Latest Research News
-
112
Cosmic radiation is an obstacle to space travel...stop it with BNNT fibers!
- KIST develops neutron shielding fiber against space radiation - Utilizing BNNTs (boron nitride nanotubes), expected to be applied as a key material for aviation, space, and defense With the success of the Nuri launch last year and the recent launch of the newly established Korea Aerospace Administration, interest in space has increased, and both the public and private sectors are actively investing in space-related industries such as space travel. However, exposure to cosmic radiation is unavoidable when traveling to space. A research team led by Dr. Dae-Yoon Kim from the Center for Functional Composite Materials at the Korea Institute of Science and Technology (KIST) has developed a new composite fiber that can effectively block neutrons in space radiation. Neutrons in space radiation negatively affect life activities and cause electronic devices to malfunction, posing a major threat to long-term space missions. By controlling the interaction between one-dimensional nanomaterials, boron nitride nanotubes (BNNTs), and aramid polymers, the team developed a technique to perfectly blend the two difficult-to-mix materials. Based on this stabilized mixed solution, they produced lightweight, flexible, continuous fibers that do not burn at temperatures up to 500 °C. BNNTs have a similar structure to carbon nanotubes (CNTs), but because they contain a large number of boron in the lattice structure, their neutron absorption capacity is about 200,000 times higher than that of CNTs. Therefore, if the developed BNNT composite fibers are made into fabrics of the desired shape and size, they can be applied as a good material that can effectively block radiation neutron transmission. This means that BNNT composite fibers can be applied to the clothing we wear every day, effectively protecting flight crews, healthcare workers, power plant workers, and others who may be easily exposed to radiation. In addition, the ceramic nature of BNNTs makes them highly heat-resistant, so they can be used in extreme environments. Therefore, it can be used not only for space applications but also for defense and firefighting. "By applying the functional textiles we have developed to the clothing we wear every day, we can easily create a minimum safety device for neutron exposure," said Dr. Dae-Yoon Kim of KIST. "As Korea is developing very rapidly in the space and defense fields, we believe it will have great synergy." [Figure 1] Development of BNNT composite functional fibers for space radiation shielding / If continuous composite fibers containing high content of BNNTs are used as functional fabrics, they can effectively shield neutrons in space radiation to reduce harmful effects on human health and prevent soft errors in electronic devices. These functional fabrics are expected to play an important role in the fields of aviation, space, and national defense. [Figure 2] Development of BNNT composite continuous fibers / By overcoming the low dispersibility of BNNTs through interaction with aramid polymers, stable composite solutions can be prepared. This paves the way for the development of composite fibers that take advantage of the excellent properties of BNNTs and can be effectively utilized in various applications. [Figure 3] Applications of BNNT-based functional fabrics / The BNNT-based composite fibers can be manufactured into fabrics of various shapes and sizes through weaving. The developed fabrics can be utilized in clothing to protect astronauts, crew members, soldiers, firefighters, healthcare workers, and power plant workers who are expected to be exposed to radiation. The fabric can also be applied to electronic device packaging to prevent soft errors. ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ This research was supported by the Ministry of Science and ICT (Minister Yoo Sang-im) through the KIST K-Lab Project and Mid-Career Researcher Support Project (2021R1A2C2009423), the Ministry of Trade, Industry and Energy (Minister Ahn Deok-geun) through the High Performance Carbon Nanocomposite Fiber Development Project (RS202300258591), and the Ministry of Defense (Minister Shin Won-sik) through the Korea Research Institute for Defense Technology Planning and Advancement (DAPAKRITCT21014). The results of this research were published* in the latest issue of the international journal Advanced Fiber Materials (IF 17.2, JCR field 1.7%).
