고체 알칼리막 연료전지에 사용가능한 고성능 비백금계 로듐기반 나노 촉매를 개발했다고 밝혔다. 일반적으로 알칼리 연료전지에는 에너지 발생의 핵심 역할을 하게 되는 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용해왔으나, 높은 의존도 문제와 더불어 소재 자체의 안정성에 대한 한계가 제기되어 왔다. 연료전지용 소재는 장시간 산화 환경에 노출되기 때문에 소재의 안정성 및 내구성에 대한 엄격한 수준의 소재 기술이 요구되므로 촉매 전체의 내구성을 감소시키는 백금 및 팔라듐 합금은 치명적인 단점이 있었다. 이에 연구진은 소재 안정성이 뛰어나지만 성능이 낮은 것으로 알려진 로듐에 대해 연료전지용 촉매 연구를 진행한 결과, 로듐과 주석 합금 나노 입자가 연료전지의 전기화학적 산소 환원 반응에 있어서 우수한 특성을 갖는다는 것을 밝혀냈다. 현재까지 연료전지 촉매 분야에서 로듐은 백금의 보조 촉매 수준으로 사용되어 왔으나, 나노미터(nm) 수준에서의 재료의 표면 제어 기술을 사용하게 되면 고안정성 및 고활성 연료전지용 촉매 소재로 활용 가능하다는 것이 증명되었다. 연구진은 로듐과 주석의 합금 구조가 표면의 구조 변화로 활성점이 증대되면서 이용률이 상승하여 로듐 입자 대비 10배 이상 성능이 향상되고, 기존 백금 촉매 대비 4배의 성능이 향상됨을 밝혀냈다. 특히 개발된 촉매는 기존 합성법이 적게는 12시간, 많게는 48시간 소요되던 것과 달리, 일반 가정에서 사용하는 전자레인지와 동일한 원리(극초단파, micro wave)를 이용하여 10분 내에 간편히 제조할 수 있는 기술로 개발되었다. 기존 연료전지용 소재 합성법과 달리 화학 첨가물 투입 및 추가 공정 과정이 배제되기 때문에, 신속한 소재 제조 기술 및 공정 단순화 기술 결합이 가능하였다. 그러므로 시간당 촉매 제조 생산량이 높아 향후 소재 생산 공정에 있어서도 상업적 장벽을 크게 완화시킬 것으로 전망된다. KIST 유성종 박사는 “이번 연구는 연료전지용 촉매 성능 향상 뿐 아니라 기존 연료전지용 촉매에 대한 한정적 선택 환경을 극복하고 새로운 소재의 촉매 설계가 가능해졌다는 점이 핵심”이라 말하며, “향후 차세대 에너지 변환 소재의 설계 및 제조 공정 기술 발전에 기여할 수 있을 것으로 기대한다”라고 연구 의의를 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 신재생에너지핵심기술사업 한국연구재단, 산업통상자원부 지원으로 수행되었으며, 촉매 분야의 국제 학술저널인 미국화학회 촉매지(ACS Catalysis, IF : 10.614)에 9월 1일 온라인 게재되었다. <그림자료> 그림1. 로듐 합금 나노 입자 표면에서의 전기화학적 반응 모식도
전자레인지 원리로 간편히 제작한 로듐 합금 촉매, 알칼리 연료전지 성능 향상시킨다
- 기존의 백금 촉매 대체가능한 로듐 합금 촉매 개발, 연료전지 상용화 기대 - 전자레인지(극초단파)의 원리를 응용한 친환경·초간편 양산 촉매 기술 알칼리 연료전지는 수소와 산소의 전기화학 반응에 의한 전기 에너지 발생 과정에서 물만 배출하여 차세대 친환경 에너지원으로 각광받고 있다. 알칼리 연료전지는 1960년대부터 우주발사체 전원 등에 이용되어 왔으며, 에너지 발생을 위한 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 최근 국내 연구진이 고가의 백금 대신 로듐(Rh, rhodium) 합금을 간편히 제조하여 연료전지 성능을 향상시키는데 성공했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종 박사팀은 서울대학교 기초과학연구원 나노입자연구단 성영은 교수와의 공동연구를 통해, 최근 전 세계적으로 차세대 연료전지로 각광을 받고 있는 고체 알칼리막 연료전지에 사용가능한 고성능 비백금계 로듐기반 나노 촉매를 개발했다고 밝혔다. 