검색결과
게시물 키워드"한국과학기술연구원"에 대한 1282개의 검색결과를 찾았습니다.
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발 - 메조 기공(Mesopore) 도입으로 낮은 산소 농도의 공기 공급 환경에서도 세계 최고 수준의 과산화수소 생산 특성 구현 - 중성 전해질에서 과산화수소 생산, 실용성 확보 및 상용화 가능성 제시 과산화수소는 화학, 의료, 반도체 산업 등에서 폭넓게 활용되는 세계 100대 산업용 화학 물질 중 하나다. 현재 과산화수소는 주로 안트라퀴논 공정(Anthraquinone process)을 통해 생산되지만, 이 공정은 높은 에너지 소비, 고가의 팔라듐 촉매 사용, 부산물 발생으로 인한 환경 오염 등 여러 문제점을 가지고 있다. 이에 따라, 최근에는 저렴한 탄소 촉매를 활용해 산소를 전기화학적으로 환원해 과산화수소를 생산하는 친환경적 방식이 주목받고 있다. 그러나 이 방식은 고순도의 산소 가스를 주입해야 하는 높은 비용 문제와 생성된 과산화수소가 불안정한 염기성 전해질 환경에서 주로 생성되는 실용적 한계가 존재했다. 한국과학기술연구원(KIST, 원장 오상록) 극한물성소재연구센터 김종민 박사, 계산과학연구센터 한상수 박사, 한국과학기술원(KAIST, 총장 이광형) 이재우 교수, 한국기초과학지원연구원(KBSI, 원장 양성광) 문준희 박사 공동연구팀은 이러한 한계를 극복하기 위해 탄소 촉매에 메조 기공(Mesopore)을 도입해 낮은 산소 농도를 갖는 공기 공급 환경 및 중성 전해질에서도 과산화수소를 효과적으로 생산할 수 있는 고효율 메조 다공성 촉매를 개발했다. 연구팀은 온실가스인 이산화탄소(CO₂), 강력한 환원제인 수소화붕소나트륨(NaBH₄), 그리고 메조 크기의 탄산칼슘(CaCO₃) 입자를 반응시킨 후, 탄산칼슘 입자를 선택적으로 제거하는 방식으로 약 20나노미터(nm) 크기의 메조 기공을 갖는 붕소 도핑 탄소를 합성했다. 이를 전기화학적 과산화수소 생산 촉매로 활용한 결과, 메조 기공으로 인해 형성된 굴곡진 표면 특성이 과산화수소 생성 반응이 어려운 중성 전해질 환경에서도 우수한 촉매 활성을 발휘하는 것을 실험과 계산을 통해 규명했다. 또한, 실시간 라만 분석을 통해 메조 다공성 구조가 반응물인 산소의 원활한 전달을 촉진함으로써, 산소 농도가 약 20%에 불과한 공기 환경에서도 높은 촉매 활성을 유지할 수 있음을 확인했다. 이러한 연구 성과를 바탕으로, 연구팀은 붕소 도핑 메조 다공성 탄소 촉매를 과산화수소 대량생산 반응기에 적용할 경우, 상용화에 가까운 환경인 중성 전해질과 공기 공급 및 산업 규모의 전류밀도(200 mA/cm²) 조건에서 80% 이상의 세계 최고 수준 과산화수소 생산 효율을 기록할 수 있음을 입증했다. 특히, 의료용 과산화수소 농도(3%)를 초과하는 3.6% 농도의 과산화수소 용액을 제조하는 데 성공함으로써 상용화 가능성을 제시했다. KIST 김종민 박사는 "우리가 호흡하는 공기 중의 산소를 활용해 중성 전해질에서 과산화수소를 생산하는 메조 다공성 탄소 촉매 기술은 기존 촉매보다 실용성이 높아 산업화에 속도를 더할 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 우수신진연구사업(2N74120), 나노소재기술개발사업(2N76070) 및 선도연구센터지원사업(NRF-2022R1A5A1033719)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Materials」 (IF 27.4, JCR 분야 1.94%) 최신 호에 게재됐다. * (논문명) Mesoporous Boron-doped Carbon with Curved B4C Active Sites for Highly Efficient H2O2 Electrosynthesis in Neutral Media and Air-supplied Environments [그림 1] 붕소 도핑 메조 다공성 탄소 촉매 구조 (좌) 다공성 탄소 촉매의 표면과 메조 기공을 이루는 탄소 벽에 붕소가 도핑되어 있는 구조를 나타낸 모식도. (우) 투과전자현미경과 원자단층현미경을 이용하여 측정된 탄소 촉매의 메조 기공 구조 및 붕소의 원자 단위 분포 상태. [그림 2] 평면 도핑 구조와 휘어진 붕소 도핑 구조의 촉매 활성 비교 (좌) 평면 도핑 구조와 메조 기공에 의해 휘어진 도핑 구조의 촉매 반응 과정 모식도. (우) 도핑 형태에 따른 중성 전해질에서 과산화수소 생성 반응에 대한 활성 비교. [그림 3] 공기를 이용한 과산화수소 생산 전극 구조 및 촉매 성능 (좌) 붕소 도핑 메조 다공성 탄소 촉매를 이용해 만든 공기 활용 과산화수소 생산 전극 구조의 모식도. (우) 중성 전해질 및 대기 환경에서 측정한 본 연구 개발 촉매와 기존 촉매와의 성능 비교표.