- 111
- WriterDr. Dae-Yoon, Kim
- 작성일2024.09.11
- Views536
-
110
Developed proprietary quantum error correction technology beyond the world's leading quantum computing companies
- Quantum error correction is a key technology in the implementation and practicalization of quantum computing - Groundbreaking quantum error correction technology contributes to the development of K-quantum computing deployments Solving the problem of error is essential for the practical application of quantum computing technologies that surpass the performance of digital computers. Information input into a qubit, the smallest unit of quantum computation, is quickly lost and error-prone. No matter how much we mitigate errors and improve the accuracy of qubit control, as the system size and computation scale increase, errors accumulate and algorithms become impossible to perform. Quantum error correction is a way to solve this problem. As the race for global supremacy in quantum technology intensifies, most major companies and research groups leading the development of quantum computing are now focusing on developing quantum error correction technology. Dr. Seung-Woo Lee and his team at the Quantum Technology Research Center at the Korea Institute of Science and Technology (KIST) have developed a world-class quantum error correction technology and designed a fault-tolerant quantum computing architecture based on it. They have demonstrated that this technology can outperform the quantum error correction technology recently developed by PsiQuantum, a global leader in the development of general-purpose quantum computers. The performance of universal quantum computing with quantum error correction is evaluated by its fault-tolerance threshold. This threshold indicates how well errors in quantum computing can be corrected, and the better the error correction technology and architectural design, the higher the value. PsiQuantum, an American quantum computer developer, has proposed a quantum computing architecture that utilizes photon entanglement resources, fusion techniques, and error correction technology, and is developing universal quantum computing hardware based on it. The photon loss threshold of the PsiQuantum method is reported to be 2.7%. The new error correction technique and quantum computing architecture developed by the KIST research team outperforms this. KIST's technology can achieve a photon loss threshold of up to 14%, which is currently the highest threshold in the world. In addition, KIST's error correction technique is much more resource-efficient than its quantum counterpart, even with the same photon consumption. The research is the first of its kind in Korea, and it is significant that Korea, a laggard in the field of quantum computing, has developed a world-class core technology. In particular, quantum error correction technology is an essential element in the development of quantum computers utilizing not only photon-based but also superconducting qubits, ion traps, and neutral atoms, which are highly competitive in R&D worldwide. This achievement shows that Korea has the potential to catch up with and even outpace the technology of leading countries in the quantum field. It is also expected to play an important role in building an independent quantum computing system by applying this achievement, which has completed domestic and international patent applications. "Just like semiconductor chip design technology, designing fault-tolerant architecture is important for quantum computing," said Dr. Seung-Woo Lee of KIST. Even if there are 1,000 physical qubits, it would be difficult to compute a single logical quantum task unless there is a structure that performs quantum error correction." 'The practicalization of quantum computing is still a long way off, but we believe that our research has contributed to bringing that time forward,' said Dr. Lee. [Figure 1] Fault-Tolerant Fusion-Based Quantum Computing Architecture with Quantum Error-Correcting Fusion / A fault-tolerant quantum computing architecture designed using quantum error-correcting encoded-fusion techniques. By adding layers of architecture, it utilizes multiple quantum error correction codes in fusion (Shor codes) and quantum computing architecture (Surface codes). [Figure 2] Photon Loss Tolerance Thresholds / Graph of photon loss tolerance threshold versus number of consumed photons compared to the results of PsiQuantum's method, Fusion-based Quantum Computing (FBQC). The encoded-fusion-based quantum computing (EFBQC) developed in this study achieves thresholds of up to 14%, significantly exceeding PsiQuantum's maximum threshold of 2.7%, and achieving significantly higher thresholds while consuming the same number of resources (photons). ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ This research was supported by the Ministry of Science and ICT (Minister Yoo Sang-im) under the KIST Major Project and Bilateral Technology Cooperation Project (2022M3K4A1094774). The research was published* on August 1 in the international journal Physical Review Letters (IF: 8.1 JCR field top 6.8%).
- 109
- WriterDr. Seung-Woo, Lee
- 작성일2024.09.09
- Views601
-
108
Rapid removal of emerging endocrine disruptors in wastewater using high-performance single-atom catalysts
- Developing high-performance single-atom catalysts through chemical-free dry processes and computational science. - Rapid removal of bisphenol, an endocrine disruptor, in water treatment process Bisphenols are widely used as the main raw material for plastics such as receipts, water bottles, water containers, and vinyl due to their heat-resistant and mechanochemical properties. Among bisphenols, bisphenol A (BPA) that we often refer to as an "endocrine-disrupting chemicals" has been linked to adverse effects on reproduction, development, intelligence, and various metabolic diseases. Bisphenol F (BPF), a recently developed alternative to BPA Bisphenol A has also been reported in the literature to cause neurological disruption and various health risks. Dr. Jong Min Kim of the Materials Architecturing Research Center, Dr. Sang Soo Han of the Computational Science Research Center, Dr. Sang Hoon Kim of the Extreme Materials Research Center at Korea Institute of Science and Technology (KIST), and Professor Byeong-Kwon Ju of the School of Electrical Engineering at Korea University have fabricated high-performance cobalt single-atom catalysts through a chemical-free and environmentally friendly dry-based arc plasma deposition process. The team applied it to an electro-Fenton process based on electrochemical hydrogen peroxide synthesis to remove harmful bisphenols from aqueous solutions in a short time. The arc plasma process vaporizes metals or ceramics with repeated pulsed voltages in a vacuum, depositing them as a thin film on the surface of the substrates, and the number of pulses can be controlled to create a deposited layer with the desired thickness or properties. The cobalt single-atom catalyst fabricated by the arc plasma process exhibited the world's highest metal single-atom loading (2.24 wt%) compared to previously reported single-atom loading of dry processes (around 1 wt%). The coordination structure and active sites of the prepared Co single-atom catalyst were characterized by various material analyses including computational science, and electrochemical measurements confirmed that it is an excellent single-atom catalyst for electrochemical hydrogen peroxide production. The researchers applied the Co single-atom catalyst as an electrode to supply hydrogen peroxide in real time in the electro-Fenton water treatment process, and found that it could rapidly degrade 100% of BPF at a targeted concentration of 20 ppm in aqueous solution within 5 minutes. Through repeated experiments and wastewater treatment tests, the stability of the catalyst and the removal of bisphenol compounds were verified, and based on this, it is expected to be applied to the removal of emerging pollutants in wastewater treatment plants in large cities or specific industrial wastewater treatment facilities. "This achievement is significant in that we have produced high-performance single-atom catalysts in a dry process that does not use harmful chemicals and applied them to the water treatment field," said Dr. Jong Min Kim of KIST, while Dr. Sang Hoon Kim of KIST said, "Research on the production of metal nanoparticles by arc plasma deposition is widely known, but this is the first study to show that single-atom deposition is possible.“ [Figure 1] Schematic illustration of the synthetic process of Co single-atom catalyst using arc plasma deposition. [Figure 2] Images of a Co single-atom catalyst prepared using arc plasma deposition (APD) and comparison of loading amount of single atoms using a conventional dry process. [Figure 3] Identification of the active sites of electrochemical hydrogen peroxide production reaction on Co single-atom catalyst using computational science and its application to the rapid removal of bisphenol F (BPF), an organic pollutant, using electro-Fenton. [Figure 4] High-performance Co single-atom catalyst supported on carbon nanofibers developed by KIST researchers through a dry-based arc plasma deposition process. ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ The research was supported by the Ministry of Science and ICT (Minister Lee Jong-ho) through the KIST Major Project and Nanomaterial Technology Development Project (NRF-2022M3H4A7046278) and the Ministry of Environment. This research was published online on July 5 in the SCI journal Carbon Energy (IF: 19.5, JCR: 3.8%).
