검색결과
게시물 키워드"한국과학기술연구원"에 대한 1284개의 검색결과를 찾았습니다.
극한환경을 견디는 전도성 열복사 제어 소재 개발
- 기존 내화 전도성 소재와 달리 공기 중 1,000℃ 고온에서도 산화되지 않고 성능 유지 - 우주·항공, 열광 발전(TPV) 등 광범위한 극한 환경에서 활용 기대 열복사는 온도를 지닌 모든 물체에서 방출되는 전자기파로 지구로 유입되어 온실효과를 발생시키는 태양 복사 스펙트럼이 대표적이다. 태양광, 화력 발전, 산업 현장에서 발생하는 열에서 방출되는 열복사 에너지를 제어해 활용하면 전력 생산비용을 절감할 수 있어 냉각, 방열, 에너지 생산 등의 분야에서 복사 스펙트럼 제어 기술에 대한 관심이 높아지고 있다. 지금까지 복사 스펙트럼을 제어하는 기술은 일반적인 환경 조건에서 주로 이루어졌으나, 최근 우주 및 항공, 열광 발전(TPV) 등 극한 환경을 견딜 수 있는 소재가 필요하다. 한국과학기술연구원(KIST, 원장 윤석진)은 나노포토닉스연구센터 김종범 선임연구원 팀이 공기 중 1,000℃의 고온과 강한 자외선이 있는 환경에서도 광학적 특성을 유지하는 복사 스펙트럼 제어용 내화성 소재를 개발했다고 밝혔다. 연구팀은 란타넘이 도핑된 주석산염(이하 “LBSO”)을 레이저 증착법을 통해 격자 변형이 없는 나노 단위의 얇은 박막 형태로 제작했다. LBSO 소재는 고온에서 산화되는 텅스텐, 니켈, 질화 티탄늄 등 기존 내화 전도성 소재들과 달리 1,000℃의 고온과 9 MW/cm2의 강한 자외선 빛에 노출됐을 때도 성능을 유지했다. 이후 LBSO 소재로 적외선 대역의 파장만을 선택적으로 방출할 수 있는 다층 박막 구조 기반의 열 복사체를 제작해 실험한 결과, 복합적인 구조에서도 박막 형태일 때와 마찬가지로 열과 빛에 대한 안정성을 가져 열광전지(TVP) 발전 기술로의 적용 가능성을 확인했다. LBSO 소재를 사용하면 공기와 만나 산화하는 것을 막기 위한 추가적인 조치 없이도 열복사를 열광 전기 셀에 전달할 수 있다. KIST 김종범 선임연구원은 “날씨에 따라 전기 생산량이 달라지는 태양광이나 풍력 재생에너지의 대안으로 태양열 및 고온 환경에서 방출되는 복사에너지를 활용해 전력을 생산하는 친환경 열광 발전 기술이 주목받고 있다”라면서, “LBSO 소재로 열광 발전의 상용화를 앞당겨 기후변화 및 에너지 위기 대응에 기여할 것”이라고 연구의 의의를 밝혔다. 연구진은 LBSO 소재가 열광 발전 기술이나 산업용 장비에서 발생하는 폐열을 재활용하는 기술뿐 아니라, 자외선 노출에도 강한 내구성을 보인다는 점에서 우주·항공과 같이 극한의 환경에서 강한 태양 빛의 노출과 흡수로 발생하는 열을 관리하는 기술에도 적용될 수 있을 것으로 기대하고 있다. 과학기술정보통신부(장관 이종호)의 지원으로 정보통신‧방송 기술개발사업 및 표준개발지원사업(RS-2023-00223082)과 KIST 미래원천연구사업으로 수행된 이번 연구 성과는 국제 학술지 「Advanced Science」(IF: 15.1, JCR(%): 6.2)에 11월 23일 게재*되었다. * 논문명 : Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems [그림 1] LBSO 열 방사체의 TPV 에너지 변환 기술 활용에 관한 모식도 LBSO 열 방사체가 TPV(Thermophotovoltaic, 열광전지) 기술에 적용되었을 때 가지는 효과를 모식도로 표현함. 일반적인 흑체는 열을 흡수하면 매우 넓은 파장대역으로 복사에너지를 방출하는데, 이 경우 TPV 셀에서 활용할 수 없는 파장의 복사 에너지가 포함되기 때문에 그 효율이 떨어진다. 하지만 LBSO 열 방사체를 적용할 경우 TPV 셀이 가장 높은 효율을 가지는 파장대역에 맞추어 선택적으로 열을 방사할 수 있으므로 에너지 발전 효율이 높아진다. [그림 2] LBSO 박막과 LBSO 열 방사체의 열 내구성 (위) LBSO 박막의 결정구조 및 열처리 전/후의 광학 특성 변화. LBSO와 유사한 특성의 금속 산화막 소재인 ITO와 AZO는 400도 이하의 온도에 노출되면 플라즈마 주파수 및 감쇠계수를 비롯한 광학 특성의 변화가 발생하지만, LBSO 경우에는 1000도에서도 안정적인 성능을 유지하는 것을 확인함 (아래) LBSO 포함한 다층 구조의 단층 전자현미경 사진과 결정구조. 열 방사체는 박막과 유사하게 공기 중에서 고온 및 강한 자외선 레이저 노출에도 특성 변화가 매우 적음을 확인함. [그림 3] LBSO 박막의 열처리 전, 후 표면 변화 각 온도, 레이저 세기 별 열처리를 진행하였을 때 박막 표면 변화. 표면의 경우 미세한 나노구조물이 형성되는 것을 확인하였으나, 소재의 선형적인 광학 특성에는 영향을 주지 않음을 실험적으로 확인함. 반도체 소재의 경우 밴드갭보다 높은 에너지의 자외선의 빛을 흡수하는데, 매우 강한 자외선의 빛을 흡수하면 소재의 특성 변화가 발생하게 된다. 하지만 LBSO 소재는 박막이 식각될 만큼 강한 빛을 조사하여도 특성에는 변화가 없음을 실험적으로 확인함. ○ 논문명: Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems ○ 학술지: Advanced Science ○ 게재일: 2023.11.23.(온라인) ○ DOI: 10.1002/advs.202302410 ○ 논문저자 - 김종범 선임연구원(제1저자/KIST 나노포토닉스연구센터) - 김혜비 학생연구원(제1저자/KIST 나노포토닉스연구센터)
극한환경을 견디는 전도성 열복사 제어 소재 개발