일반적으로 알칼리 연료전지에는 에너지 발생의 핵심 역할을 하게 되는 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용해왔으나, 높은 의존도 문제와 더불어 소재 자체의 안정성에 대한 한계가 제기되어 왔다. 연료전지용 소재는 장시간 산화 환경에 노출되기 때문에 소재의 안정성 및 내구성에 대한 엄격한 수준의 소재 기술이 요구되므로 촉매 전체의 내구성을 감소시키는 백금 및 팔라듐 합금은 치명적인 단점이 있었다. 이에 연구진은 소재 안정성이 뛰어나지만 성능이 낮은 것으로 알려진 로듐에 대해 연료전지용 촉매 연구를 진행한 결과, 로듐과 주석 합금 나노 입자가 연료전지의 전기화학적 산소 환원 반응에 있어서 우수한 특성을 갖는다는 것을 밝혀냈다. 현재까지 연료전지 촉매 분야에서 로듐은 백금의 보조 촉매 수준으로 사용되어 왔으나, 나노미터(nm) 수준에서의 재료의 표면 제어 기술을 사용하게 되면 고안정성 및 고활성 연료전지용 촉매 소재로 활용 가능하다는 것이 증명되었다. 연구진은 로듐과 주석의 합금 구조가 표면의 구조 변화로 활성점이 증대되면서 이용률이 상승하여 로듐 입자 대비 10배 이상 성능이 향상되고, 기존 백금 촉매 대비 4배의 성능이 향상됨을 밝혀냈다. 특히 개발된 촉매는 기존 합성법이 적게는 12시간, 많게는 48시간 소요되던 것과 달리, 일반 가정에서 사용하는 전자레인지와 동일한 원리(극초단파, micro wave)를 이용하여 10분 내에 간편히 제조할 수 있는 기술로 개발되었다. 기존 연료전지용 소재 합성법과 달리 화학 첨가물 투입 및 추가 공정 과정이 배제되기 때문에, 신속한 소재 제조 기술 및 공정 단순화 기술 결합이 가능하였다. 그러므로 시간당 촉매 제조 생산량이 높아 향후 소재 생산 공정에 있어서도 상업적 장벽을 크게 완화시킬 것으로 전망된다. KIST 유성종 박사는 “이번 연구는 연료전지용 촉매 성능 향상 뿐 아니라 기존 연료전지용 촉매에 대한 한정적 선택 환경을 극복하고 새로운 소재의 촉매 설계가 가능해졌다는 점이 핵심”이라 말하며, “향후 차세대 에너지 변환 소재의 설계 및 제조 공정 기술 발전에 기여할 수 있을 것으로 기대한다”라고 연구 의의를 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 신재생에너지핵심기술사업 한국연구재단, 산업통상자원부 지원으로 수행되었으며, 촉매 분야의 국제 학술저널인 미국화학회 촉매지(ACS Catalysis, IF : 10.614)에 9월 1일 온라인 게재되었다. <그림자료> 그림1. 로듐 합금 나노 입자 표면에서의 전기화학적 반응 모식도
전자신문 선정 "올해의 인물", 한홍택 원장님 선정(12.14)
전자신문 선정 "올해의 인물", 한홍택 원장님 선정 우리 원 한홍택 원장이 전자신문이 주관한 ‘올해의 인물’에 선정되었다. 출연연 역사상 첫 외국인 출신 원장으로 취임 전부터 화제를 모았던 한 원장은 취임 후 약 3달 간 거침없는 개혁 행보로, 나이·경력을 파괴한 능력 위주의 공모 형식 인사부터 글로벌 KIST와 기술 사업화를 위한 새로운 비전 하나하나가 출연연구소에 신선한 변화를 가져왔다는 평가를 받았다.