- 107
- WriterDr. Jong Min, Kim
- 작성일2024.08.13
- Views453
-
106
Radiation-cooling liquid crystal materials, a partner to the king of summer, air conditioning
- KIST develops next-generation cooling material to increase summer cooling efficiency without electricity - Coloring materials for both design and energy savings Dr. Jin Gu, Kang and his team at the Nanophotonics Research Center at the Korea Institute of Science and Technology (KIST) have developed a colorful radiation-cooling liquid crystal material that can cool without external power while simultaneously emitting color. Radiative cooling is a powerless cooling technology that releases infrared radiation as heat through the atmospheric window to reduce temperatures. It is attracting attention as a next-generation eco-friendly cooling technology that can supplement power-hungry air conditioners. Radiative cooling materials for daytime use are colored white to reduce sunlight absorption. This provides excellent cooling performance but has the disadvantage that it cannot be used in buildings or vehicles that require aesthetics because it is difficult to implement multiple colors. Therefore, the development of colored radiative cooling materials that meet cooling and aesthetics at the same time has recently attracted attention. Previously known colored radiative cooling materials use light absorption to produce color, resulting in low temperature reduction. Alternative colored materials in the form of photonic crystals that use light reflection had excellent cooling performance but were limited in realizing distinct colors. The team solved this problem by fabricating bent spiral liquid crystal photonic crystals. The commercial liquid crystal (LC242) used in this study is not only a material that reduces its temperature through radiation cooling, but also forms colored photonic crystals through its periodic structure when aligned into a spiral using an inducer. The researchers used a spin coating process to bend these colored photonic crystals, resulting in vivid colors unlike conventional photonic crystals, which have different colors depending on the angle. By combining the fabricated colored radiation-cooling liquid crystal material with an upper transparent film and a lower metallic thin film, the team was able to achieve a temperature of about 30.8 °C lower than the same colored commercial paint and about 3.1 °C lower than ambient air in the middle of the day, the researchers said. The material could be used to reduce air conditioning consumption on the exterior of buildings and vehicles where aesthetics is a consideration, as well as to provide power-free cooling for outdoor leisure items and military tents. "The colored radiation-cooling liquid crystal material developed in this study can be quickly fabricated through a low-cost and simple spin coating process," said Dr. Jin Gu Kang, a professor at KIST. "If the large-scale commercialization of this technology is successful, it will be used for cooling a wide range of fields such as electronics and mobility in the future." [Figure 1] Schematic and real-world photos of colorful radiation-cooling liquid crystal material [Figure 2] Cooling performance of colorful radiative cooling liquid crystal materials [Figure 3] Fabrication schematic of the colorful radiation-cooled liquid crystal material [Figure 4] Postdoctoral researcher Minjeong Kim (left) and principal investigator Jin Gu Kang (right) show the colorful radiative cooling material they created in the process lab. [Figure 5] A research team prepares to measure radiative cooling performance in the outdoor experimental space on the roof of the research building. ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ The research was supported by the Ministry of Science and ICT (Minister Lee Jong-ho) through KIST Institutional Program and the Ministry of Trade, Industry and Energy (Minister Ahn Duk-geun) (20213091010020). The research results were published* in the latest issue of the international journal Chemical Engineering Journal (IF: 13.3, top 3.1% in JCR).
- 105
- WriterDr. Jin Gu, Kang
- 작성일2024.08.09
- Views405
-
104
Atomically controlled MXenes enable cost-effective green hydrogen production.