- 기존 내화 전도성 소재와 달리 공기 중 1,000℃ 고온에서도 산화되지 않고 성능 유지 - 우주·항공, 열광 발전(TPV) 등 광범위한 극한 환경에서 활용 기대 열복사는 온도를 지닌 모든 물체에서 방출되는 전자기파로 지구로 유입되어 온실효과를 발생시키는 태양 복사 스펙트럼이 대표적이다. 태양광, 화력 발전, 산업 현장에서 발생하는 열에서 방출되는 열복사 에너지를 제어해 활용하면 전력 생산비용을 절감할 수 있어 냉각, 방열, 에너지 생산 등의 분야에서 복사 스펙트럼 제어 기술에 대한 관심이 높아지고 있다. 지금까지 복사 스펙트럼을 제어하는 기술은 일반적인 환경 조건에서 주로 이루어졌으나, 최근 우주 및 항공, 열광 발전(TPV) 등 극한 환경을 견딜 수 있는 소재가 필요하다. 한국과학기술연구원(KIST, 원장 윤석진)은 나노포토닉스연구센터 김종범 선임연구원 팀이 공기 중 1,000℃의 고온과 강한 자외선이 있는 환경에서도 광학적 특성을 유지하는 복사 스펙트럼 제어용 내화성 소재를 개발했다고 밝혔다. 연구팀은 란타넘이 도핑된 주석산염(이하 “LBSO”)을 레이저 증착법을 통해 격자 변형이 없는 나노 단위의 얇은 박막 형태로 제작했다. LBSO 소재는 고온에서 산화되는 텅스텐, 니켈, 질화 티탄늄 등 기존 내화 전도성 소재들과 달리 1,000℃의 고온과 9 MW/cm2의 강한 자외선 빛에 노출됐을 때도 성능을 유지했다. 이후 LBSO 소재로 적외선 대역의 파장만을 선택적으로 방출할 수 있는 다층 박막 구조 기반의 열 복사체를 제작해 실험한 결과, 복합적인 구조에서도 박막 형태일 때와 마찬가지로 열과 빛에 대한 안정성을 가져 열광전지(TVP) 발전 기술로의 적용 가능성을 확인했다. LBSO 소재를 사용하면 공기와 만나 산화하는 것을 막기 위한 추가적인 조치 없이도 열복사를 열광 전기 셀에 전달할 수 있다. KIST 김종범 선임연구원은 “날씨에 따라 전기 생산량이 달라지는 태양광이나 풍력 재생에너지의 대안으로 태양열 및 고온 환경에서 방출되는 복사에너지를 활용해 전력을 생산하는 친환경 열광 발전 기술이 주목받고 있다”라면서, “LBSO 소재로 열광 발전의 상용화를 앞당겨 기후변화 및 에너지 위기 대응에 기여할 것”이라고 연구의 의의를 밝혔다. 연구진은 LBSO 소재가 열광 발전 기술이나 산업용 장비에서 발생하는 폐열을 재활용하는 기술뿐 아니라, 자외선 노출에도 강한 내구성을 보인다는 점에서 우주·항공과 같이 극한의 환경에서 강한 태양 빛의 노출과 흡수로 발생하는 열을 관리하는 기술에도 적용될 수 있을 것으로 기대하고 있다. 과학기술정보통신부(장관 이종호)의 지원으로 정보통신‧방송 기술개발사업 및 표준개발지원사업(RS-2023-00223082)과 KIST 미래원천연구사업으로 수행된 이번 연구 성과는 국제 학술지 「Advanced Science」(IF: 15.1, JCR(%): 6.2)에 11월 23일 게재*되었다. * 논문명 : Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems [그림 1] LBSO 열 방사체의 TPV 에너지 변환 기술 활용에 관한 모식도 LBSO 열 방사체가 TPV(Thermophotovoltaic, 열광전지) 기술에 적용되었을 때 가지는 효과를 모식도로 표현함. 일반적인 흑체는 열을 흡수하면 매우 넓은 파장대역으로 복사에너지를 방출하는데, 이 경우 TPV 셀에서 활용할 수 없는 파장의 복사 에너지가 포함되기 때문에 그 효율이 떨어진다. 하지만 LBSO 열 방사체를 적용할 경우 TPV 셀이 가장 높은 효율을 가지는 파장대역에 맞추어 선택적으로 열을 방사할 수 있으므로 에너지 발전 효율이 높아진다. [그림 2] LBSO 박막과 LBSO 열 방사체의 열 내구성 (위) LBSO 박막의 결정구조 및 열처리 전/후의 광학 특성 변화. LBSO와 유사한 특성의 금속 산화막 소재인 ITO와 AZO는 400도 이하의 온도에 노출되면 플라즈마 주파수 및 감쇠계수를 비롯한 광학 특성의 변화가 발생하지만, LBSO 경우에는 1000도에서도 안정적인 성능을 유지하는 것을 확인함 (아래) LBSO 포함한 다층 구조의 단층 전자현미경 사진과 결정구조. 열 방사체는 박막과 유사하게 공기 중에서 고온 및 강한 자외선 레이저 노출에도 특성 변화가 매우 적음을 확인함. [그림 3] LBSO 박막의 열처리 전, 후 표면 변화 각 온도, 레이저 세기 별 열처리를 진행하였을 때 박막 표면 변화. 표면의 경우 미세한 나노구조물이 형성되는 것을 확인하였으나, 소재의 선형적인 광학 특성에는 영향을 주지 않음을 실험적으로 확인함. 반도체 소재의 경우 밴드갭보다 높은 에너지의 자외선의 빛을 흡수하는데, 매우 강한 자외선의 빛을 흡수하면 소재의 특성 변화가 발생하게 된다. 하지만 LBSO 소재는 박막이 식각될 만큼 강한 빛을 조사하여도 특성에는 변화가 없음을 실험적으로 확인함. ○ 논문명: Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems ○ 학술지: Advanced Science ○ 게재일: 2023.11.23.(온라인) ○ DOI: 10.1002/advs.202302410 ○ 논문저자 - 김종범 선임연구원(제1저자/KIST 나노포토닉스연구센터) - 김혜비 학생연구원(제1저자/KIST 나노포토닉스연구센터)
극한환경을 견디는 전도성 열복사 제어 소재 개발
- 기존 내화 전도성 소재와 달리 공기 중 1,000℃ 고온에서도 산화되지 않고 성능 유지 - 우주·항공, 열광 발전(TPV) 등 광범위한 극한 환경에서 활용 기대 열복사는 온도를 지닌 모든 물체에서 방출되는 전자기파로 지구로 유입되어 온실효과를 발생시키는 태양 복사 스펙트럼이 대표적이다. 태양광, 화력 발전, 산업 현장에서 발생하는 열에서 방출되는 열복사 에너지를 제어해 활용하면 전력 생산비용을 절감할 수 있어 냉각, 방열, 에너지 생산 등의 분야에서 복사 스펙트럼 제어 기술에 대한 관심이 높아지고 있다. 지금까지 복사 스펙트럼을 제어하는 기술은 일반적인 환경 조건에서 주로 이루어졌으나, 최근 우주 및 항공, 열광 발전(TPV) 등 극한 환경을 견딜 수 있는 소재가 필요하다. 한국과학기술연구원(KIST, 원장 윤석진)은 나노포토닉스연구센터 김종범 선임연구원 팀이 공기 중 1,000℃의 고온과 강한 자외선이 있는 환경에서도 광학적 특성을 유지하는 복사 스펙트럼 제어용 내화성 소재를 개발했다고 밝혔다. 연구팀은 란타넘이 도핑된 주석산염(이하 “LBSO”)을 레이저 증착법을 통해 격자 변형이 없는 나노 단위의 얇은 박막 형태로 제작했다. LBSO 소재는 고온에서 산화되는 텅스텐, 니켈, 질화 티탄늄 등 기존 내화 전도성 소재들과 달리 1,000℃의 고온과 9 MW/cm2의 강한 자외선 빛에 노출됐을 때도 성능을 유지했다. 이후 LBSO 소재로 적외선 대역의 파장만을 선택적으로 방출할 수 있는 다층 박막 구조 기반의 열 복사체를 제작해 실험한 결과, 복합적인 구조에서도 박막 형태일 때와 마찬가지로 열과 빛에 대한 안정성을 가져 열광전지(TVP) 발전 기술로의 적용 가능성을 확인했다. LBSO 소재를 사용하면 공기와 만나 산화하는 것을 막기 위한 추가적인 조치 없이도 열복사를 열광 전기 셀에 전달할 수 있다. KIST 김종범 선임연구원은 “날씨에 따라 전기 생산량이 달라지는 태양광이나 풍력 재생에너지의 대안으로 태양열 및 고온 환경에서 방출되는 복사에너지를 활용해 전력을 생산하는 친환경 열광 발전 기술이 주목받고 있다”라면서, “LBSO 소재로 열광 발전의 상용화를 앞당겨 기후변화 및 에너지 위기 대응에 기여할 것”이라고 연구의 의의를 밝혔다. 