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발 - 메조 기공(Mesopore) 도입으로 낮은 산소 농도의 공기 공급 환경에서도 세계 최고 수준의 과산화수소 생산 특성 구현 - 중성 전해질에서 과산화수소 생산, 실용성 확보 및 상용화 가능성 제시 과산화수소는 화학, 의료, 반도체 산업 등에서 폭넓게 활용되는 세계 100대 산업용 화학 물질 중 하나다. 현재 과산화수소는 주로 안트라퀴논 공정(Anthraquinone process)을 통해 생산되지만, 이 공정은 높은 에너지 소비, 고가의 팔라듐 촉매 사용, 부산물 발생으로 인한 환경 오염 등 여러 문제점을 가지고 있다. 이에 따라, 최근에는 저렴한 탄소 촉매를 활용해 산소를 전기화학적으로 환원해 과산화수소를 생산하는 친환경적 방식이 주목받고 있다. 그러나 이 방식은 고순도의 산소 가스를 주입해야 하는 높은 비용 문제와 생성된 과산화수소가 불안정한 염기성 전해질 환경에서 주로 생성되는 실용적 한계가 존재했다. 한국과학기술연구원(KIST, 원장 오상록) 극한물성소재연구센터 김종민 박사, 계산과학연구센터 한상수 박사, 한국과학기술원(KAIST, 총장 이광형) 이재우 교수, 한국기초과학지원연구원(KBSI, 원장 양성광) 문준희 박사 공동연구팀은 이러한 한계를 극복하기 위해 탄소 촉매에 메조 기공(Mesopore)을 도입해 낮은 산소 농도를 갖는 공기 공급 환경 및 중성 전해질에서도 과산화수소를 효과적으로 생산할 수 있는 고효율 메조 다공성 촉매를 개발했다. 연구팀은 온실가스인 이산화탄소(CO₂), 강력한 환원제인 수소화붕소나트륨(NaBH₄), 그리고 메조 크기의 탄산칼슘(CaCO₃) 입자를 반응시킨 후, 탄산칼슘 입자를 선택적으로 제거하는 방식으로 약 20나노미터(nm) 크기의 메조 기공을 갖는 붕소 도핑 탄소를 합성했다. 이를 전기화학적 과산화수소 생산 촉매로 활용한 결과, 메조 기공으로 인해 형성된 굴곡진 표면 특성이 과산화수소 생성 반응이 어려운 중성 전해질 환경에서도 우수한 촉매 활성을 발휘하는 것을 실험과 계산을 통해 규명했다. 또한, 실시간 라만 분석을 통해 메조 다공성 구조가 반응물인 산소의 원활한 전달을 촉진함으로써, 산소 농도가 약 20%에 불과한 공기 환경에서도 높은 촉매 활성을 유지할 수 있음을 확인했다. 이러한 연구 성과를 바탕으로, 연구팀은 붕소 도핑 메조 다공성 탄소 촉매를 과산화수소 대량생산 반응기에 적용할 경우, 상용화에 가까운 환경인 중성 전해질과 공기 공급 및 산업 규모의 전류밀도(200 mA/cm²) 조건에서 80% 이상의 세계 최고 수준 과산화수소 생산 효율을 기록할 수 있음을 입증했다. 특히, 의료용 과산화수소 농도(3%)를 초과하는 3.6% 농도의 과산화수소 용액을 제조하는 데 성공함으로써 상용화 가능성을 제시했다. KIST 김종민 박사는 "우리가 호흡하는 공기 중의 산소를 활용해 중성 전해질에서 과산화수소를 생산하는 메조 다공성 탄소 촉매 기술은 기존 촉매보다 실용성이 높아 산업화에 속도를 더할 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 우수신진연구사업(2N74120), 나노소재기술개발사업(2N76070) 및 선도연구센터지원사업(NRF-2022R1A5A1033719)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Materials」 (IF 27.4, JCR 분야 1.94%) 최신 호에 게재됐다. * (논문명) Mesoporous Boron-doped Carbon with Curved B4C Active Sites for Highly Efficient H2O2 Electrosynthesis in Neutral Media and Air-supplied Environments [그림 1] 붕소 도핑 메조 다공성 탄소 촉매 구조 (좌) 다공성 탄소 촉매의 표면과 메조 기공을 이루는 탄소 벽에 붕소가 도핑되어 있는 구조를 나타낸 모식도. (우) 투과전자현미경과 원자단층현미경을 이용하여 측정된 탄소 촉매의 메조 기공 구조 및 붕소의 원자 단위 분포 상태. [그림 2] 평면 도핑 구조와 휘어진 붕소 도핑 구조의 촉매 활성 비교 (좌) 평면 도핑 구조와 메조 기공에 의해 휘어진 도핑 구조의 촉매 반응 과정 모식도. (우) 도핑 형태에 따른 중성 전해질에서 과산화수소 생성 반응에 대한 활성 비교. [그림 3] 공기를 이용한 과산화수소 생산 전극 구조 및 촉매 성능 (좌) 붕소 도핑 메조 다공성 탄소 촉매를 이용해 만든 공기 활용 과산화수소 생산 전극 구조의 모식도. (우) 중성 전해질 및 대기 환경에서 측정한 본 연구 개발 촉매와 기존 촉매와의 성능 비교표.
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발 - 메조 기공(Mesopore) 도입으로 낮은 산소 농도의 공기 공급 환경에서도 세계 최고 수준의 과산화수소 생산 특성 구현 - 중성 전해질에서 과산화수소 생산, 실용성 확보 및 상용화 가능성 제시 과산화수소는 화학, 의료, 반도체 산업 등에서 폭넓게 활용되는 세계 100대 산업용 화학 물질 중 하나다. 현재 과산화수소는 주로 안트라퀴논 공정(Anthraquinone process)을 통해 생산되지만, 이 공정은 높은 에너지 소비, 고가의 팔라듐 촉매 사용, 부산물 발생으로 인한 환경 오염 등 여러 문제점을 가지고 있다. 이에 따라, 최근에는 저렴한 탄소 촉매를 활용해 산소를 전기화학적으로 환원해 과산화수소를 생산하는 친환경적 방식이 주목받고 있다. 그러나 이 방식은 고순도의 산소 가스를 주입해야 하는 높은 비용 문제와 생성된 과산화수소가 불안정한 염기성 전해질 환경에서 주로 생성되는 실용적 한계가 존재했다. 한국과학기술연구원(KIST, 원장 오상록) 극한물성소재연구센터 김종민 박사, 계산과학연구센터 한상수 박사, 한국과학기술원(KAIST, 총장 이광형) 이재우 교수, 한국기초과학지원연구원(KBSI, 원장 양성광) 문준희 박사 공동연구팀은 이러한 한계를 극복하기 위해 탄소 촉매에 메조 기공(Mesopore)을 도입해 낮은 산소 농도를 갖는 공기 공급 환경 및 중성 전해질에서도 과산화수소를 효과적으로 생산할 수 있는 고효율 메조 다공성 촉매를 개발했다. 연구팀은 온실가스인 이산화탄소(CO₂), 강력한 환원제인 수소화붕소나트륨(NaBH₄), 그리고 메조 크기의 탄산칼슘(CaCO₃) 입자를 반응시킨 후, 탄산칼슘 입자를 선택적으로 제거하는 방식으로 약 20나노미터(nm) 크기의 메조 기공을 갖는 붕소 도핑 탄소를 합성했다. 이를 전기화학적 과산화수소 생산 촉매로 활용한 결과, 메조 기공으로 인해 형성된 굴곡진 표면 특성이 과산화수소 생성 반응이 어려운 중성 전해질 환경에서도 우수한 촉매 활성을 발휘하는 것을 실험과 계산을 통해 규명했다. 또한, 실시간 라만 분석을 통해 메조 다공성 구조가 반응물인 산소의 원활한 전달을 촉진함으로써, 산소 농도가 약 20%에 불과한 공기 환경에서도 높은 촉매 활성을 유지할 수 있음을 확인했다. 