- KIST researchers develop atomically controlled MXenes as water electrolysis catalyst support - Molybdenum-based MXene electrocatalyst support reduces the cost of green hydrogen production 137 countries around the world have signed a "net-zero" climate change agreement to end fossil fuel use and achieve zero carbon emissions by 2050. Hydrogen is being touted as the next green energy source because it emits only water and oxygen when utilized as an energy source. Hydrogen production methods are divided into gray hydrogen, blue hydrogen, and green hydrogen depending on the energy source and carbon emissions. Among them, green hydrogen production method is the most eco-friendly method that produces hydrogen without carbon emissions by electrolyzing water using green energy. A research team led by Dr. Albert Sung Soo Lee of the Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility and Materials Architecturing Research Center at Korea Institute of Science and Technology (KIST) with collaboration with Professor Chong Min Koo’s group at Sungkyunkwan University has developed an oxidatively stable molybdenum-based MXene as electrocatalyst support in anion exchange membrane water electrolyzers. As it is stable against oxidative high voltage conditions, if it is applied as a carrier for electrolysis catalysts, it can be used as an oxygen evolution reaction electrode material for green hydrogen production to reduce the cost of green hydrogen production. The breakdown of water into hydrogen and oxygen molecules requires a high amount of energy. To reduce this initial reaction energy, a catalyst is used, and the smaller size of the catalyst, which is made up of tiny nanoscale particles, the larger the surface area, which allows the reaction to take place. However, over time, small catalyst particles can agglomerate, reducing the surface area and reducing the efficiency of hydrogen production. To prevent this, catalysts and supports are used together, and carbon is mainly used for the cathode, where hydrogen is produced, but when carbon is used in an oxidation reaction at the anode, it is oxidized to carbon dioxide. Thus a support with high oxidation resistance is required. One material that can be used as a support is MXene. MXenes are nanomaterials composed of metal atoms (Ti, Mo, Hf, Ta, etc.) and carbon or nitrogen atoms, which show electrically conductive properties and have a 2D nanostructure suitable for catalyst support, making them favorable for hydrogen production. Titanium-based MXenes have been the most widely studied due to their high electrical conductivity. However, due to the atomic nature of titanium, which is easily oxidized in water, has led to the inherent disadvantage that the catalyst cannot maintain high electrical conductivity. To overcome this, the team designed a new anode catalyst that uses molybdenum-carbide based MXene as a support. When the molybdenum-based MXene is utilized as a support, strong chemical bonds are created between the molybdenum atoms on the surface of the MXene and the active materials cobalt. The resulting chemical bonds increased the hydrogen production efficiency by about 2.45 times. In particular, the durability of the unit cell was improved by more than 10 times compared to the results of a recent titanium-based MXene, which lasted less than 40 hours. This is expected to reduce the cost of green hydrogen production and will be applied to large-scale hydrogen production plants and large-scale green hydrogen power stations in the future. "By controlling the elements that make up MXene, we were able to find suitable candidates for green hydrogen production environments, and through this, we secured a stable MXene support in an oxidizing environment," said Dr. Albert Sung Soo Lee of KIST. "In the future, we will contribute to the revitalization of hydrogen-based economy by developing oxygen-generating electrode catalysts with catalytic efficiency and durability." [Figure 1] Overall concept of catalyst design using MXene as an electrocatalyt support and its utilization as an electrode for an anion exchange membrane water electrolyzer. [Figure 2] Water electrolyzer device performance and durability as a function of catalyst utilizing various MXene supports [Figure 3] An electrode with a molybdenum MXene catalyst transferred onto an electrolyzer device. The cathode element, one of the key components of a hydrogen production device, is being held. [Figure 4] (Standing from left) Senior Research Scientist Dr. Albert Sung Soo Lee, Postdoctoral Researcher Gwan-Hyun Choi, and (Sitting) Student Researcher Young Sang Park at KIST. ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ This research was supported by the National Research Council of Science and Technology (NST) grant by the Korea Government (MSIT) (CRC22031-000), Ministry of Science and ICT (Minister Lee Jong-Ho) under the Basic Science Research Program, as well as and KIST Young Fellow Program. These findings were published in the latest issue of the international journal Applied Catalysis B: Environment and Energy (IF: 20.2, top 0.6% in JCR).