연구진은 LBSO 소재가 열광 발전 기술이나 산업용 장비에서 발생하는 폐열을 재활용하는 기술뿐 아니라, 자외선 노출에도 강한 내구성을 보인다는 점에서 우주·항공과 같이 극한의 환경에서 강한 태양 빛의 노출과 흡수로 발생하는 열을 관리하는 기술에도 적용될 수 있을 것으로 기대하고 있다. 과학기술정보통신부(장관 이종호)의 지원으로 정보통신‧방송 기술개발사업 및 표준개발지원사업(RS-2023-00223082)과 KIST 미래원천연구사업으로 수행된 이번 연구 성과는 국제 학술지 「Advanced Science」(IF: 15.1, JCR(%): 6.2)에 11월 23일 게재*되었다. * 논문명 : Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems [그림 1] LBSO 열 방사체의 TPV 에너지 변환 기술 활용에 관한 모식도 LBSO 열 방사체가 TPV(Thermophotovoltaic, 열광전지) 기술에 적용되었을 때 가지는 효과를 모식도로 표현함. 일반적인 흑체는 열을 흡수하면 매우 넓은 파장대역으로 복사에너지를 방출하는데, 이 경우 TPV 셀에서 활용할 수 없는 파장의 복사 에너지가 포함되기 때문에 그 효율이 떨어진다. 하지만 LBSO 열 방사체를 적용할 경우 TPV 셀이 가장 높은 효율을 가지는 파장대역에 맞추어 선택적으로 열을 방사할 수 있으므로 에너지 발전 효율이 높아진다. [그림 2] LBSO 박막과 LBSO 열 방사체의 열 내구성 (위) LBSO 박막의 결정구조 및 열처리 전/후의 광학 특성 변화. LBSO와 유사한 특성의 금속 산화막 소재인 ITO와 AZO는 400도 이하의 온도에 노출되면 플라즈마 주파수 및 감쇠계수를 비롯한 광학 특성의 변화가 발생하지만, LBSO 경우에는 1000도에서도 안정적인 성능을 유지하는 것을 확인함 (아래) LBSO 포함한 다층 구조의 단층 전자현미경 사진과 결정구조. 열 방사체는 박막과 유사하게 공기 중에서 고온 및 강한 자외선 레이저 노출에도 특성 변화가 매우 적음을 확인함. [그림 3] LBSO 박막의 열처리 전, 후 표면 변화 각 온도, 레이저 세기 별 열처리를 진행하였을 때 박막 표면 변화. 표면의 경우 미세한 나노구조물이 형성되는 것을 확인하였으나, 소재의 선형적인 광학 특성에는 영향을 주지 않음을 실험적으로 확인함. 반도체 소재의 경우 밴드갭보다 높은 에너지의 자외선의 빛을 흡수하는데, 매우 강한 자외선의 빛을 흡수하면 소재의 특성 변화가 발생하게 된다. 하지만 LBSO 소재는 박막이 식각될 만큼 강한 빛을 조사하여도 특성에는 변화가 없음을 실험적으로 확인함. ○ 논문명: Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems ○ 학술지: Advanced Science ○ 게재일: 2023.11.23.(온라인) ○ DOI: 10.1002/advs.202302410 ○ 논문저자 - 김종범 선임연구원(제1저자/KIST 나노포토닉스연구센터) - 김혜비 학생연구원(제1저자/KIST 나노포토닉스연구센터)
극한환경을 견디는 전도성 열복사 제어 소재 개발
- 기존 내화 전도성 소재와 달리 공기 중 1,000℃ 고온에서도 산화되지 않고 성능 유지 - 우주·항공, 열광 발전(TPV) 등 광범위한 극한 환경에서 활용 기대 열복사는 온도를 지닌 모든 물체에서 방출되는 전자기파로 지구로 유입되어 온실효과를 발생시키는 태양 복사 스펙트럼이 대표적이다. 태양광, 화력 발전, 산업 현장에서 발생하는 열에서 방출되는 열복사 에너지를 제어해 활용하면 전력 생산비용을 절감할 수 있어 냉각, 방열, 에너지 생산 등의 분야에서 복사 스펙트럼 제어 기술에 대한 관심이 높아지고 있다. 지금까지 복사 스펙트럼을 제어하는 기술은 일반적인 환경 조건에서 주로 이루어졌으나, 최근 우주 및 항공, 열광 발전(TPV) 등 극한 환경을 견딜 수 있는 소재가 필요하다. 한국과학기술연구원(KIST, 원장 윤석진)은 나노포토닉스연구센터 김종범 선임연구원 팀이 공기 중 1,000℃의 고온과 강한 자외선이 있는 환경에서도 광학적 특성을 유지하는 복사 스펙트럼 제어용 내화성 소재를 개발했다고 밝혔다. 연구팀은 란타넘이 도핑된 주석산염(이하 “LBSO”)을 레이저 증착법을 통해 격자 변형이 없는 나노 단위의 얇은 박막 형태로 제작했다. LBSO 소재는 고온에서 산화되는 텅스텐, 니켈, 질화 티탄늄 등 기존 내화 전도성 소재들과 달리 1,000℃의 고온과 9 MW/cm2의 강한 자외선 빛에 노출됐을 때도 성능을 유지했다. 이후 LBSO 소재로 적외선 대역의 파장만을 선택적으로 방출할 수 있는 다층 박막 구조 기반의 열 복사체를 제작해 실험한 결과, 복합적인 구조에서도 박막 형태일 때와 마찬가지로 열과 빛에 대한 안정성을 가져 열광전지(TVP) 발전 기술로의 적용 가능성을 확인했다. LBSO 소재를 사용하면 공기와 만나 산화하는 것을 막기 위한 추가적인 조치 없이도 열복사를 열광 전기 셀에 전달할 수 있다. KIST 김종범 선임연구원은 “날씨에 따라 전기 생산량이 달라지는 태양광이나 풍력 재생에너지의 대안으로 태양열 및 고온 환경에서 방출되는 복사에너지를 활용해 전력을 생산하는 친환경 열광 발전 기술이 주목받고 있다”라면서, “LBSO 소재로 열광 발전의 상용화를 앞당겨 기후변화 및 에너지 위기 대응에 기여할 것”이라고 연구의 의의를 밝혔다. 연구진은 LBSO 소재가 열광 발전 기술이나 산업용 장비에서 발생하는 폐열을 재활용하는 기술뿐 아니라, 자외선 노출에도 강한 내구성을 보인다는 점에서 우주·항공과 같이 극한의 환경에서 강한 태양 빛의 노출과 흡수로 발생하는 열을 관리하는 기술에도 적용될 수 있을 것으로 기대하고 있다. 과학기술정보통신부(장관 이종호)의 지원으로 정보통신‧방송 기술개발사업 및 표준개발지원사업(RS-2023-00223082)과 KIST 미래원천연구사업으로 수행된 이번 연구 성과는 국제 학술지 「Advanced Science」(IF: 15.1, JCR(%): 6.2)에 11월 23일 게재*되었다. * 논문명 : Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems [그림 1] LBSO 열 방사체의 TPV 에너지 변환 기술 활용에 관한 모식도 LBSO 열 방사체가 TPV(Thermophotovoltaic, 열광전지) 기술에 적용되었을 때 가지는 효과를 모식도로 표현함. 