이러한 연구 성과를 바탕으로, 연구팀은 붕소 도핑 메조 다공성 탄소 촉매를 과산화수소 대량생산 반응기에 적용할 경우, 상용화에 가까운 환경인 중성 전해질과 공기 공급 및 산업 규모의 전류밀도(200 mA/cm²) 조건에서 80% 이상의 세계 최고 수준 과산화수소 생산 효율을 기록할 수 있음을 입증했다. 특히, 의료용 과산화수소 농도(3%)를 초과하는 3.6% 농도의 과산화수소 용액을 제조하는 데 성공함으로써 상용화 가능성을 제시했다. KIST 김종민 박사는 "우리가 호흡하는 공기 중의 산소를 활용해 중성 전해질에서 과산화수소를 생산하는 메조 다공성 탄소 촉매 기술은 기존 촉매보다 실용성이 높아 산업화에 속도를 더할 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 우수신진연구사업(2N74120), 나노소재기술개발사업(2N76070) 및 선도연구센터지원사업(NRF-2022R1A5A1033719)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Materials」 (IF 27.4, JCR 분야 1.94%) 최신 호에 게재됐다. * (논문명) Mesoporous Boron-doped Carbon with Curved B4C Active Sites for Highly Efficient H2O2 Electrosynthesis in Neutral Media and Air-supplied Environments [그림 1] 붕소 도핑 메조 다공성 탄소 촉매 구조 (좌) 다공성 탄소 촉매의 표면과 메조 기공을 이루는 탄소 벽에 붕소가 도핑되어 있는 구조를 나타낸 모식도. (우) 투과전자현미경과 원자단층현미경을 이용하여 측정된 탄소 촉매의 메조 기공 구조 및 붕소의 원자 단위 분포 상태. [그림 2] 평면 도핑 구조와 휘어진 붕소 도핑 구조의 촉매 활성 비교 (좌) 평면 도핑 구조와 메조 기공에 의해 휘어진 도핑 구조의 촉매 반응 과정 모식도. (우) 도핑 형태에 따른 중성 전해질에서 과산화수소 생성 반응에 대한 활성 비교. [그림 3] 공기를 이용한 과산화수소 생산 전극 구조 및 촉매 성능 (좌) 붕소 도핑 메조 다공성 탄소 촉매를 이용해 만든 공기 활용 과산화수소 생산 전극 구조의 모식도. (우) 중성 전해질 및 대기 환경에서 측정한 본 연구 개발 촉매와 기존 촉매와의 성능 비교표.
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발 - 메조 기공(Mesopore) 도입으로 낮은 산소 농도의 공기 공급 환경에서도 세계 최고 수준의 과산화수소 생산 특성 구현 - 중성 전해질에서 과산화수소 생산, 실용성 확보 및 상용화 가능성 제시 과산화수소는 화학, 의료, 반도체 산업 등에서 폭넓게 활용되는 세계 100대 산업용 화학 물질 중 하나다. 현재 과산화수소는 주로 안트라퀴논 공정(Anthraquinone process)을 통해 생산되지만, 이 공정은 높은 에너지 소비, 고가의 팔라듐 촉매 사용, 부산물 발생으로 인한 환경 오염 등 여러 문제점을 가지고 있다. 이에 따라, 최근에는 저렴한 탄소 촉매를 활용해 산소를 전기화학적으로 환원해 과산화수소를 생산하는 친환경적 방식이 주목받고 있다. 그러나 이 방식은 고순도의 산소 가스를 주입해야 하는 높은 비용 문제와 생성된 과산화수소가 불안정한 염기성 전해질 환경에서 주로 생성되는 실용적 한계가 존재했다. 한국과학기술연구원(KIST, 원장 오상록) 극한물성소재연구센터 김종민 박사, 계산과학연구센터 한상수 박사, 한국과학기술원(KAIST, 총장 이광형) 이재우 교수, 한국기초과학지원연구원(KBSI, 원장 양성광) 문준희 박사 공동연구팀은 이러한 한계를 극복하기 위해 탄소 촉매에 메조 기공(Mesopore)을 도입해 낮은 산소 농도를 갖는 공기 공급 환경 및 중성 전해질에서도 과산화수소를 효과적으로 생산할 수 있는 고효율 메조 다공성 촉매를 개발했다. 연구팀은 온실가스인 이산화탄소(CO₂), 강력한 환원제인 수소화붕소나트륨(NaBH₄), 그리고 메조 크기의 탄산칼슘(CaCO₃) 입자를 반응시킨 후, 탄산칼슘 입자를 선택적으로 제거하는 방식으로 약 20나노미터(nm) 크기의 메조 기공을 갖는 붕소 도핑 탄소를 합성했다. 이를 전기화학적 과산화수소 생산 촉매로 활용한 결과, 메조 기공으로 인해 형성된 굴곡진 표면 특성이 과산화수소 생성 반응이 어려운 중성 전해질 환경에서도 우수한 촉매 활성을 발휘하는 것을 실험과 계산을 통해 규명했다. 또한, 실시간 라만 분석을 통해 메조 다공성 구조가 반응물인 산소의 원활한 전달을 촉진함으로써, 산소 농도가 약 20%에 불과한 공기 환경에서도 높은 촉매 활성을 유지할 수 있음을 확인했다. 이러한 연구 성과를 바탕으로, 연구팀은 붕소 도핑 메조 다공성 탄소 촉매를 과산화수소 대량생산 반응기에 적용할 경우, 상용화에 가까운 환경인 중성 전해질과 공기 공급 및 산업 규모의 전류밀도(200 mA/cm²) 조건에서 80% 이상의 세계 최고 수준 과산화수소 생산 효율을 기록할 수 있음을 입증했다. 특히, 의료용 과산화수소 농도(3%)를 초과하는 3.6% 농도의 과산화수소 용액을 제조하는 데 성공함으로써 상용화 가능성을 제시했다. KIST 김종민 박사는 "우리가 호흡하는 공기 중의 산소를 활용해 중성 전해질에서 과산화수소를 생산하는 메조 다공성 탄소 촉매 기술은 기존 촉매보다 실용성이 높아 산업화에 속도를 더할 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 우수신진연구사업(2N74120), 나노소재기술개발사업(2N76070) 및 선도연구센터지원사업(NRF-2022R1A5A1033719)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Materials」 (IF 27.4, JCR 분야 1.94%) 최신 호에 게재됐다. * (논문명) Mesoporous Boron-doped Carbon with Curved B4C Active Sites for Highly Efficient H2O2 Electrosynthesis in Neutral Media and Air-supplied Environments [그림 1] 붕소 도핑 메조 다공성 탄소 촉매 구조 (좌) 다공성 탄소 촉매의 표면과 메조 기공을 이루는 탄소 벽에 붕소가 도핑되어 있는 구조를 나타낸 모식도. (우) 투과전자현미경과 원자단층현미경을 이용하여 측정된 탄소 촉매의 메조 기공 구조 및 붕소의 원자 단위 분포 상태. [그림 2] 평면 도핑 구조와 휘어진 붕소 도핑 구조의 촉매 활성 비교 (좌) 평면 도핑 구조와 메조 기공에 의해 휘어진 도핑 구조의 촉매 반응 과정 모식도. (우) 도핑 형태에 따른 중성 전해질에서 과산화수소 생성 반응에 대한 활성 비교. [그림 3] 공기를 이용한 과산화수소 생산 전극 구조 및 촉매 성능 (좌) 붕소 도핑 메조 다공성 탄소 촉매를 이용해 만든 공기 활용 과산화수소 생산 전극 구조의 모식도. (우) 중성 전해질 및 대기 환경에서 측정한 본 연구 개발 촉매와 기존 촉매와의 성능 비교표.