- 103
- WriterDr. Sung Soo, Lee
- 작성일2024.07.15
- Views304
-
102
New Pathways for Treating Never-Smoker Lung Cancer Revealed
- Precision Medicine Characterization through Integration of Genomic, Transcriptomic, Proteomic, and Clinical Data - Discovery of Novel Therapeutic Targets for Specific, Treatment-Resistant Lung Cancer in Koreans through Collaborative Research by Purely Domestic Research Teams The primary cause of lung cancer is smoking. However, the incidence of lung cancer among never-smokers has been steadily increasing, especially among women. While approximately 80% of never-smoking lung cancer patients are prescribed targeted therapies that focus on mutations in proteins such as EGFR and ALK, the remaining patients often receive cytotoxic chemotherapy with high side effects and relatively low response rates, highlighting the urgent need for targeted therapies. Dr. Lee Cheolju's team at the Chemical Life Convergence Research Center at the Korea Institute of Science and Technology (KIST), along with Dr. Kim Seon-Young's team at the Korea Research Institute of Bioscience and Biotechnology and Dr. Han Ji-Youn's team at the National Cancer Center, have elucidated the overexpression of estrogen signaling pathways in specific Korean never-smoking lung cancer cases using multi-omics analysis and proposed the anti-cancer drug saracatinib as a targeted therapeutic agent. Multi-omics integrates various molecular information, with proteomics presenting a particular challenge due to the need to analyze small amounts of proteins without loss, typically microgram-scale. The research team obtained tissue samples from 101 Korean never-smoking lung cancer patients without identified treatment targets among 1,597 patients who visited the National Cancer Center over the past decade and distributed clinical information, genomic, transcriptomic, proteomic, and phosphoproteomic data to each omics analysis method for mutual referencing. Particularly, proteomic analysis measured an average of over 9,000 proteins and 5,000 phosphorylated proteins per sample using only 100 μg of protein, which is 10% of the amount required for conventional protein analysis, using isotopic labeling techniques. Analysis of genetic mutations and cellular signaling pathways revealed that driver mutations of genes known to be associated with cancer, such as STK11 and ERBB2, were observed in the tissues of never-smoking lung cancer patients. Additionally, while the estrogen signaling pathway was found to be overexpressed, there were no significant changes in estrogen hormone receptors. Based on this, saracatinib, a sub estrogen signaling transduction protein inhibitor, showed statistically significant (p<0.01) cell death effects when applied to cells with mutations in STK11 and ERBB2 compared to the control group without such mutations. Building on this, the research team is developing a molecular diagnostic technique for discriminating patients with specific expression of estrogen signaling pathways among never-smoking lung cancer patients. Additionally, they plan to conduct preclinical trials of saracatinib's therapeutic effects on never-smoking lung cancer animal models in collaboration with the National Cancer Center. Dr. Lee Cheolju of KIST stated, "This successful case of discovering new therapeutic targets for refractory cancer through multi-omics analysis is based on purely domestic research and the collaborative efforts of hospitals and research institutions, which holds significant meaning. Building on this experience, we will lead the expansion of multi-omics research on human diseases." [Figure 1] Overview of Genomic and Proteomic Analysis in Never-Smoking Lung Cancer Patients (Left) Distribution of gender among never-smoking lung cancer patients analyzed in this study, with predominance of females. (Middle) Screening results for genetic mutations in never-smoking lung cancer patients, showing 15% of patients with unidentified mutations in lung tissue. A total of 101 tissue samples underwent genomic and proteomic analysis. (Right) Molecular characterization of Korean never-smoking lung adenocarcinoma using multi-omics analysis. [Figure 2] Representative Features and Identification of Mutant Genes in Patients with Unidentified Mutations (Left) Increased expression of genes associated with estrogen hormone response observed in tissues from patients with unidentified mutations in both genetic and protein analyses. (Right) Patients with driver mutations in STK11 and ERBB2 show significant differences in smoking history, and a high estrogen response shows similar results to known KRAS mutations. [Figure 3] Drug Discovery and Anticancer Effects Demonstration Based On Specific Mutations in Korean Never-Smoking Lung Cancer (Left) Validation of proteins associated with estrogen response using tissue immunostaining, identifying Saracatinib as the most effective drug in inhibiting the expression of related proteins using public bio big data and cross-analyzing its mechanism with genetic expression in Korean never-smoking lung cancer patients to predict positive anticancer effects. (Right) Selection of cell lines with mutations identical to those found in patients among lung cancer cell lines, treated with Saracatinib alongside a control group without these mutations, demonstrating excellent anticancer effects from low to high concentrations and confirming the anticancer effects of Saracatinib. ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ This research was supported by the Ministry of Science and ICT, Korea, under the KIST's main projects and the Bio-Medical Technology Development Program (2022M3H9A2096187). The research results have been published online in the latest issue of the international journal "Cancer Research" (IF 11.2, JCR field 10.6%).
- 101
- WriterDr. Lee, Cheolju
- 작성일2024.06.03
- Views832
-
100
Mathematical Model Driven Evolutionary Therapy Dosing Exploiting Cancer Cell Plasticity