일반적인 흑체는 열을 흡수하면 매우 넓은 파장대역으로 복사에너지를 방출하는데, 이 경우 TPV 셀에서 활용할 수 없는 파장의 복사 에너지가 포함되기 때문에 그 효율이 떨어진다. 하지만 LBSO 열 방사체를 적용할 경우 TPV 셀이 가장 높은 효율을 가지는 파장대역에 맞추어 선택적으로 열을 방사할 수 있으므로 에너지 발전 효율이 높아진다. [그림 2] LBSO 박막과 LBSO 열 방사체의 열 내구성 (위) LBSO 박막의 결정구조 및 열처리 전/후의 광학 특성 변화. LBSO와 유사한 특성의 금속 산화막 소재인 ITO와 AZO는 400도 이하의 온도에 노출되면 플라즈마 주파수 및 감쇠계수를 비롯한 광학 특성의 변화가 발생하지만, LBSO 경우에는 1000도에서도 안정적인 성능을 유지하는 것을 확인함 (아래) LBSO 포함한 다층 구조의 단층 전자현미경 사진과 결정구조. 열 방사체는 박막과 유사하게 공기 중에서 고온 및 강한 자외선 레이저 노출에도 특성 변화가 매우 적음을 확인함. [그림 3] LBSO 박막의 열처리 전, 후 표면 변화 각 온도, 레이저 세기 별 열처리를 진행하였을 때 박막 표면 변화. 표면의 경우 미세한 나노구조물이 형성되는 것을 확인하였으나, 소재의 선형적인 광학 특성에는 영향을 주지 않음을 실험적으로 확인함. 반도체 소재의 경우 밴드갭보다 높은 에너지의 자외선의 빛을 흡수하는데, 매우 강한 자외선의 빛을 흡수하면 소재의 특성 변화가 발생하게 된다. 하지만 LBSO 소재는 박막이 식각될 만큼 강한 빛을 조사하여도 특성에는 변화가 없음을 실험적으로 확인함. ○ 논문명: Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems ○ 학술지: Advanced Science ○ 게재일: 2023.11.23.(온라인) ○ DOI: 10.1002/advs.202302410 ○ 논문저자 - 김종범 선임연구원(제1저자/KIST 나노포토닉스연구센터) - 김혜비 학생연구원(제1저자/KIST 나노포토닉스연구센터)
극한환경을 견디는 전도성 열복사 제어 소재 개발
- 기존 내화 전도성 소재와 달리 공기 중 1,000℃ 고온에서도 산화되지 않고 성능 유지 - 우주·항공, 열광 발전(TPV) 등 광범위한 극한 환경에서 활용 기대 열복사는 온도를 지닌 모든 물체에서 방출되는 전자기파로 지구로 유입되어 온실효과를 발생시키는 태양 복사 스펙트럼이 대표적이다. 태양광, 화력 발전, 산업 현장에서 발생하는 열에서 방출되는 열복사 에너지를 제어해 활용하면 전력 생산비용을 절감할 수 있어 냉각, 방열, 에너지 생산 등의 분야에서 복사 스펙트럼 제어 기술에 대한 관심이 높아지고 있다. 지금까지 복사 스펙트럼을 제어하는 기술은 일반적인 환경 조건에서 주로 이루어졌으나, 최근 우주 및 항공, 열광 발전(TPV) 등 극한 환경을 견딜 수 있는 소재가 필요하다. 한국과학기술연구원(KIST, 원장 윤석진)은 나노포토닉스연구센터 김종범 선임연구원 팀이 공기 중 1,000℃의 고온과 강한 자외선이 있는 환경에서도 광학적 특성을 유지하는 복사 스펙트럼 제어용 내화성 소재를 개발했다고 밝혔다. 연구팀은 란타넘이 도핑된 주석산염(이하 “LBSO”)을 레이저 증착법을 통해 격자 변형이 없는 나노 단위의 얇은 박막 형태로 제작했다. LBSO 소재는 고온에서 산화되는 텅스텐, 니켈, 질화 티탄늄 등 기존 내화 전도성 소재들과 달리 1,000℃의 고온과 9 MW/cm2의 강한 자외선 빛에 노출됐을 때도 성능을 유지했다. 이후 LBSO 소재로 적외선 대역의 파장만을 선택적으로 방출할 수 있는 다층 박막 구조 기반의 열 복사체를 제작해 실험한 결과, 복합적인 구조에서도 박막 형태일 때와 마찬가지로 열과 빛에 대한 안정성을 가져 열광전지(TVP) 발전 기술로의 적용 가능성을 확인했다. LBSO 소재를 사용하면 공기와 만나 산화하는 것을 막기 위한 추가적인 조치 없이도 열복사를 열광 전기 셀에 전달할 수 있다. KIST 김종범 선임연구원은 “날씨에 따라 전기 생산량이 달라지는 태양광이나 풍력 재생에너지의 대안으로 태양열 및 고온 환경에서 방출되는 복사에너지를 활용해 전력을 생산하는 친환경 열광 발전 기술이 주목받고 있다”라면서, “LBSO 소재로 열광 발전의 상용화를 앞당겨 기후변화 및 에너지 위기 대응에 기여할 것”이라고 연구의 의의를 밝혔다. 연구진은 LBSO 소재가 열광 발전 기술이나 산업용 장비에서 발생하는 폐열을 재활용하는 기술뿐 아니라, 자외선 노출에도 강한 내구성을 보인다는 점에서 우주·항공과 같이 극한의 환경에서 강한 태양 빛의 노출과 흡수로 발생하는 열을 관리하는 기술에도 적용될 수 있을 것으로 기대하고 있다. 과학기술정보통신부(장관 이종호)의 지원으로 정보통신‧방송 기술개발사업 및 표준개발지원사업(RS-2023-00223082)과 KIST 미래원천연구사업으로 수행된 이번 연구 성과는 국제 학술지 「Advanced Science」(IF: 15.1, JCR(%): 6.2)에 11월 23일 게재*되었다. * 논문명 : Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems [그림 1] LBSO 열 방사체의 TPV 에너지 변환 기술 활용에 관한 모식도 LBSO 열 방사체가 TPV(Thermophotovoltaic, 열광전지) 기술에 적용되었을 때 가지는 효과를 모식도로 표현함. 일반적인 흑체는 열을 흡수하면 매우 넓은 파장대역으로 복사에너지를 방출하는데, 이 경우 TPV 셀에서 활용할 수 없는 파장의 복사 에너지가 포함되기 때문에 그 효율이 떨어진다. 하지만 LBSO 열 방사체를 적용할 경우 TPV 셀이 가장 높은 효율을 가지는 파장대역에 맞추어 선택적으로 열을 방사할 수 있으므로 에너지 발전 효율이 높아진다. [그림 2] LBSO 박막과 LBSO 열 방사체의 열 내구성 (위) LBSO 박막의 결정구조 및 열처리 전/후의 광학 특성 변화. LBSO와 유사한 특성의 금속 산화막 소재인 ITO와 AZO는 400도 이하의 온도에 노출되면 플라즈마 주파수 및 감쇠계수를 비롯한 광학 특성의 변화가 발생하지만, LBSO 경우에는 1000도에서도 안정적인 성능을 유지하는 것을 확인함 (아래) LBSO 포함한 다층 구조의 단층 전자현미경 사진과 결정구조. 