Result
게시물 키워드""에 대한 9495개의 검색결과를 찾았습니다.
치매 전문가, 색다른 도전으로 뇌종양 치료에 변이와 내성 없는 신약 타겟 찾았다
치매 전문가, 색다른 도전으로 뇌종양 치료에 변이와 내성 없는 신약 타겟 찾았다 - 단백질 ‘GRP78’*이 암 세포표면으로 이동하는 특이적 행동 규명 - 암 세포표면의 ‘GRP78’ 표적 시, 동시에 뇌종양의 전이억제와 치료가능 *단백질 ‘GRP78’ (포도당조절단백질(Glucose Regulated Protein 78 kDa)) : 분자량 78,000 포도당제어성 단백질 표적 항암치료제 ‘글리벡’은 정상세포에는 없고 암세포에만 있는 특이 유전자 변이를 찾아내고 암의 전이를 억제하는 "마법의 탄환(Magic Cancer Bullet)"이다. 하지만, 암세포가 새로운 유전자 변이를 만들 경우 내성이 생기고 표적항암제는 결국 무력화 되는 치명적인 단점이 있었다. 최근 KIST 연구진이 기존 표적항암제의 단점을 극복할 수 있는 획기적인 항암 치료전략을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 치매DTC융합연구단 김영수 박사팀은 뇌종양 발생 시, 평상시 세포 내부에만 존재하던 단백질 ‘GRP78’이 암세포표면으로 이동하여 과발현되며, 암의 전이를 조절하는 것을 세계 최초로 규명하였다. 연구진은 단백질 ‘GRP78’을 억제할 경우 뇌종양의 치료가 가능하다는 연구결과를 발표했다. 김영수 박사는 기존에 ‘혈액기반 치매진단시스템 개발’ 및 치매에 대한 괄목할만한 성과로 세간의 주목을 받았던 치매 전문가다. 김 박사는 치매 연구를 하는 동시에, 자율성을 보장, 색다르고 도전적인 연구를 위해 수행되는 KIST 기관고유사업 ‘KIST Young Fellowship’ 프로그램에 참여했다. 단순한 호기심에 의해 시작한 연구가 새로운 분야를 발굴하여 이와 같은 성과를 내었다. 연구팀은 임상 데이터 분석과 생쥐모델 연구를 통해 정상 뇌조직에 비하여 뇌종양 부위에서 단백질 ‘GRP78(Glucose Regulated Protein 78 kDa)’이 특이하게 과발현 되어있다는 점에 주목했다. 다양한 뇌종양 세포막을 분석한 결과, 신규 단백질의 접힘(Folding, 고유의 2차구조의 배치순서로 중첩을 통한 고차구조 형성)을 조절하는 열충격단백질(Heat Shock Protein, 열충격에 의해 합성이 유도되는 단백질)의 일종인 ‘GRP78’은 정상세포 내부에만 존재한다고 알려져 있었으나, 특이하게 뇌종양 암세포의 표면으로 이동하여 비이상적으로 발현된다. 연구진은 단백질 ‘GRP78’이 단순히 암세포를 정상세포로부터 구분하는 표지인자 역할 뿐만이 아니라, ‘GRP78’을 항체로 표적하여 억제 할 경우 암의 치료가 가능하다는 것을 밝혀냈다. 가장 흥미로운 점은, ‘GRP78’은 변이가 없다는 점이다. 암 특이성이 유전자 변이가 아닌 암세포막 발현 여부이기 때문에 유전자 변이에 의한 내성 문제를 피해갈 수 있다. 김영수 박사는 이번 연구를 통해 “단백질 ‘GRP78’은 전이가 되는 암의 표지인자이자 치료인자이다. 즉, 뇌종양의 전이억제와 치료가 동시에 가능하다. 특히 변이가 없기 때문에 내성이 없는 항암제의 개발을 전망하고 있다. 또한, 뇌종양은 대표적인 전이 암으로, 다른 종류의 전이 암도 ‘GRP78’ 표적항암전략으로 치료 가능할 것으로 예측하고 있다”고 말했다. 본 연구 결과는 세계적인 우수 과학 저널인 ‘Scientific Reports’에 10월 7일(금) 온라인 게재되었다. <관련자료> <그림1> 뇌종양에서의 GRP78 과발현 A) 임상 데이터, B) 세포 실험, C) 생쥐모델 실험을 통해 뇌종양 특이적으로 GRP78이 과발현 되는 점을 확인함. <그림 2> 뇌종양 세포 표면에 발현된 GRP78 정상세포에서는 세포 내부에만 존재하는 GRP78이 전이성이 높은 다양한 뇌종양 세포의 표면에 과발현 됨.