- Develop a mathematical model of tumor dynamics considering acquired resistance and cancer cell plasticity - Derive effective dose window capable of maintaining tumor burden under a tolerable level - Propose evolutionary therapy dosing cycles to redirect tumor dynamics for improved outcomes Cancer poses significant challenges due to the development of resistance and the likelihood of relapse. Resistance may arise from permanent genetic changes in cancer cells or non-genetic alterations in cancer cell behavior induced by treatment. Standard of care in cancer treatments typically involves administering the maximum tolerated dose of a drug to eradicate drug-sensitive cells effectively. However, this approach often fails in the long term because drug-resistant cancer cells can grow more rapidly when all drug-sensitive cancer cells are killed off. An evolution-based treatment approach, called adaptive therapy, personalizes treatment dose or breaks based on individual patient responses. The goal of adaptive therapy is to maintain a sufficient number of sensitive cells to control the growth of resistant cells. Recent studies and clinical trials have demonstrated that adaptive therapy could delay resistance more effectively compared to the standard of care. Determining the dose and treatment breaks for each patient is challenging because cancer is a complex evolving system, and every patient is different. Mathematical models can be helpful in designing such patient-specific treatment strategies. Indeed, several mathematical models have been developed to explore the effects of various treatment strategies on patient outcomes. However, existing mathematical models often overlook the impact of acquired resistance and cancer cell plasticity. 'Acquired resistance' encompasses various types of resistance that emerge, often due to genetic changes. 'Cell plasticity' refers to cancer cells' ability to alter their phenotypes in response to changes in their microenvironment, such as fluctuations in treatment dosage or treatment cessation. A research team led by Dr. Kim Eunjung at the Natural Products Informatics Research Center of the Korea Institute of Science and Technology (KIST, Director Oh Sangrok) has established a theoretical foundation for cancer treatment strategies following tumor evolution. They have developed a mathematical model to predict tumor evolution, considering the acquisition of resistance by cancer cells and their ability to alter phenotypic behavior (plasticity) during treatment. The analysis of their model has identified the conditions for the existence of an effective dose window, a range of doses that could maintain tumor volume at an equilibrium point, where the tumor volume remains unchanged and stable. For some tumors with plasticity, taking breaks from treatment helps cancer cells become sensitive again, joining forces with other sensitive cells to suppress resistant cell growth. The research team has proposed evolutionary therapy dosing, which involves administering treatment in cycles comprising treatment holidays, minimum effective doses, and maximum tolerated doses. Pausing treatment allows plastic cancer cells to regain sensitivity, followed by the application of a minimum effective dose to control tumor volume. Subsequently, a maximum tolerated dose is administered to further reduce tumor size. This dosing cycle effectively contains tumor volume at a manageable level. Numerical simulations of the proposed strategies, applied to a melanoma patient, further illustrate these findings. The results show that evolutionary dosing can redirect tumor dynamics, maintaining tumor size below a tolerable burden. The developed mathematical model can predict the effective dosage range of cancer treatment drug candidates prior to clinical trials. It can assist in determining the anticancer effects of new treatments and identifying the effective dosage range for each drug. Furthermore, the model contributes to personalized cancer treatment strategies by considering patient-specific tumor evolutionary dynamics during treatment. Dr. Kim Eunjung stated, "In the current study, we emphasized the role of cancer cells’ phenotypic plasticity in enhancing the controllability of tumor burden with evolutionary treatment cycling doses." She also mentioned plans to utilize the mathematical model in designing animal experiments and clinical trials for potential natural product-derived anticancer drug candidates. This aims to establish dosage regimens that effectively control tumor burden. [Figure 1] Mathematical Model Describing Patient-Specific Tumor Dynamics to Guide Treatment Dose Scheduling A mathematical model describes tumor dynamics where the tumor comprises drug-sensitive cancer cells (S), -resistant cancer cells (R), and plastic cancer cells (P). The model proposes evolutionary therapy dosing cycling, alternating between treatment off, minimum effective dose, and maximum tolerated dose. This schematic illustrates the anticipated changes in tumor composition following the administration of the proposed dosing cycles. [Figure 2] The Evolution of a Tumor Under Proposed Drug Dosing Cycles During treatment breaks, an increase in drug-sensitive cells is observed due to changes in plastic cancer cells. With minimum dosage treatment, the growth of drug-resistant cancer cells is suppressed. Subsequently, the application of a maximum tolerated dose significantly reduces the number of drug-sensitive cancer cells [Figure 3] The Sensitivity of the Effective Dose Window to Drug Resistance Rate and Plasticity Rate The effective dose window remains largely unchanged with variations in plasticity rate, whereas it significantly decreases with an increasing rate of resistance acquisition. ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ This research was supported by the Ministry of Science and ICT (Minister Lee Jong-ho) through KIST's major projects and mid-career researcher programs (2019R1A2C1090219). The research findings were published in the February issue of the international journal "Chaos, Solitons & Fractals" (IF 7.8, JCR top 0.9% of the field).
- 99
- WriterDr. Kim Eunjung
- 작성일2024.05.28
- Views644
-
98
Monitoring diseases through sweat becomes accessible to everyone.