열 방사체는 박막과 유사하게 공기 중에서 고온 및 강한 자외선 레이저 노출에도 특성 변화가 매우 적음을 확인함. [그림 3] LBSO 박막의 열처리 전, 후 표면 변화 각 온도, 레이저 세기 별 열처리를 진행하였을 때 박막 표면 변화. 표면의 경우 미세한 나노구조물이 형성되는 것을 확인하였으나, 소재의 선형적인 광학 특성에는 영향을 주지 않음을 실험적으로 확인함. 반도체 소재의 경우 밴드갭보다 높은 에너지의 자외선의 빛을 흡수하는데, 매우 강한 자외선의 빛을 흡수하면 소재의 특성 변화가 발생하게 된다. 하지만 LBSO 소재는 박막이 식각될 만큼 강한 빛을 조사하여도 특성에는 변화가 없음을 실험적으로 확인함. ○ 논문명: Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems ○ 학술지: Advanced Science ○ 게재일: 2023.11.23.(온라인) ○ DOI: 10.1002/advs.202302410 ○ 논문저자 - 김종범 선임연구원(제1저자/KIST 나노포토닉스연구센터) - 김혜비 학생연구원(제1저자/KIST 나노포토닉스연구센터)
극한환경을 견디는 전도성 열복사 제어 소재 개발
- 기존 내화 전도성 소재와 달리 공기 중 1,000℃ 고온에서도 산화되지 않고 성능 유지 - 우주·항공, 열광 발전(TPV) 등 광범위한 극한 환경에서 활용 기대 열복사는 온도를 지닌 모든 물체에서 방출되는 전자기파로 지구로 유입되어 온실효과를 발생시키는 태양 복사 스펙트럼이 대표적이다. 태양광, 화력 발전, 산업 현장에서 발생하는 열에서 방출되는 열복사 에너지를 제어해 활용하면 전력 생산비용을 절감할 수 있어 냉각, 방열, 에너지 생산 등의 분야에서 복사 스펙트럼 제어 기술에 대한 관심이 높아지고 있다. 지금까지 복사 스펙트럼을 제어하는 기술은 일반적인 환경 조건에서 주로 이루어졌으나, 최근 우주 및 항공, 열광 발전(TPV) 등 극한 환경을 견딜 수 있는 소재가 필요하다. 한국과학기술연구원(KIST, 원장 윤석진)은 나노포토닉스연구센터 김종범 선임연구원 팀이 공기 중 1,000℃의 고온과 강한 자외선이 있는 환경에서도 광학적 특성을 유지하는 복사 스펙트럼 제어용 내화성 소재를 개발했다고 밝혔다. 연구팀은 란타넘이 도핑된 주석산염(이하 “LBSO”)을 레이저 증착법을 통해 격자 변형이 없는 나노 단위의 얇은 박막 형태로 제작했다. LBSO 소재는 고온에서 산화되는 텅스텐, 니켈, 질화 티탄늄 등 기존 내화 전도성 소재들과 달리 1,000℃의 고온과 9 MW/cm2의 강한 자외선 빛에 노출됐을 때도 성능을 유지했다. 이후 LBSO 소재로 적외선 대역의 파장만을 선택적으로 방출할 수 있는 다층 박막 구조 기반의 열 복사체를 제작해 실험한 결과, 복합적인 구조에서도 박막 형태일 때와 마찬가지로 열과 빛에 대한 안정성을 가져 열광전지(TVP) 발전 기술로의 적용 가능성을 확인했다. LBSO 소재를 사용하면 공기와 만나 산화하는 것을 막기 위한 추가적인 조치 없이도 열복사를 열광 전기 셀에 전달할 수 있다. KIST 김종범 선임연구원은 “날씨에 따라 전기 생산량이 달라지는 태양광이나 풍력 재생에너지의 대안으로 태양열 및 고온 환경에서 방출되는 복사에너지를 활용해 전력을 생산하는 친환경 열광 발전 기술이 주목받고 있다”라면서, “LBSO 소재로 열광 발전의 상용화를 앞당겨 기후변화 및 에너지 위기 대응에 기여할 것”이라고 연구의 의의를 밝혔다. 연구진은 LBSO 소재가 열광 발전 기술이나 산업용 장비에서 발생하는 폐열을 재활용하는 기술뿐 아니라, 자외선 노출에도 강한 내구성을 보인다는 점에서 우주·항공과 같이 극한의 환경에서 강한 태양 빛의 노출과 흡수로 발생하는 열을 관리하는 기술에도 적용될 수 있을 것으로 기대하고 있다. 과학기술정보통신부(장관 이종호)의 지원으로 정보통신‧방송 기술개발사업 및 표준개발지원사업(RS-2023-00223082)과 KIST 미래원천연구사업으로 수행된 이번 연구 성과는 국제 학술지 「Advanced Science」(IF: 15.1, JCR(%): 6.2)에 11월 23일 게재*되었다. * 논문명 : Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems [그림 1] LBSO 열 방사체의 TPV 에너지 변환 기술 활용에 관한 모식도 LBSO 열 방사체가 TPV(Thermophotovoltaic, 열광전지) 기술에 적용되었을 때 가지는 효과를 모식도로 표현함. 일반적인 흑체는 열을 흡수하면 매우 넓은 파장대역으로 복사에너지를 방출하는데, 이 경우 TPV 셀에서 활용할 수 없는 파장의 복사 에너지가 포함되기 때문에 그 효율이 떨어진다. 하지만 LBSO 열 방사체를 적용할 경우 TPV 셀이 가장 높은 효율을 가지는 파장대역에 맞추어 선택적으로 열을 방사할 수 있으므로 에너지 발전 효율이 높아진다. [그림 2] LBSO 박막과 LBSO 열 방사체의 열 내구성 (위) LBSO 박막의 결정구조 및 열처리 전/후의 광학 특성 변화. LBSO와 유사한 특성의 금속 산화막 소재인 ITO와 AZO는 400도 이하의 온도에 노출되면 플라즈마 주파수 및 감쇠계수를 비롯한 광학 특성의 변화가 발생하지만, LBSO 경우에는 1000도에서도 안정적인 성능을 유지하는 것을 확인함 (아래) LBSO 포함한 다층 구조의 단층 전자현미경 사진과 결정구조. 열 방사체는 박막과 유사하게 공기 중에서 고온 및 강한 자외선 레이저 노출에도 특성 변화가 매우 적음을 확인함. [그림 3] LBSO 박막의 열처리 전, 후 표면 변화 각 온도, 레이저 세기 별 열처리를 진행하였을 때 박막 표면 변화. 표면의 경우 미세한 나노구조물이 형성되는 것을 확인하였으나, 소재의 선형적인 광학 특성에는 영향을 주지 않음을 실험적으로 확인함. 반도체 소재의 경우 밴드갭보다 높은 에너지의 자외선의 빛을 흡수하는데, 매우 강한 자외선의 빛을 흡수하면 소재의 특성 변화가 발생하게 된다. 하지만 LBSO 소재는 박막이 식각될 만큼 강한 빛을 조사하여도 특성에는 변화가 없음을 실험적으로 확인함. ○ 논문명: Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems ○ 학술지: Advanced Science ○ 게재일: 2023.11.23.(온라인) ○ DOI: 10.1002/advs.202302410 ○ 논문저자 - 김종범 선임연구원(제1저자/KIST 나노포토닉스연구센터) - 김혜비 학생연구원(제1저자/KIST 나노포토닉스연구센터)