전자의 스핀을 이용하여 저전력 논리 소자 개발
전자의 스핀을 이용하여 저전력 논리 소자 개발 - N형, P형 반도체 기능을 모두 수행하는 스핀 트랜지스터 개발 - 반도체 공정을 획기적으로 줄이면서 비메모리 반도체 분야에 응용 가능 국제전기전자기술자협회(IEEE)를 주축으로 이뤄진 국제 디바이스·시스템(IRDS) 로드맵이 발간한 기술 백서에 따르면 현재 반도체 생산에 활용되고 있는 상보성 금속산화막 반도체(Complementary Metal?Oxide Semiconductor, CMOS*) 공정기술은 2024년을 기점으로 더 이상 발전이 없을 것으로 예상됐다. 따라서 포스트 CMOS와 ‘모어 무어(More Moore)’시대를 열기 위한 연구가 대두되고 있는데, 최근 국내 연구진이 전자의 스핀을 이용하여 현재 반도체 집적회로인 CMOS를 대체할 수 있는 방법을 개발했다고 밝혔다. *CMOS(상보성 금속산화막 반도체) : 집적 회로의 한 종류로, 마이크로프로세서나 SRAM 등의 디지털 회로를 구성하는 데에 이용된다. 양(+)의 전하를 이용하는 P형 트랜지스터(p-MOS)와 음(-)의 전하를 이용하는 N형 트랜지스터(n-MOS)를 동일 칩에 넣어 양자가 상보적으로 동작하도록 하여 전력소모를 낮추는 방식 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 구현철 박사팀은 기존 반도체 기술인 CMOS에서 반드시 필요했던 N형, P형 트랜지스터의 별도 제작 없이, 전자의 스핀특성을 이용하여 두 가지 기능을 모두 수행하는 트랜지스터를 구현하였다. 그동안 스핀트랜지스터는 상당한 잠재력을 가지고 있었지만 CMOS 로직 소자로의 동작을 보여주지 못했었다. 연구진은 전자의 스핀이 가지고 있는 평행/반평행 성질을 이용하여 CMOS 로직 소자 동작을 구현하였으며 관련 특허를 국내외에 출원했다. 이번 연구성과는 과학저널인 ‘사이언티픽 리포트(Scientific Reports)’ 紙에 4월 21일(한국시간)자로 온라인 게재되었다. 스핀트랜지스터 기술은 그동안 반도체가 전자의 전하만을 이용할 수 있었던 것에 비해, 전하와 동시에 전자의 스핀을 이용하여 정보를 저장 또는 처리하는 신기술로서, 기존 반도체의 한계를 극복한 비휘발성의 초고속, 초저전력의 전자소자 개발이 가능해진다. 본 연구진에 의해 최초로(2009년 Science紙 게재**) 제안된 이 트랜지스터는, 그러나 실제 회로에 응용하기 위해서 N형, P형 트랜지스터를 모두 구현해야하는 여러 가지 어려움이 있었다. **Control of Spin Precession in a Spin-Injected Field Effect Transistor (Science紙, 2009년 9월 18일) 트랜지스터를 컴퓨터 중앙처리 장치와 같이 실제 로직소자에 응용하기 위해서는 N형(-), P형(+) 트랜지스터를 모두 이용해야하는데 제작과정에 많은 공정과 비용이 필요하다. 특히 스핀트랜지스터는 제작에도 많은 노하우가 필요할 뿐 아니라 N형, P형을 별도로 제작하는 연구는 전무했다. 이번 연구결과는 트랜지스터의 입력부와 출력부를 서로 같은 자화 방향으로 만들거나 서로 반대의 자화 방향으로 만들어 각각 N형과 P형의 기능을 모두 구현함으로써 특별한 도핑과정 없이 두 가지 역할을 모두 수행하는 트랜지스터를 개발한 것이다. 이러한 기술은 향후 상용화가 된다면 세계 수준인 반도체 메모리 기술에 비해 취약한 국내 시스템 반도체(비메모리) 분야에 다양하게 이용될 수 있으며 이 기술이 가진 초고속, 초절전 특성으로 인해 다양한 전자기기, 특히 모바일 기기에 응용될 것으로 기대된다. KIST 구현철 박사는 “현재 스핀트랜지스터 기술은 시작하는 단계에 있지만 이를 이용한 로직소자가 개발되면 전력손실이 거의 없고 초고속으로 작동할 것이다.”라며, “향후 정보처리 소자는 물론 메모리와 로직을 융합한 모바일용 소자에도 응용이 가능할 것이다” 라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유사업과 연구재단 중견연구사업으로 수행되었다. <그림 설명> <그림 1> CMOS 동작을 위한 평행형 (N형기능), 반평행형(P형기능) 스핀 트랜지스터 <그림 2> 스핀 트랜지스터를 이용한 CMOS 소자 (좌) 및 신호 (우). P-형 트랜지스터(우 상단)와 N-형 트랜지스터(우 하단)의 기능을 전자의 스핀을 이용하여 보여주고 있다.