- Successful clinical testing on pediatric patients with cystic fibrosis using a flexible device enabling sweat gland stimulation and simultaneous biosensing. - Two-year collaborative research between KIST and Northwestern University. Sweat contains biomarkers that can monitor various health conditions, from diabetes to genetic disorders. Sweat sampling, unlike blood collection, is preferred by users due to its painless nature. However, to obtain sufficient nutrients or hormones from sweat for testing, intense physical activity was previously required to induce sweat. This method posed challenges for individuals with limited mobility. Dr. Kim Joohee from the Bionics Research Center at the Korea Institute of Science and Technology (KIST, Director Oh Sangrok) and Professor John A. Rogers from Northwestern University jointly announced the development of a convenient sweat monitoring device that does not require physical activity but delivers drug stimulation through the skin. Unlike previous methods that induced sweat through exercise, this device delivers drugs that stimulate sweat glands through the skin. The research team developed a flexible device capable of delivering drugs to sweat glands by applying a current to a hydrogel containing drugs. This device, which is small and soft, can be easily attached to the skin. Sweat induced by the drug is collected in microfluidic channels within the device and analyzed for biomarkers using biosensors. This enables the analysis of biomarkers in sweat, reducing the need for cumbersome hospital visits for testing and lowering the risk of biomarker contamination during testing, thereby increasing accuracy. The device developed by the research team was attached to infants with cystic fibrosis, and the chloride concentration, a biomarker in sweat, was confirmed. The results were consistent with those obtained from traditional analysis methods using sweat collected in hospitals, with an accuracy of over 98%. Additionally, the stability of the device on the skin was ensured by confirming skin temperature and pH values. Since cystic fibrosis mainly manifests during infancy, continuous monitoring of disease progression and physical condition is necessary. With this device, monitoring can be easily done at home, reducing the psychological and physical stress on pediatric patients and their caregivers. This newly developed device contributes to the expansion of non-invasive disease monitoring technology based on sweat in healthy adults as well. Furthermore, the technology of delivering drugs through the skin can be utilized not only to induce sweat but also to increase the delivery rate of drugs in localized areas such as skin conditions or wounds, thereby accelerating recovery. Dr. Kim Joohee stated, "Through two years of collaborative research with Northwestern University, we have not only addressed the limitations of existing methods for inducing sweat but also achieved success in clinical research, bringing us one step closer to commercialization." Professor John A. Rogers added, "We plan to conduct large-scale clinical studies and commercialization, including adults, in the future." [Figure 1] Schematic and Actual Photo of Wearable Device Enabling Drug Delivery for Sweat Induction and Disease Monitoring Illustration and photograph of the device capable of drug delivery for sweat induction and simultaneous monitoring of biomarkers in sweat. [Figure 2] Testing the Wearable Device Attached to a Child A child with the traditional wired device attached to the left arm and the developed device adhered to the right arm, delivering drugs to stimulate sweat glands. [Figure 3] Comparison Graphs of Results and Pain Perception During Testing (Left) Graph showing over 98% agreement between the traditional diagnostic method and the developed device's biomarker analysis results for five patients. (Right) Graph comparing the pain perception experienced by patients during disease monitoring using the traditional diagnostic method and the developed device. The graph indicates that the developed device causes less discomfort compared to the traditional diagnostic method. ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ This research was conducted through KIST's major projects and the Outstanding Young Researcher Program (RS-2023-00211342) supported by the Ministry of Science and ICT (Minister Lee Jong-ho). The research findings were recently published online in the latest issue of the international journal "Biosensors & Bioelectronics" (IF 12.6).
- 97
- WriterDr. Kim, Joohee
- 작성일2024.05.28
- Views1178
-
96
Tricking the Brain’s inner GPS: Grid cells responses to the illusion of self-location
- Researchers have observed grid cell activity in the human brain during self-location illusions induced by multisensory virtual reality, without altering visual perspectives. This groundbreaking study opens up new avenues for the objective diagnosis and treatment of psychiatric symptoms, such as out-of-body experiences, enhancing our understanding of brain mechanisms behind perceptual illusions. Dr. Hyuk-June Moon from the Bionics Research Center at the Korea Institute of Science and Technology (KIST), in collaboration with Prof. Olaf Blanke’s team at the Swiss Federal Institute of Technology Lausanne (EPFL), has successfully induced self-location illusions with multi-sensory virtual reality (VR) in the MRI scanner and observed corresponding changes in the human brain's grid cell activity. The brain is known to contain grid cells and place cells, which perform global positioning system (GPS) functions that allow us to recognize where we are. While traveling to a specific place, the GPS cells along the way fire in turn, depending on their location, and these cells play an important role in recognizing our location in the form of coordinates and remembering events in space. Humans can sometimes perceive themselves to be in a different location without actually moving their physical bodies such as during an illusion, such as out-of-body experience. However, such purely cognitive self-location changes—and the corresponding response of the brain's GPS cells—have not been investigated in animal models like rats, where these perceptions cannot be induced or confirmed. Furthermore, conventional methods to study GPS cell studiess have required opening the skull and measuring the activity of individual cells in the deep brain structures with invasive electrodes, limiting our understanding of human GPS cells. To observe grid cell activity during the illusory self-location changes, the researchers combined MRI-compatible VR technology with multisensory bodily stimulation to induce the illusion, which was precisely controlled in various directions as designed. The fMRI Images measured during the experiment were used to estimate the activities of grid cells, and the subjective illusory experiences of participants were assessed through post-experiment questionnaires and behavioral metrics reflecting their perceived self-location. As a result, the team demonstrated for the first time that purely cognitive changes in magnetic positionsuch illusory self-location changes induced by multisensory bodily stimulation, without any changes in the visual environmental cues, elicit corresponding activities of human grid cells. This is the first clinical study to demonstrate that multisensory bodily stimuli alone can evoke grid cell activities, without any kind of navigation (not active nor imagined) and without change in the visual perspective. It shows that GPS coordinates in the human brain respond not only to the physical location of the body but also to location information based on various cognitive activities and experiences, raising the possibility of objective diagnosis of hallucinatory symptoms through brain image analysis. The findings are also expected to contribute to the development of new therapies by providing targets for the treatment of patients suffering from illusory symptoms such as out-of-body experience. Dr. Moon stated, "Unlike previous human grid cell studies, which have relied on changes in visual environmental cues from a first-person perspective, we have newly suggested a key research element of integrating multisensory bodily signals." adding, "We plan to conduct follow-up international collaborative research to further understand the brain mechanisms underlying illusions caused by various mental and neurological diseases, and to develop non-invasive brain stimulation treatments that can alleviate these symptoms." [Figure 1] Controlled induction of self-location illusion through multisensory VR in the MRI scanner. Combining an MRI-compatible VR system with multisensory (visuo-tactile) bodily stimulation during fMRI scans, illusions that changes perceived self-location illusion were induced in a precisely controlled manner. [Figure 2] Grid cell activities in the Entorhinal cortex during different task conditions Grid cell activities during different task conditions was estimated through fMRI signals in the entorhinal cortex, where grid cells are mostly distributed. Grid cell activity was significantly observed during the illusion condition, where multisensory bodily signals were sychronously integrated, but not in the control condition, where the equivalent level of multisensory signals were not integrated and separately applied. Confirming validity of the methods used in the study, grid cell activity was also observed during normal VR navigation condition. [Figure 3] Similarity between illusion-induced and VR navigation-induced grid cell activity Illusion-induced grid cell activity is significantly correlated with grid cell activity observed during conventional VR navigation with the matched self-location changes (in both direction and distance). This proportional relationship was not observed when illusion induction was not successful (when illusory self-location changes were smaller; < 0.5 meter). This suggests that illusion-induced self-location changes and VR navigation-induced self-location changes evoke similar activity of grid cells. ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ This research was supported by the Ministry of Science and ICT (Minister Lee Jong-ho) under the KIST Major Project and the Swiss National Science Foundation (320030_188798). The results of the research were published in March in the international journal PNAS (IF: 11.1).