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발 - 메조 기공(Mesopore) 도입으로 낮은 산소 농도의 공기 공급 환경에서도 세계 최고 수준의 과산화수소 생산 특성 구현 - 중성 전해질에서 과산화수소 생산, 실용성 확보 및 상용화 가능성 제시 과산화수소는 화학, 의료, 반도체 산업 등에서 폭넓게 활용되는 세계 100대 산업용 화학 물질 중 하나다. 현재 과산화수소는 주로 안트라퀴논 공정(Anthraquinone process)을 통해 생산되지만, 이 공정은 높은 에너지 소비, 고가의 팔라듐 촉매 사용, 부산물 발생으로 인한 환경 오염 등 여러 문제점을 가지고 있다. 이에 따라, 최근에는 저렴한 탄소 촉매를 활용해 산소를 전기화학적으로 환원해 과산화수소를 생산하는 친환경적 방식이 주목받고 있다. 그러나 이 방식은 고순도의 산소 가스를 주입해야 하는 높은 비용 문제와 생성된 과산화수소가 불안정한 염기성 전해질 환경에서 주로 생성되는 실용적 한계가 존재했다. 한국과학기술연구원(KIST, 원장 오상록) 극한물성소재연구센터 김종민 박사, 계산과학연구센터 한상수 박사, 한국과학기술원(KAIST, 총장 이광형) 이재우 교수, 한국기초과학지원연구원(KBSI, 원장 양성광) 문준희 박사 공동연구팀은 이러한 한계를 극복하기 위해 탄소 촉매에 메조 기공(Mesopore)을 도입해 낮은 산소 농도를 갖는 공기 공급 환경 및 중성 전해질에서도 과산화수소를 효과적으로 생산할 수 있는 고효율 메조 다공성 촉매를 개발했다. 연구팀은 온실가스인 이산화탄소(CO₂), 강력한 환원제인 수소화붕소나트륨(NaBH₄), 그리고 메조 크기의 탄산칼슘(CaCO₃) 입자를 반응시킨 후, 탄산칼슘 입자를 선택적으로 제거하는 방식으로 약 20나노미터(nm) 크기의 메조 기공을 갖는 붕소 도핑 탄소를 합성했다. 이를 전기화학적 과산화수소 생산 촉매로 활용한 결과, 메조 기공으로 인해 형성된 굴곡진 표면 특성이 과산화수소 생성 반응이 어려운 중성 전해질 환경에서도 우수한 촉매 활성을 발휘하는 것을 실험과 계산을 통해 규명했다. 또한, 실시간 라만 분석을 통해 메조 다공성 구조가 반응물인 산소의 원활한 전달을 촉진함으로써, 산소 농도가 약 20%에 불과한 공기 환경에서도 높은 촉매 활성을 유지할 수 있음을 확인했다. 이러한 연구 성과를 바탕으로, 연구팀은 붕소 도핑 메조 다공성 탄소 촉매를 과산화수소 대량생산 반응기에 적용할 경우, 상용화에 가까운 환경인 중성 전해질과 공기 공급 및 산업 규모의 전류밀도(200 mA/cm²) 조건에서 80% 이상의 세계 최고 수준 과산화수소 생산 효율을 기록할 수 있음을 입증했다. 특히, 의료용 과산화수소 농도(3%)를 초과하는 3.6% 농도의 과산화수소 용액을 제조하는 데 성공함으로써 상용화 가능성을 제시했다. KIST 김종민 박사는 "우리가 호흡하는 공기 중의 산소를 활용해 중성 전해질에서 과산화수소를 생산하는 메조 다공성 탄소 촉매 기술은 기존 촉매보다 실용성이 높아 산업화에 속도를 더할 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 우수신진연구사업(2N74120), 나노소재기술개발사업(2N76070) 및 선도연구센터지원사업(NRF-2022R1A5A1033719)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Materials」 (IF 27.4, JCR 분야 1.94%) 최신 호에 게재됐다. * (논문명) Mesoporous Boron-doped Carbon with Curved B4C Active Sites for Highly Efficient H2O2 Electrosynthesis in Neutral Media and Air-supplied Environments [그림 1] 붕소 도핑 메조 다공성 탄소 촉매 구조 (좌) 다공성 탄소 촉매의 표면과 메조 기공을 이루는 탄소 벽에 붕소가 도핑되어 있는 구조를 나타낸 모식도. (우) 투과전자현미경과 원자단층현미경을 이용하여 측정된 탄소 촉매의 메조 기공 구조 및 붕소의 원자 단위 분포 상태. [그림 2] 평면 도핑 구조와 휘어진 붕소 도핑 구조의 촉매 활성 비교 (좌) 평면 도핑 구조와 메조 기공에 의해 휘어진 도핑 구조의 촉매 반응 과정 모식도. (우) 도핑 형태에 따른 중성 전해질에서 과산화수소 생성 반응에 대한 활성 비교. [그림 3] 공기를 이용한 과산화수소 생산 전극 구조 및 촉매 성능 (좌) 붕소 도핑 메조 다공성 탄소 촉매를 이용해 만든 공기 활용 과산화수소 생산 전극 구조의 모식도. (우) 중성 전해질 및 대기 환경에서 측정한 본 연구 개발 촉매와 기존 촉매와의 성능 비교표.