극한환경을 견디는 전도성 열복사 제어 소재 개발
- 기존 내화 전도성 소재와 달리 공기 중 1,000℃ 고온에서도 산화되지 않고 성능 유지 - 우주·항공, 열광 발전(TPV) 등 광범위한 극한 환경에서 활용 기대 열복사는 온도를 지닌 모든 물체에서 방출되는 전자기파로 지구로 유입되어 온실효과를 발생시키는 태양 복사 스펙트럼이 대표적이다. 태양광, 화력 발전, 산업 현장에서 발생하는 열에서 방출되는 열복사 에너지를 제어해 활용하면 전력 생산비용을 절감할 수 있어 냉각, 방열, 에너지 생산 등의 분야에서 복사 스펙트럼 제어 기술에 대한 관심이 높아지고 있다. 지금까지 복사 스펙트럼을 제어하는 기술은 일반적인 환경 조건에서 주로 이루어졌으나, 최근 우주 및 항공, 열광 발전(TPV) 등 극한 환경을 견딜 수 있는 소재가 필요하다. 한국과학기술연구원(KIST, 원장 윤석진)은 나노포토닉스연구센터 김종범 선임연구원 팀이 공기 중 1,000℃의 고온과 강한 자외선이 있는 환경에서도 광학적 특성을 유지하는 복사 스펙트럼 제어용 내화성 소재를 개발했다고 밝혔다. 연구팀은 란타넘이 도핑된 주석산염(이하 “LBSO”)을 레이저 증착법을 통해 격자 변형이 없는 나노 단위의 얇은 박막 형태로 제작했다. LBSO 소재는 고온에서 산화되는 텅스텐, 니켈, 질화 티탄늄 등 기존 내화 전도성 소재들과 달리 1,000℃의 고온과 9 MW/cm2의 강한 자외선 빛에 노출됐을 때도 성능을 유지했다. 이후 LBSO 소재로 적외선 대역의 파장만을 선택적으로 방출할 수 있는 다층 박막 구조 기반의 열 복사체를 제작해 실험한 결과, 복합적인 구조에서도 박막 형태일 때와 마찬가지로 열과 빛에 대한 안정성을 가져 열광전지(TVP) 발전 기술로의 적용 가능성을 확인했다. LBSO 소재를 사용하면 공기와 만나 산화하는 것을 막기 위한 추가적인 조치 없이도 열복사를 열광 전기 셀에 전달할 수 있다. KIST 김종범 선임연구원은 “날씨에 따라 전기 생산량이 달라지는 태양광이나 풍력 재생에너지의 대안으로 태양열 및 고온 환경에서 방출되는 복사에너지를 활용해 전력을 생산하는 친환경 열광 발전 기술이 주목받고 있다”라면서, “LBSO 소재로 열광 발전의 상용화를 앞당겨 기후변화 및 에너지 위기 대응에 기여할 것”이라고 연구의 의의를 밝혔다. 연구진은 LBSO 소재가 열광 발전 기술이나 산업용 장비에서 발생하는 폐열을 재활용하는 기술뿐 아니라, 자외선 노출에도 강한 내구성을 보인다는 점에서 우주·항공과 같이 극한의 환경에서 강한 태양 빛의 노출과 흡수로 발생하는 열을 관리하는 기술에도 적용될 수 있을 것으로 기대하고 있다. 과학기술정보통신부(장관 이종호)의 지원으로 정보통신‧방송 기술개발사업 및 표준개발지원사업(RS-2023-00223082)과 KIST 미래원천연구사업으로 수행된 이번 연구 성과는 국제 학술지 「Advanced Science」(IF: 15.1, JCR(%): 6.2)에 11월 23일 게재*되었다. * 논문명 : Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems [그림 1] LBSO 열 방사체의 TPV 에너지 변환 기술 활용에 관한 모식도 LBSO 열 방사체가 TPV(Thermophotovoltaic, 열광전지) 기술에 적용되었을 때 가지는 효과를 모식도로 표현함. 일반적인 흑체는 열을 흡수하면 매우 넓은 파장대역으로 복사에너지를 방출하는데, 이 경우 TPV 셀에서 활용할 수 없는 파장의 복사 에너지가 포함되기 때문에 그 효율이 떨어진다. 하지만 LBSO 열 방사체를 적용할 경우 TPV 셀이 가장 높은 효율을 가지는 파장대역에 맞추어 선택적으로 열을 방사할 수 있으므로 에너지 발전 효율이 높아진다. [그림 2] LBSO 박막과 LBSO 열 방사체의 열 내구성 (위) LBSO 박막의 결정구조 및 열처리 전/후의 광학 특성 변화. LBSO와 유사한 특성의 금속 산화막 소재인 ITO와 AZO는 400도 이하의 온도에 노출되면 플라즈마 주파수 및 감쇠계수를 비롯한 광학 특성의 변화가 발생하지만, LBSO 경우에는 1000도에서도 안정적인 성능을 유지하는 것을 확인함 (아래) LBSO 포함한 다층 구조의 단층 전자현미경 사진과 결정구조. 열 방사체는 박막과 유사하게 공기 중에서 고온 및 강한 자외선 레이저 노출에도 특성 변화가 매우 적음을 확인함. [그림 3] LBSO 박막의 열처리 전, 후 표면 변화 각 온도, 레이저 세기 별 열처리를 진행하였을 때 박막 표면 변화. 표면의 경우 미세한 나노구조물이 형성되는 것을 확인하였으나, 소재의 선형적인 광학 특성에는 영향을 주지 않음을 실험적으로 확인함. 반도체 소재의 경우 밴드갭보다 높은 에너지의 자외선의 빛을 흡수하는데, 매우 강한 자외선의 빛을 흡수하면 소재의 특성 변화가 발생하게 된다. 하지만 LBSO 소재는 박막이 식각될 만큼 강한 빛을 조사하여도 특성에는 변화가 없음을 실험적으로 확인함. ○ 논문명: Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems ○ 학술지: Advanced Science ○ 게재일: 2023.11.23.(온라인) ○ DOI: 10.1002/advs.202302410 ○ 논문저자 - 김종범 선임연구원(제1저자/KIST 나노포토닉스연구센터) - 김혜비 학생연구원(제1저자/KIST 나노포토닉스연구센터)
극한환경을 견디는 전도성 열복사 제어 소재 개발