전자의 스핀을 이용하여 저전력 논리 소자 개발
전자의 스핀을 이용하여 저전력 논리 소자 개발 - N형, P형 반도체 기능을 모두 수행하는 스핀 트랜지스터 개발 - 반도체 공정을 획기적으로 줄이면서 비메모리 반도체 분야에 응용 가능 국제전기전자기술자협회(IEEE)를 주축으로 이뤄진 국제 디바이스·시스템(IRDS) 로드맵이 발간한 기술 백서에 따르면 현재 반도체 생산에 활용되고 있는 상보성 금속산화막 반도체(Complementary Metal?Oxide Semiconductor, CMOS*) 공정기술은 2024년을 기점으로 더 이상 발전이 없을 것으로 예상됐다. 따라서 포스트 CMOS와 ‘모어 무어(More Moore)’시대를 열기 위한 연구가 대두되고 있는데, 최근 국내 연구진이 전자의 스핀을 이용하여 현재 반도체 집적회로인 CMOS를 대체할 수 있는 방법을 개발했다고 밝혔다. *CMOS(상보성 금속산화막 반도체) : 집적 회로의 한 종류로, 마이크로프로세서나 SRAM 등의 디지털 회로를 구성하는 데에 이용된다. 양(+)의 전하를 이용하는 P형 트랜지스터(p-MOS)와 음(-)의 전하를 이용하는 N형 트랜지스터(n-MOS)를 동일 칩에 넣어 양자가 상보적으로 동작하도록 하여 전력소모를 낮추는 방식 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 구현철 박사팀은 기존 반도체 기술인 CMOS에서 반드시 필요했던 N형, P형 트랜지스터의 별도 제작 없이, 전자의 스핀특성을 이용하여 두 가지 기능을 모두 수행하는 트랜지스터를 구현하였다. 그동안 스핀트랜지스터는 상당한 잠재력을 가지고 있었지만 CMOS 로직 소자로의 동작을 보여주지 못했었다. 연구진은 전자의 스핀이 가지고 있는 평행/반평행 성질을 이용하여 CMOS 로직 소자 동작을 구현하였으며 관련 특허를 국내외에 출원했다. 이번 연구성과는 과학저널인 ‘사이언티픽 리포트(Scientific Reports)’ 紙에 4월 21일(한국시간)자로 온라인 게재되었다. 스핀트랜지스터 기술은 그동안 반도체가 전자의 전하만을 이용할 수 있었던 것에 비해, 전하와 동시에 전자의 스핀을 이용하여 정보를 저장 또는 처리하는 신기술로서, 기존 반도체의 한계를 극복한 비휘발성의 초고속, 초저전력의 전자소자 개발이 가능해진다. 본 연구진에 의해 최초로(2009년 Science紙 게재**) 제안된 이 트랜지스터는, 그러나 실제 회로에 응용하기 위해서 N형, P형 트랜지스터를 모두 구현해야하는 여러 가지 어려움이 있었다. **Control of Spin Precession in a Spin-Injected Field Effect Transistor (Science紙, 2009년 9월 18일) 트랜지스터를 컴퓨터 중앙처리 장치와 같이 실제 로직소자에 응용하기 위해서는 N형(-), P형(+) 트랜지스터를 모두 이용해야하는데 제작과정에 많은 공정과 비용이 필요하다. 특히 스핀트랜지스터는 제작에도 많은 노하우가 필요할 뿐 아니라 N형, P형을 별도로 제작하는 연구는 전무했다. 이번 연구결과는 트랜지스터의 입력부와 출력부를 서로 같은 자화 방향으로 만들거나 서로 반대의 자화 방향으로 만들어 각각 N형과 P형의 기능을 모두 구현함으로써 특별한 도핑과정 없이 두 가지 역할을 모두 수행하는 트랜지스터를 개발한 것이다. 이러한 기술은 향후 상용화가 된다면 세계 수준인 반도체 메모리 기술에 비해 취약한 국내 시스템 반도체(비메모리) 분야에 다양하게 이용될 수 있으며 이 기술이 가진 초고속, 초절전 특성으로 인해 다양한 전자기기, 특히 모바일 기기에 응용될 것으로 기대된다. KIST 구현철 박사는 “현재 스핀트랜지스터 기술은 시작하는 단계에 있지만 이를 이용한 로직소자가 개발되면 전력손실이 거의 없고 초고속으로 작동할 것이다.”라며, “향후 정보처리 소자는 물론 메모리와 로직을 융합한 모바일용 소자에도 응용이 가능할 것이다” 라고 밝혔다. 본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유사업과 연구재단 중견연구사업으로 수행되었다. <그림 설명> <그림 1> CMOS 동작을 위한 평행형 (N형기능), 반평행형(P형기능) 스핀 트랜지스터 <그림 2> 스핀 트랜지스터를 이용한 CMOS 소자 (좌) 및 신호 (우). P-형 트랜지스터(우 상단)와 N-형 트랜지스터(우 하단)의 기능을 전자의 스핀을 이용하여 보여주고 있다.