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발 - 메조 기공(Mesopore) 도입으로 낮은 산소 농도의 공기 공급 환경에서도 세계 최고 수준의 과산화수소 생산 특성 구현 - 중성 전해질에서 과산화수소 생산, 실용성 확보 및 상용화 가능성 제시 과산화수소는 화학, 의료, 반도체 산업 등에서 폭넓게 활용되는 세계 100대 산업용 화학 물질 중 하나다. 현재 과산화수소는 주로 안트라퀴논 공정(Anthraquinone process)을 통해 생산되지만, 이 공정은 높은 에너지 소비, 고가의 팔라듐 촉매 사용, 부산물 발생으로 인한 환경 오염 등 여러 문제점을 가지고 있다. 이에 따라, 최근에는 저렴한 탄소 촉매를 활용해 산소를 전기화학적으로 환원해 과산화수소를 생산하는 친환경적 방식이 주목받고 있다. 그러나 이 방식은 고순도의 산소 가스를 주입해야 하는 높은 비용 문제와 생성된 과산화수소가 불안정한 염기성 전해질 환경에서 주로 생성되는 실용적 한계가 존재했다. 한국과학기술연구원(KIST, 원장 오상록) 극한물성소재연구센터 김종민 박사, 계산과학연구센터 한상수 박사, 한국과학기술원(KAIST, 총장 이광형) 이재우 교수, 한국기초과학지원연구원(KBSI, 원장 양성광) 문준희 박사 공동연구팀은 이러한 한계를 극복하기 위해 탄소 촉매에 메조 기공(Mesopore)을 도입해 낮은 산소 농도를 갖는 공기 공급 환경 및 중성 전해질에서도 과산화수소를 효과적으로 생산할 수 있는 고효율 메조 다공성 촉매를 개발했다. 연구팀은 온실가스인 이산화탄소(CO₂), 강력한 환원제인 수소화붕소나트륨(NaBH₄), 그리고 메조 크기의 탄산칼슘(CaCO₃) 입자를 반응시킨 후, 탄산칼슘 입자를 선택적으로 제거하는 방식으로 약 20나노미터(nm) 크기의 메조 기공을 갖는 붕소 도핑 탄소를 합성했다. 이를 전기화학적 과산화수소 생산 촉매로 활용한 결과, 메조 기공으로 인해 형성된 굴곡진 표면 특성이 과산화수소 생성 반응이 어려운 중성 전해질 환경에서도 우수한 촉매 활성을 발휘하는 것을 실험과 계산을 통해 규명했다. 또한, 실시간 라만 분석을 통해 메조 다공성 구조가 반응물인 산소의 원활한 전달을 촉진함으로써, 산소 농도가 약 20%에 불과한 공기 환경에서도 높은 촉매 활성을 유지할 수 있음을 확인했다. 이러한 연구 성과를 바탕으로, 연구팀은 붕소 도핑 메조 다공성 탄소 촉매를 과산화수소 대량생산 반응기에 적용할 경우, 상용화에 가까운 환경인 중성 전해질과 공기 공급 및 산업 규모의 전류밀도(200 mA/cm²) 조건에서 80% 이상의 세계 최고 수준 과산화수소 생산 효율을 기록할 수 있음을 입증했다. 특히, 의료용 과산화수소 농도(3%)를 초과하는 3.6% 농도의 과산화수소 용액을 제조하는 데 성공함으로써 상용화 가능성을 제시했다. KIST 김종민 박사는 "우리가 호흡하는 공기 중의 산소를 활용해 중성 전해질에서 과산화수소를 생산하는 메조 다공성 탄소 촉매 기술은 기존 촉매보다 실용성이 높아 산업화에 속도를 더할 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 우수신진연구사업(2N74120), 나노소재기술개발사업(2N76070) 및 선도연구센터지원사업(NRF-2022R1A5A1033719)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Materials」 (IF 27.4, JCR 분야 1.94%) 최신 호에 게재됐다. * (논문명) Mesoporous Boron-doped Carbon with Curved B4C Active Sites for Highly Efficient H2O2 Electrosynthesis in Neutral Media and Air-supplied Environments [그림 1] 붕소 도핑 메조 다공성 탄소 촉매 구조 (좌) 다공성 탄소 촉매의 표면과 메조 기공을 이루는 탄소 벽에 붕소가 도핑되어 있는 구조를 나타낸 모식도. (우) 투과전자현미경과 원자단층현미경을 이용하여 측정된 탄소 촉매의 메조 기공 구조 및 붕소의 원자 단위 분포 상태. [그림 2] 평면 도핑 구조와 휘어진 붕소 도핑 구조의 촉매 활성 비교 (좌) 평면 도핑 구조와 메조 기공에 의해 휘어진 도핑 구조의 촉매 반응 과정 모식도. (우) 도핑 형태에 따른 중성 전해질에서 과산화수소 생성 반응에 대한 활성 비교. [그림 3] 공기를 이용한 과산화수소 생산 전극 구조 및 촉매 성능 (좌) 붕소 도핑 메조 다공성 탄소 촉매를 이용해 만든 공기 활용 과산화수소 생산 전극 구조의 모식도. (우) 중성 전해질 및 대기 환경에서 측정한 본 연구 개발 촉매와 기존 촉매와의 성능 비교표.
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발 - 메조 기공(Mesopore) 도입으로 낮은 산소 농도의 공기 공급 환경에서도 세계 최고 수준의 과산화수소 생산 특성 구현 - 중성 전해질에서 과산화수소 생산, 실용성 확보 및 상용화 가능성 제시 과산화수소는 화학, 의료, 반도체 산업 등에서 폭넓게 활용되는 세계 100대 산업용 화학 물질 중 하나다. 현재 과산화수소는 주로 안트라퀴논 공정(Anthraquinone process)을 통해 생산되지만, 이 공정은 높은 에너지 소비, 고가의 팔라듐 촉매 사용, 부산물 발생으로 인한 환경 오염 등 여러 문제점을 가지고 있다. 이에 따라, 최근에는 저렴한 탄소 촉매를 활용해 산소를 전기화학적으로 환원해 과산화수소를 생산하는 친환경적 방식이 주목받고 있다. 그러나 이 방식은 고순도의 산소 가스를 주입해야 하는 높은 비용 문제와 생성된 과산화수소가 불안정한 염기성 전해질 환경에서 주로 생성되는 실용적 한계가 존재했다. 한국과학기술연구원(KIST, 원장 오상록) 극한물성소재연구센터 김종민 박사, 계산과학연구센터 한상수 박사, 한국과학기술원(KAIST, 총장 이광형) 이재우 교수, 한국기초과학지원연구원(KBSI, 원장 양성광) 문준희 박사 공동연구팀은 이러한 한계를 극복하기 위해 탄소 촉매에 메조 기공(Mesopore)을 도입해 낮은 산소 농도를 갖는 공기 공급 환경 및 중성 전해질에서도 과산화수소를 효과적으로 생산할 수 있는 고효율 메조 다공성 촉매를 개발했다. 연구팀은 온실가스인 이산화탄소(CO₂), 강력한 환원제인 수소화붕소나트륨(NaBH₄), 그리고 메조 크기의 탄산칼슘(CaCO₃) 입자를 반응시킨 후, 탄산칼슘 입자를 선택적으로 제거하는 방식으로 약 20나노미터(nm) 크기의 메조 기공을 갖는 붕소 도핑 탄소를 합성했다. 이를 전기화학적 과산화수소 생산 촉매로 활용한 결과, 메조 기공으로 인해 형성된 굴곡진 표면 특성이 과산화수소 생성 반응이 어려운 중성 전해질 환경에서도 우수한 촉매 활성을 발휘하는 것을 실험과 계산을 통해 규명했다. 또한, 실시간 라만 분석을 통해 메조 다공성 구조가 반응물인 산소의 원활한 전달을 촉진함으로써, 산소 농도가 약 20%에 불과한 공기 환경에서도 높은 촉매 활성을 유지할 수 있음을 확인했다. 