- 기존 내화 전도성 소재와 달리 공기 중 1,000℃ 고온에서도 산화되지 않고 성능 유지 - 우주·항공, 열광 발전(TPV) 등 광범위한 극한 환경에서 활용 기대 열복사는 온도를 지닌 모든 물체에서 방출되는 전자기파로 지구로 유입되어 온실효과를 발생시키는 태양 복사 스펙트럼이 대표적이다. 태양광, 화력 발전, 산업 현장에서 발생하는 열에서 방출되는 열복사 에너지를 제어해 활용하면 전력 생산비용을 절감할 수 있어 냉각, 방열, 에너지 생산 등의 분야에서 복사 스펙트럼 제어 기술에 대한 관심이 높아지고 있다. 지금까지 복사 스펙트럼을 제어하는 기술은 일반적인 환경 조건에서 주로 이루어졌으나, 최근 우주 및 항공, 열광 발전(TPV) 등 극한 환경을 견딜 수 있는 소재가 필요하다. 한국과학기술연구원(KIST, 원장 윤석진)은 나노포토닉스연구센터 김종범 선임연구원 팀이 공기 중 1,000℃의 고온과 강한 자외선이 있는 환경에서도 광학적 특성을 유지하는 복사 스펙트럼 제어용 내화성 소재를 개발했다고 밝혔다. 연구팀은 란타넘이 도핑된 주석산염(이하 “LBSO”)을 레이저 증착법을 통해 격자 변형이 없는 나노 단위의 얇은 박막 형태로 제작했다. LBSO 소재는 고온에서 산화되는 텅스텐, 니켈, 질화 티탄늄 등 기존 내화 전도성 소재들과 달리 1,000℃의 고온과 9 MW/cm2의 강한 자외선 빛에 노출됐을 때도 성능을 유지했다. 이후 LBSO 소재로 적외선 대역의 파장만을 선택적으로 방출할 수 있는 다층 박막 구조 기반의 열 복사체를 제작해 실험한 결과, 복합적인 구조에서도 박막 형태일 때와 마찬가지로 열과 빛에 대한 안정성을 가져 열광전지(TVP) 발전 기술로의 적용 가능성을 확인했다. LBSO 소재를 사용하면 공기와 만나 산화하는 것을 막기 위한 추가적인 조치 없이도 열복사를 열광 전기 셀에 전달할 수 있다. KIST 김종범 선임연구원은 “날씨에 따라 전기 생산량이 달라지는 태양광이나 풍력 재생에너지의 대안으로 태양열 및 고온 환경에서 방출되는 복사에너지를 활용해 전력을 생산하는 친환경 열광 발전 기술이 주목받고 있다”라면서, “LBSO 소재로 열광 발전의 상용화를 앞당겨 기후변화 및 에너지 위기 대응에 기여할 것”이라고 연구의 의의를 밝혔다. 연구진은 LBSO 소재가 열광 발전 기술이나 산업용 장비에서 발생하는 폐열을 재활용하는 기술뿐 아니라, 자외선 노출에도 강한 내구성을 보인다는 점에서 우주·항공과 같이 극한의 환경에서 강한 태양 빛의 노출과 흡수로 발생하는 열을 관리하는 기술에도 적용될 수 있을 것으로 기대하고 있다. 과학기술정보통신부(장관 이종호)의 지원으로 정보통신‧방송 기술개발사업 및 표준개발지원사업(RS-2023-00223082)과 KIST 미래원천연구사업으로 수행된 이번 연구 성과는 국제 학술지 「Advanced Science」(IF: 15.1, JCR(%): 6.2)에 11월 23일 게재*되었다. * 논문명 : Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems [그림 1] LBSO 열 방사체의 TPV 에너지 변환 기술 활용에 관한 모식도 LBSO 열 방사체가 TPV(Thermophotovoltaic, 열광전지) 기술에 적용되었을 때 가지는 효과를 모식도로 표현함. 일반적인 흑체는 열을 흡수하면 매우 넓은 파장대역으로 복사에너지를 방출하는데, 이 경우 TPV 셀에서 활용할 수 없는 파장의 복사 에너지가 포함되기 때문에 그 효율이 떨어진다. 하지만 LBSO 열 방사체를 적용할 경우 TPV 셀이 가장 높은 효율을 가지는 파장대역에 맞추어 선택적으로 열을 방사할 수 있으므로 에너지 발전 효율이 높아진다. [그림 2] LBSO 박막과 LBSO 열 방사체의 열 내구성 (위) LBSO 박막의 결정구조 및 열처리 전/후의 광학 특성 변화. LBSO와 유사한 특성의 금속 산화막 소재인 ITO와 AZO는 400도 이하의 온도에 노출되면 플라즈마 주파수 및 감쇠계수를 비롯한 광학 특성의 변화가 발생하지만, LBSO 경우에는 1000도에서도 안정적인 성능을 유지하는 것을 확인함 (아래) LBSO 포함한 다층 구조의 단층 전자현미경 사진과 결정구조. 열 방사체는 박막과 유사하게 공기 중에서 고온 및 강한 자외선 레이저 노출에도 특성 변화가 매우 적음을 확인함. [그림 3] LBSO 박막의 열처리 전, 후 표면 변화 각 온도, 레이저 세기 별 열처리를 진행하였을 때 박막 표면 변화. 표면의 경우 미세한 나노구조물이 형성되는 것을 확인하였으나, 소재의 선형적인 광학 특성에는 영향을 주지 않음을 실험적으로 확인함. 반도체 소재의 경우 밴드갭보다 높은 에너지의 자외선의 빛을 흡수하는데, 매우 강한 자외선의 빛을 흡수하면 소재의 특성 변화가 발생하게 된다. 하지만 LBSO 소재는 박막이 식각될 만큼 강한 빛을 조사하여도 특성에는 변화가 없음을 실험적으로 확인함. ○ 논문명: Perovskite Lanthanum-Doped Barium Stannate: A Refractory Near-Zero-Index Material for High-Temperature Energy Harvesting Systems ○ 학술지: Advanced Science ○ 게재일: 2023.11.23.(온라인) ○ DOI: 10.1002/advs.202302410 ○ 논문저자 - 김종범 선임연구원(제1저자/KIST 나노포토닉스연구센터) - 김혜비 학생연구원(제1저자/KIST 나노포토닉스연구센터)
‘제17회 홍릉포럼’ 개최
- 주제 : 홍릉이 품은 Big Potential, 융합(Convergence) - 융합을 이끌어가는 국내·외 기관들의 사례를 살펴보고, 홍릉 내 기관 간 융합‧개방‧협력을 통한 홍릉의 발전 방안 논의 □ ‘제17회 홍릉포럼'이 한국콘텐츠진흥원 홍릉 콘텐츠문화광장에서 '홍릉이 품은 Big Potential, 융합(Convergence)'을 주제로 2023 융합포럼 in 홍릉 행사와 함께 12월 1일(금) 개최됐다. - 홍릉포럼은 한국과학기술연구원(KIST), 경희대학교, 고등과학원, 고려대학교, 국립산림과학원, 국민대학교, 동덕여자대학교, 서울과학기술대학교, 서울시립대학교, 서울테크노파크, 수림문화재단, 한국과학기술원(KAIST) 경영대학, 한국과학기술정보연구원(KISTI), 한국국방연구원, 한국예술종합학교, 한국외국어대학교, 한국원자력의학원 및 한국콘텐츠진흥원 총 18개 기관이 지역 기업과 자치구 등 관계기관 간 협력방안을 발굴‧공유하기 위해 진행하는 학술‧연구포럼이다. - 홍릉포럼은 2012년 7월 시작되어 11년간 매년 행사가 개최됐으며, 올해부터는 사단법인 홍릉포럼 주관하에 홍릉지역의 발전과 기관 간 협력 방향을 모색하는 다양한 주제를 논의한다. □ 이번 홍릉포럼에서는 문화예술 콘텐츠를 통한 국내·외 융합 사례들을 살펴보고 홍릉 내 여러 분야의 기관들의 융합·개방·협력을 위한 방안을 모색하는 심도 있는 논의가 이루어졌다. - CANNES NEXT 대표 스텐 크리스티앙 살루비어(STEN-KRISTIAN SALUVEER)가 융합을 촉진시키기 위한 유럽 내 생태계 조성 현황과 융합 사례를 발표했다. - 이어, 일본영상산업진흥기구(VIPO) 