- 95
- WriterDr. Moon, Hyuk-June
- 작성일2024.05.20
- Views866
-
94
The commercialization of CO2 utilization technology to produce formic acid is imminent.
- Development of a CCU process for formic acid production with both economic and environmental viability - Expected to expedite the commercialization of CCU through the world's largest-scale demonstration CCU (Carbon Capture & Utilization), which captures CO2 and converts it into useful compounds, is crucial for rapidly transitioning to a carbon-neutral society. While CCS (Carbon Capture & Storage), which only involves CO2 storage, has entered the initial commercialization stage due to its relatively simple process and low operational costs, CCU has only been explored at the research level due to the complexity of conversion processes and high production costs of compounds. Dr. Lee Ung's team at the Clean Energy Research Center of the Korea Institute of Science and Technology (KIST, Director Oh Sang Rok) announced the development of a novel CCU process that converts CO2 into formic acid. Formic acid, an organic acid, is a high-value compound used in various industries such as leather, food, and pharmaceuticals. Currently formic acid retains a large market consuming around one million tons annually, which is expected to grow in the future owing to its potential use as a hydrogen carrier. Moreover, it has a higher production efficiency compared to other CCU-based chemicals, as it can be produced from a single CO2 molecule. The research team selected 1-methylpyrrolidine, which exhibited the highest CO2 conversion rate among various amines mediating formic acid production reactions, and optimized the operating temperature and pressure of the reactor containing a ruthenium (Ru)-based catalyst, thereby increasing the CO2 conversion rate to over twice the current level of 38%. Furthermore, to address the excessive energy consumption and formic acid decomposition issues during CO2 separation from air or exhaust gases and formic acid purification, the team developed a simultaneous capture-conversion process that directly converts CO2 captured within the amine without separating it. As a result, they significantly reduced the formic acid production cost from around $790 per ton to $490 per ton while mitigating CO2 emissions, compared to conventional formic acid production. To evaluate the commercialization potential of the developed formic acid production process, the research team constructed the world's largest pilot plant capable of producing 10 kg of formic acid per day. Previous CCU studies were conducted on a small scale in laboratories and did not consider the product purification process required for large-scale production. However, the research team developed processes and materials to minimize corrosion and formic acid decomposition, and optimized operating conditions that led to successful production of formic acid with a purity exceeding 92%. The team plans to complete a 100 kg per day pilot plant by 2025 and conduct process verification, aiming for commercialization by 2030. Success in process verification with the 100 kg pilot plant is expected to enable transportation and sales to demand companies. Dr. Lee Ung stated, "Through this research, we have confirmed the commercialization potential of our process that converts CO2 to formic acid, which is a huge breakthrough considering that most CCU technologies are being conducted at lab-scale." He further expressed his intention to contribute to achieving the country's carbon neutrality goal by accelerating the commercialization of CCU. . [Figure 1] Process for Formic Acid Production via Carbon Dioxide Conversion Flowchart of the process (above) for producing formic acid through the conversion of newly developed carbon dioxide (CO2) using Carbon Capture & Utilization (CCU) technology, and pilot-scale process verification data (below). [Figure 2] Pilot-Scale Demonstration Process Producing 10kg of Formic Acid per Day A depiction of the pilot-scale demonstration process in operation. It consists of a reaction section, separation section, recycling, and vacuum systems, enabling stable continuous operation and enhancing commercialization potential. ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ This research was supported by the Ministry of Science and ICT (Minister Lee Jong-Ho) as part of KIST's major projects and the Carbon-to-X project (2020M3H7A1098271). The research results were published in the latest issue of the international journal "Joule" (IF 39.8, JCR top 0.9%).
- 93
- WriterDr. Kim Changsoo & Dr. Lee Ung
- 작성일2024.05.07
- Views1078