이러한 연구 성과를 바탕으로, 연구팀은 붕소 도핑 메조 다공성 탄소 촉매를 과산화수소 대량생산 반응기에 적용할 경우, 상용화에 가까운 환경인 중성 전해질과 공기 공급 및 산업 규모의 전류밀도(200 mA/cm²) 조건에서 80% 이상의 세계 최고 수준 과산화수소 생산 효율을 기록할 수 있음을 입증했다. 특히, 의료용 과산화수소 농도(3%)를 초과하는 3.6% 농도의 과산화수소 용액을 제조하는 데 성공함으로써 상용화 가능성을 제시했다. KIST 김종민 박사는 "우리가 호흡하는 공기 중의 산소를 활용해 중성 전해질에서 과산화수소를 생산하는 메조 다공성 탄소 촉매 기술은 기존 촉매보다 실용성이 높아 산업화에 속도를 더할 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 우수신진연구사업(2N74120), 나노소재기술개발사업(2N76070) 및 선도연구센터지원사업(NRF-2022R1A5A1033719)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Materials」 (IF 27.4, JCR 분야 1.94%) 최신 호에 게재됐다. * (논문명) Mesoporous Boron-doped Carbon with Curved B4C Active Sites for Highly Efficient H2O2 Electrosynthesis in Neutral Media and Air-supplied Environments [그림 1] 붕소 도핑 메조 다공성 탄소 촉매 구조 (좌) 다공성 탄소 촉매의 표면과 메조 기공을 이루는 탄소 벽에 붕소가 도핑되어 있는 구조를 나타낸 모식도. (우) 투과전자현미경과 원자단층현미경을 이용하여 측정된 탄소 촉매의 메조 기공 구조 및 붕소의 원자 단위 분포 상태. [그림 2] 평면 도핑 구조와 휘어진 붕소 도핑 구조의 촉매 활성 비교 (좌) 평면 도핑 구조와 메조 기공에 의해 휘어진 도핑 구조의 촉매 반응 과정 모식도. (우) 도핑 형태에 따른 중성 전해질에서 과산화수소 생성 반응에 대한 활성 비교. [그림 3] 공기를 이용한 과산화수소 생산 전극 구조 및 촉매 성능 (좌) 붕소 도핑 메조 다공성 탄소 촉매를 이용해 만든 공기 활용 과산화수소 생산 전극 구조의 모식도. (우) 중성 전해질 및 대기 환경에서 측정한 본 연구 개발 촉매와 기존 촉매와의 성능 비교표.
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발
친환경 과산화수소 생산 돌파구! KIST, 공기 중 산소를 과산화수소로 전환하는 촉매 개발 - 메조 기공(Mesopore) 도입으로 낮은 산소 농도의 공기 공급 환경에서도 세계 최고 수준의 과산화수소 생산 특성 구현 - 중성 전해질에서 과산화수소 생산, 실용성 확보 및 상용화 가능성 제시 과산화수소는 화학, 의료, 반도체 산업 등에서 폭넓게 활용되는 세계 100대 산업용 화학 물질 중 하나다. 현재 과산화수소는 주로 안트라퀴논 공정(Anthraquinone process)을 통해 생산되지만, 이 공정은 높은 에너지 소비, 고가의 팔라듐 촉매 사용, 부산물 발생으로 인한 환경 오염 등 여러 문제점을 가지고 있다. 이에 따라, 최근에는 저렴한 탄소 촉매를 활용해 산소를 전기화학적으로 환원해 과산화수소를 생산하는 친환경적 방식이 주목받고 있다. 그러나 이 방식은 고순도의 산소 가스를 주입해야 하는 높은 비용 문제와 생성된 과산화수소가 불안정한 염기성 전해질 환경에서 주로 생성되는 실용적 한계가 존재했다. 한국과학기술연구원(KIST, 원장 오상록) 극한물성소재연구센터 김종민 박사, 계산과학연구센터 한상수 박사, 한국과학기술원(KAIST, 총장 이광형) 이재우 교수, 한국기초과학지원연구원(KBSI, 원장 양성광) 문준희 박사 공동연구팀은 이러한 한계를 극복하기 위해 탄소 촉매에 메조 기공(Mesopore)을 도입해 낮은 산소 농도를 갖는 공기 공급 환경 및 중성 전해질에서도 과산화수소를 효과적으로 생산할 수 있는 고효율 메조 다공성 촉매를 개발했다. 연구팀은 온실가스인 이산화탄소(CO₂), 강력한 환원제인 수소화붕소나트륨(NaBH₄), 그리고 메조 크기의 탄산칼슘(CaCO₃) 입자를 반응시킨 후, 탄산칼슘 입자를 선택적으로 제거하는 방식으로 약 20나노미터(nm) 크기의 메조 기공을 갖는 붕소 도핑 탄소를 합성했다. 이를 전기화학적 과산화수소 생산 촉매로 활용한 결과, 메조 기공으로 인해 형성된 굴곡진 표면 특성이 과산화수소 생성 반응이 어려운 중성 전해질 환경에서도 우수한 촉매 활성을 발휘하는 것을 실험과 계산을 통해 규명했다. 또한, 실시간 라만 분석을 통해 메조 다공성 구조가 반응물인 산소의 원활한 전달을 촉진함으로써, 산소 농도가 약 20%에 불과한 공기 환경에서도 높은 촉매 활성을 유지할 수 있음을 확인했다. 이러한 연구 성과를 바탕으로, 연구팀은 붕소 도핑 메조 다공성 탄소 촉매를 과산화수소 대량생산 반응기에 적용할 경우, 상용화에 가까운 환경인 중성 전해질과 공기 공급 및 산업 규모의 전류밀도(200 mA/cm²) 조건에서 80% 이상의 세계 최고 수준 과산화수소 생산 효율을 기록할 수 있음을 입증했다. 특히, 의료용 과산화수소 농도(3%)를 초과하는 3.6% 농도의 과산화수소 용액을 제조하는 데 성공함으로써 상용화 가능성을 제시했다. KIST 김종민 박사는 "우리가 호흡하는 공기 중의 산소를 활용해 중성 전해질에서 과산화수소를 생산하는 메조 다공성 탄소 촉매 기술은 기존 촉매보다 실용성이 높아 산업화에 속도를 더할 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 우수신진연구사업(2N74120), 나노소재기술개발사업(2N76070) 및 선도연구센터지원사업(NRF-2022R1A5A1033719)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Materials」 (IF 27.4, JCR 분야 1.94%) 최신 호에 게재됐다. * (논문명) Mesoporous Boron-doped Carbon with Curved B4C Active Sites for Highly Efficient H2O2 Electrosynthesis in Neutral Media and Air-supplied Environments [그림 1] 붕소 도핑 메조 다공성 탄소 촉매 구조 (좌) 다공성 탄소 촉매의 표면과 메조 기공을 이루는 탄소 벽에 붕소가 도핑되어 있는 구조를 나타낸 모식도. (우) 투과전자현미경과 원자단층현미경을 이용하여 측정된 탄소 촉매의 메조 기공 구조 및 붕소의 원자 단위 분포 상태. [그림 2] 평면 도핑 구조와 휘어진 붕소 도핑 구조의 촉매 활성 비교 (좌) 평면 도핑 구조와 메조 기공에 의해 휘어진 도핑 구조의 촉매 반응 과정 모식도. (우) 도핑 형태에 따른 중성 전해질에서 과산화수소 생성 반응에 대한 활성 비교. [그림 3] 공기를 이용한 과산화수소 생산 전극 구조 및 촉매 성능 (좌) 붕소 도핑 메조 다공성 탄소 촉매를 이용해 만든 공기 활용 과산화수소 생산 전극 구조의 모식도. (우) 중성 전해질 및 대기 환경에서 측정한 본 연구 개발 촉매와 기존 촉매와의 성능 비교표.