사무국차장 토시푸미 마키타(TOSHIFUMI MAKITA)가 일본 내 첨단기술을 활용한 콘텐츠 제작 사례를 발표했다. - 마지막으로, 수림문화재단 김선옥 기획전략부 과장이 콘진원과 KIST, 고등과학원 등 홍릉 인근 예술, 과학, 콘텐츠 기관이 공동 추진하는 AVS 전시 프로젝트를 소개했다. - 패널토론에서는 한국과학기술원(KAIST) 이진준 교수가 좌장을 맡고 여러 분야의 전문가들이 패널로 참여해 분야 간 융합·협력 통한 홍릉의 발전 방향에 대해 약 40분간 논의했다. * 전문가 패널: 김정본 수림문화재단 사무국자, 조충연 한국예술종합학교 기획처장, 한국콘텐츠진흥원 콘텐츠기반본부 유윤옥 본부장 □ 제17회 홍릉포럼을 마무리하며 행사를 주관한 사단법인 홍릉포럼의 문길주 이사장은 “오늘 포럼으로 문화예술·교육·기술의 융합을 실현하고 홍릉의 발전을 위한 기회가 되길 바란다”고 소감을 밝혔다. [사진] 문길주 이사장과 함께 홍릉포럼 주요 참석자들이 단체 기념촬영을 하고 있다. (1열 좌측부터) 윤석진 KIST원장, 김명애 동덕여자대학교 총장, 이필형 서울시 동대문구청장, 문길주 홍릉포럼 이사장, 조현래 한국콘텐츠진흥원 원장, 안규백 서울시 동대문구(갑) 국회의원, 김영배 서울시 성북구(갑) 국회의원, 이승로 서울시 성북구청장 (2열 좌측부터) 최재경 고등과학원장, 임홍재 홍릉포럼 이사, 김기형 홍릉포럼 이사, 김재수 KISTI 원장, 박경환 서울시 경제정책실장, 이시혜 국립산업과학원 미래산림전략연구부장, 이진경 한국원자력의학원 원장, 정승렬 국민대학교 총장, 장붕익 한국외국어대학교 부총장
인공지능으로 초음파 뇌질환 치료의 문턱 낮춘다
- 생성형 AI 모델을 사용한 실시간 집속초음파 시뮬레이션 기술 개발 - 집속초음파를 이용한 뇌 질환 치료의 정확성 및 안전성 향상 기대 집속초음파(Focused Ultrasound) 기술은 두개골을 열지 않고도 뇌의 안쪽 깊숙한 곳까지 수 mm의 영역에 초음파 에너지를 집중시켜 손상 부위를 치료하는 비침습적 치료 방법이다. 주변 건강한 조직에 미치는 영향을 최소화하고 합병증, 감염 등의 부작용을 줄일 수 있어 우울증, 알츠하이머병 등 다양한 난치성 뇌 질환의 치료에 적용되고 있다. 하지만 환자마다 두개골의 모양이 달라서 발생하는 초음파의 왜곡을 실시간으로 반영하기 어려워 지금까지는 활용이 제한적이었다. 한국과학기술연구원(KIST, 원장 윤석진) 바이오닉스연구센터 김형민 박사 연구팀은 생성형 AI를 기반으로 실시간 음향 시뮬레이션 기술을 개발해 집속초음파 치료 시 실시간으로 두개골에 의한 초음파 초점 위치의 왜곡을 예측 및 보정하는 데 성공했다고 밝혔다. 지금까지 비침습 집속초음파 치료 기술 분야에서 인공지능 시뮬레이션 모델의 임상 적용 가능성을 검증한 사례는 없었다. 눈에 보이지 않는 초음파 초점의 위치를 예측하기 위해 현재는 치료 전 촬영된 의료영상을 바탕으로 한 내비게이션 시스템이 활용되고 있으며, 이는 환자와 초음파 발생장치 사이의 상대적인 위치에 대한 정보를 제공한다. 그러나 두개골로 인한 초음파의 왜곡을 반영하지 못하는 한계가 있어 이를 보완하기 위해 다양한 시뮬레이션 기술이 사용되고 있지만 아직은 계산에 상당한 시간이 소요돼 실제 임상에 적용하기에 어려움이 있다. 연구팀은 의료 분야에서 이미지 생성에 널리 사용되는 딥러닝 모델인 생성적 적대 신경망(GAN) 기반의 인공지능 모델을 통해 실시간 집속초음파 시뮬레이션 기술을 개발했다. 이 기술은 초음파 음향 파동의 변화를 반영한 3차원 시뮬레이션 정보 업데이트 시간을 14초에서 0.1초로 낮추면서도 기존 시뮬레이션 기술의 오차범위인 평균 7% 이하의 최대 음압 오차와 6mm 이하의 초점 위치오차의 정확도를 보여 임상 적용의 가능성을 높였다. 연구팀은 또한 개발된 기술을 실제 의료현장에 빠르게 보급할 수 있도록 의료영상 기반 내비게이션 시스템을 개발해 성능을 검증했다. 이 시스템은 초음파 트랜스듀서(Transducer)의 위치에 따라 초당 5회 수준으로 실시간 시뮬레이션을 수행할 수 있으며, 이를 통해 집속초음파 치료 시에 두개골 내의 초음파 에너지와 초점의 위치를 실시간으로 예측하는 데 성공했다. 기존에는 긴 계산 시간으로 인하여 초음파 트랜스듀서를 미리 계획된 위치에 정확하게 위치시켜야만 시뮬레이션 결과 활용이 가능했다. 그러나 이번에 새롭게 개발된 시뮬레이션 가이드 내비게이션 시스템을 활용하면 실시간으로 얻어진 음향 시뮬레이션 결과를 바탕으로 초음파 초점을 조정하는 것이 가능해진다. 향후 집속초음파의 정확성을 높이고 치료 과정에서 발생할 수 있는 돌발상황에 신속하게 대응할 수 있어 환자에게 안전한 치료를 제공할 수 있을 것으로 기대된다. KIST 김형민 박사는 “본 연구를 통하여 집속초음파 뇌 질환 치료의 정확성과 안전성이 향상되었기 때문에 더 많은 임상 적용 사례가 나올 것”이라며 “실용화를 위해 다채널 트랜스듀서 적용 등 초음파 조사 환경을 다양화해 시스템을 검증할 계획”이라고 밝혔다. [그림 1] 시뮬레이션 가이드 내비게이션 시스템 시뮬레이션 가이드 내비게이션 시스템은 트랜스듀서의 위치에 따라 3D-cGAN 모델 사용하여 실시간 음향 시뮬레이션을 5 Hz의 속도로 실행한다. [그림 2] 3D-cGAN의 학습 예시 3D-cGAN 모델은 수치해석 방법의 결과를 정답으로 하여 학습을 진행한다. 학습 후 3D-cGAN 모델은 시뮬레이션 결과를 0.1초마다 얻을 수 있다. [그림 3] 3D-cGAN을 이용한 음향 시뮬레이션 예시 (a)3D-cGAN을 사용한 실시간 시뮬레이션 결과. (b)수치해석 방법을 사용하여 얻는 시뮬레이션 결과. (c)두 시뮬레이션 결과의 차이 [그림 4] 시뮬레이션 가이드 내비게이션에 대한 임상적용 예시 실시간 시뮬레이션 결과를 토대로 원하는 부위에 정확하게 타겟팅 되었을 때에만 하드웨어를 제어하여 초음파를 조사할 수 있다. ○ 논문명: Real-Time Acoustic Simulation Framework for tFUS: A Feasibility Study Using Navigation System ○ 학술지: NeuroImage ○ 게재일: 2023.10.14.(온라인) ○ DOI: https://doi.org/10.1016/j.neuroimage.2023.120411 ○ 논문저자 - 박태영 학생연구원(제1저자/KIST 바이오닉스연구센터) - 김형민 책임연구원(교신저자/KIST 바이오닉스연구센터)