차세대 이미징 기술 혁신! KIST, 2차원 반도체 기반 고성능 센서 개발
차세대 이미징 기술 혁신! KIST, 2차원 반도체 기반 고성능 센서 개발 - 높은 저항과 페르미 준위 고정 현상 해결해 센서 성능 획기적 향상 - 차세대 고효율 초소형 이미징 센서 기술의 상용화에 핵심적 역할 기대 차세대 이미징 기술은 스마트폰을 넘어 지능형 디바이스, 로봇, XR(확장현실) 디바이스, 의료, CCTV 등 다양한 산업 분야로 빠르게 확장되고 있다. 이러한 기술 발전의 핵심에는 빛의 신호를 전기 신호로 변환하는 고효율, 초소형 이미지 센서가 필수적으로 자리 잡고 있다. 이미지 센서는 물체와 환경의 시각적 정보를 기록하고 처리해 모양, 크기, 공간 내 위치를 정밀하게 재구성하는 역할을 한다. 현재 상용 이미지 센서는 주로 실리콘 반도체를 기반으로 제작되지만, 최근 이를 대체할 가능성이 있는 2차원 반도체 나노소재를 활용한 차세대 이미지 센서 개발이 활발히 진행되고 있다. 2차원 반도체 나노소재는 수 나노미터 두께의 원자층으로 구성된 물질로, 뛰어난 광학적 특성과 소형화 가능성을 갖추고 있어 고성능 이미지 센서 구현에 적합하다. 하지만 이러한 센서의 성능을 극대화하기 위해서는 광신호를 효율적으로 처리할 수 있는 저저항 전극이 필수적이다. 기존 2차원 반도체 기반 센서는 낮은 저항을 가진 전극 구현에 한계가 있어 광신호 처리 효율이 저하되며, 이는 상용화의 주요 장애 요소였다. 이에 한국과학기술연구원(KIST, 원장 오상록) 차세대반도체연구소 양자기술연구단 황도경 박사(고려대학교 KU-KIST 융합대학원, 학연교수)와 박민철 박사 공동 연구팀은 혁신적인 전극 소재인 'Conductive-Bridge Interlayer Contact(CBIC)'을 개발하여 높은 광신호 효율을 갖춘 2차원 반도체 기반 이미지 센서를 구현하는 데 성공했다. 연구팀은 전극 내부에 금 나노입자를 형성해 전극의 저항을 획기적으로 낮추는 데 성공함으로써 2차원 반도체 이미지 센서의 성능을 크게 향상시켰다. 또한, 기존 전극 소재에서 발생하던 페르미 준위 고정 현상 문제를 효과적으로 해결해 센서의 광신호 효율을 한층 높였다. 특히, 연구팀은 이러한 기술을 적용해 잠자리 겹눈 구조와 유사한 형태의 집적영상 기반 3차원 이미징 및 무안경 방식 디스플레이 기술을 성공적으로 구현했다. 이를 통해 3차원 물체의 형상을 기록하고 재현할 수 있는 집적영상 기술을 활용해 RGB 풀컬러 기반의 3차원 영상을 획득하고 재현하는 데 성공했다. 향후, 이러한 고성능 이미지 센서는 XR 디바이스, 인공지능(AI), 자율주행 시스템 등 다양한 첨단 산업 분야에서 폭넓게 활용될 것으로 기대된다. 황도경 박사는 "이번 연구를 통해 기존 2차원 반도체 소자의 전극 문제로 인해 발생했던 기술적 한계를 극복함으로써, 광흡수성과 소형화에 유리한 차세대 이미징 시스템 기술의 산업화를 앞당기는 데 크게 기여할 것으로 기대된다"고 밝혔다. 또한, "개발된 전극 소재는 제조가 간단하고 대면적화가 용이해, 다양한 반도체 기반 광전 소자에도 폭넓게 활용될 수 있을 것"이라며 연구의 확장 가능성을 강조했다. 박민철 박사는 "페르미 준위 고정 현상 문제를 극복한 2차원 반도체 기반 광전 소자는 향후 초소형, 초고해상도, 고사양의 시각 센서가 요구되는 산업 전반에 걸쳐 큰 파급효과를 가져올 것"이라고 전망했다. 본 연구는 과학기술정보통신부(장관 유상임), 문화체육관광부(장관 유인촌)의 지원을 받아 KIST 주요사업, 한국연구재단 개인연구사업 중견연구(RS-2023-NR077025), IITP ITRC 연구개발사업(IITP-2023-RS-00258639) , 한국콘텐츠진흥원 문화기술연구개발사업(R2020040080, RS-2020-KC000685)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Nature Electronics」 (IF : 34.5, JCR 분야 0.1%) 최신 호에 게재됐다. * (논문명) Conductive-bridge interlayer contacts for two-dimensional optoelectronic devices [그림 1] 본 연구진이 개발한 CBIC 전극의 모식도와 투과전자현미경 사진 본 연구진이 개발한 새로운 전극(CBIC)은 내부에 금 나노입자를 형성하여 전극의 저항을 효과적으로 낮출 수 있음. 투과전자현미경을 통해 전극 내부에 실제로 금 나노입자가 형성된 것을 확인함. [그림 2] 개발한 CBIC 전극을 활용한 이차원 반도체 광센서의 동작 결과 CBIC 전극을 활용한 이차원 반도체 광센서의 성능을 평가한 결과, 기존 MIS 전극 대비 선형 동적 범위 특성이 대폭 개선됨을 확인함. [그림 3] 본 연구에서 구현한 잠자리 겹눈 구조와 유사한 형태인 집접영상 기반 3차원 이미징 및 무안경방식 디스플레이 시스템의 모식도 개발한 전극을 활용하여 렌즈 어레이를 사용하여 집적영상 기반 3차원 이미징과 디스플레이를 시연, 그 성능을 확인함.
차세대 이미징 기술 혁신! KIST, 2차원 반도체 기반 고성능 센서 개발
차세대 이미징 기술 혁신! KIST, 2차원 반도체 기반 고성능 센서 개발 - 높은 저항과 페르미 준위 고정 현상 해결해 센서 성능 획기적 향상 - 차세대 고효율 초소형 이미징 센서 기술의 상용화에 핵심적 역할 기대 차세대 이미징 기술은 스마트폰을 넘어 지능형 디바이스, 로봇, XR(확장현실) 디바이스, 의료, CCTV 등 다양한 산업 분야로 빠르게 확장되고 있다. 이러한 기술 발전의 핵심에는 빛의 신호를 전기 신호로 변환하는 고효율, 초소형 이미지 센서가 필수적으로 자리 잡고 있다. 이미지 센서는 물체와 환경의 시각적 정보를 기록하고 처리해 모양, 크기, 공간 내 위치를 정밀하게 재구성하는 역할을 한다. 현재 상용 이미지 센서는 주로 실리콘 반도체를 기반으로 제작되지만, 최근 이를 대체할 가능성이 있는 2차원 반도체 나노소재를 활용한 차세대 이미지 센서 개발이 활발히 진행되고 있다. 2차원 반도체 나노소재는 수 나노미터 두께의 원자층으로 구성된 물질로, 뛰어난 광학적 특성과 소형화 가능성을 갖추고 있어 고성능 이미지 센서 구현에 적합하다. 하지만 이러한 센서의 성능을 극대화하기 위해서는 광신호를 효율적으로 처리할 수 있는 저저항 전극이 필수적이다. 기존 2차원 반도체 기반 센서는 낮은 저항을 가진 전극 구현에 한계가 있어 광신호 처리 효율이 저하되며, 이는 상용화의 주요 장애 요소였다. 이에 한국과학기술연구원(KIST, 원장 오상록) 차세대반도체연구소 양자기술연구단 황도경 박사(고려대학교 KU-KIST 융합대학원, 학연교수)와 박민철 박사 공동 연구팀은 혁신적인 전극 소재인 'Conductive-Bridge Interlayer Contact(CBIC)'을 개발하여 높은 광신호 효율을 갖춘 2차원 반도체 기반 이미지 센서를 구현하는 데 성공했다. 연구팀은 전극 내부에 금 나노입자를 형성해 전극의 저항을 획기적으로 낮추는 데 성공함으로써 2차원 반도체 이미지 센서의 성능을 크게 향상시켰다. 또한, 기존 전극 소재에서 발생하던 페르미 준위 고정 현상 문제를 효과적으로 해결해 센서의 광신호 효율을 한층 높였다. 특히, 연구팀은 이러한 기술을 적용해 잠자리 겹눈 구조와 유사한 형태의 집적영상 기반 3차원 이미징 및 무안경 방식 디스플레이 기술을 성공적으로 구현했다. 이를 통해 3차원 물체의 형상을 기록하고 재현할 수 있는 집적영상 기술을 활용해 RGB 풀컬러 기반의 3차원 영상을 획득하고 재현하는 데 성공했다. 향후, 이러한 고성능 이미지 센서는 XR 디바이스, 인공지능(AI), 자율주행 시스템 등 다양한 첨단 산업 분야에서 폭넓게 활용될 것으로 기대된다. 황도경 박사는 "이번 연구를 통해 기존 2차원 반도체 소자의 전극 문제로 인해 발생했던 기술적 한계를 극복함으로써, 광흡수성과 소형화에 유리한 차세대 이미징 시스템 기술의 산업화를 앞당기는 데 크게 기여할 것으로 기대된다"고 밝혔다. 또한, "개발된 전극 소재는 제조가 간단하고 대면적화가 용이해, 다양한 반도체 기반 광전 소자에도 폭넓게 활용될 수 있을 것"이라며 연구의 확장 가능성을 강조했다. 박민철 박사는 "페르미 준위 고정 현상 문제를 극복한 2차원 반도체 기반 광전 소자는 향후 초소형, 초고해상도, 고사양의 시각 센서가 요구되는 산업 전반에 걸쳐 큰 파급효과를 가져올 것"이라고 전망했다. 본 연구는 과학기술정보통신부(장관 유상임), 문화체육관광부(장관 유인촌)의 지원을 받아 KIST 주요사업, 한국연구재단 개인연구사업 중견연구(RS-2023-NR077025), IITP ITRC 연구개발사업(IITP-2023-RS-00258639) , 한국콘텐츠진흥원 문화기술연구개발사업(R2020040080, RS-2020-KC000685)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Nature Electronics」 (IF : 34.5, JCR 분야 0.1%) 최신 호에 게재됐다. * (논문명) Conductive-bridge interlayer contacts for two-dimensional optoelectronic devices [그림 1] 본 연구진이 개발한 CBIC 전극의 모식도와 투과전자현미경 사진 본 연구진이 개발한 새로운 전극(CBIC)은 내부에 금 나노입자를 형성하여 전극의 저항을 효과적으로 낮출 수 있음. 투과전자현미경을 통해 전극 내부에 실제로 금 나노입자가 형성된 것을 확인함. [그림 2] 개발한 CBIC 전극을 활용한 이차원 반도체 광센서의 동작 결과 CBIC 전극을 활용한 이차원 반도체 광센서의 성능을 평가한 결과, 기존 MIS 전극 대비 선형 동적 범위 특성이 대폭 개선됨을 확인함. [그림 3] 본 연구에서 구현한 잠자리 겹눈 구조와 유사한 형태인 집접영상 기반 3차원 이미징 및 무안경방식 디스플레이 시스템의 모식도 개발한 전극을 활용하여 렌즈 어레이를 사용하여 집적영상 기반 3차원 이미징과 디스플레이를 시연, 그 성능을 확인함.