치매 전문가, 색다른 도전으로 뇌종양 치료에 변이와 내성 없는 신약 타겟 찾았다
치매 전문가, 색다른 도전으로 뇌종양 치료에 변이와 내성 없는 신약 타겟 찾았다 - 단백질 ‘GRP78’*이 암 세포표면으로 이동하는 특이적 행동 규명 - 암 세포표면의 ‘GRP78’ 표적 시, 동시에 뇌종양의 전이억제와 치료가능 *단백질 ‘GRP78’ (포도당조절단백질(Glucose Regulated Protein 78 kDa)) : 분자량 78,000 포도당제어성 단백질 표적 항암치료제 ‘글리벡’은 정상세포에는 없고 암세포에만 있는 특이 유전자 변이를 찾아내고 암의 전이를 억제하는 "마법의 탄환(Magic Cancer Bullet)"이다. 하지만, 암세포가 새로운 유전자 변이를 만들 경우 내성이 생기고 표적항암제는 결국 무력화 되는 치명적인 단점이 있었다. 최근 KIST 연구진이 기존 표적항암제의 단점을 극복할 수 있는 획기적인 항암 치료전략을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 치매DTC융합연구단 김영수 박사팀은 뇌종양 발생 시, 평상시 세포 내부에만 존재하던 단백질 ‘GRP78’이 암세포표면으로 이동하여 과발현되며, 암의 전이를 조절하는 것을 세계 최초로 규명하였다. 연구진은 단백질 ‘GRP78’을 억제할 경우 뇌종양의 치료가 가능하다는 연구결과를 발표했다. 김영수 박사는 기존에 ‘혈액기반 치매진단시스템 개발’ 및 치매에 대한 괄목할만한 성과로 세간의 주목을 받았던 치매 전문가다. 김 박사는 치매 연구를 하는 동시에, 자율성을 보장, 색다르고 도전적인 연구를 위해 수행되는 KIST 기관고유사업 ‘KIST Young Fellowship’ 프로그램에 참여했다. 단순한 호기심에 의해 시작한 연구가 새로운 분야를 발굴하여 이와 같은 성과를 내었다. 연구팀은 임상 데이터 분석과 생쥐모델 연구를 통해 정상 뇌조직에 비하여 뇌종양 부위에서 단백질 ‘GRP78(Glucose Regulated Protein 78 kDa)’이 특이하게 과발현 되어있다는 점에 주목했다. 다양한 뇌종양 세포막을 분석한 결과, 신규 단백질의 접힘(Folding, 고유의 2차구조의 배치순서로 중첩을 통한 고차구조 형성)을 조절하는 열충격단백질(Heat Shock Protein, 열충격에 의해 합성이 유도되는 단백질)의 일종인 ‘GRP78’은 정상세포 내부에만 존재한다고 알려져 있었으나, 특이하게 뇌종양 암세포의 표면으로 이동하여 비이상적으로 발현된다. 연구진은 단백질 ‘GRP78’이 단순히 암세포를 정상세포로부터 구분하는 표지인자 역할 뿐만이 아니라, ‘GRP78’을 항체로 표적하여 억제 할 경우 암의 치료가 가능하다는 것을 밝혀냈다. 가장 흥미로운 점은, ‘GRP78’은 변이가 없다는 점이다. 암 특이성이 유전자 변이가 아닌 암세포막 발현 여부이기 때문에 유전자 변이에 의한 내성 문제를 피해갈 수 있다. 김영수 박사는 이번 연구를 통해 “단백질 ‘GRP78’은 전이가 되는 암의 표지인자이자 치료인자이다. 즉, 뇌종양의 전이억제와 치료가 동시에 가능하다. 특히 변이가 없기 때문에 내성이 없는 항암제의 개발을 전망하고 있다. 또한, 뇌종양은 대표적인 전이 암으로, 다른 종류의 전이 암도 ‘GRP78’ 표적항암전략으로 치료 가능할 것으로 예측하고 있다”고 말했다. 본 연구 결과는 세계적인 우수 과학 저널인 ‘Scientific Reports’에 10월 7일(금) 온라인 게재되었다. <관련자료> <그림1> 뇌종양에서의 GRP78 과발현 A) 임상 데이터, B) 세포 실험, C) 생쥐모델 실험을 통해 뇌종양 특이적으로 GRP78이 과발현 되는 점을 확인함. <그림 2> 뇌종양 세포 표면에 발현된 GRP78 정상세포에서는 세포 내부에만 존재하는 GRP78이 전이성이 높은 다양한 뇌종양 세포의 표면에 과발현 됨.
치매 전문가, 색다른 도전으로 뇌종양 치료에 변이와 내성 없는 신약 타겟 찾았다
치매 전문가, 색다른 도전으로 뇌종양 치료에 변이와 내성 없는 신약 타겟 찾았다 - 단백질 ‘GRP78’*이 암 세포표면으로 이동하는 특이적 행동 규명 - 암 세포표면의 ‘GRP78’ 표적 시, 동시에 뇌종양의 전이억제와 치료가능 *단백질 ‘GRP78’ (포도당조절단백질(Glucose Regulated Protein 78 kDa)) : 분자량 78,000 포도당제어성 단백질 표적 항암치료제 ‘글리벡’은 정상세포에는 없고 암세포에만 있는 특이 유전자 변이를 찾아내고 암의 전이를 억제하는 "마법의 탄환(Magic Cancer Bullet)"이다. 하지만, 암세포가 새로운 유전자 변이를 만들 경우 내성이 생기고 표적항암제는 결국 무력화 되는 치명적인 단점이 있었다. 최근 KIST 연구진이 기존 표적항암제의 단점을 극복할 수 있는 획기적인 항암 치료전략을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 치매DTC융합연구단 김영수 박사팀은 뇌종양 발생 시, 평상시 세포 내부에만 존재하던 단백질 ‘GRP78’이 암세포표면으로 이동하여 과발현되며, 암의 전이를 조절하는 것을 세계 최초로 규명하였다. 연구진은 단백질 ‘GRP78’을 억제할 경우 뇌종양의 치료가 가능하다는 연구결과를 발표했다. 김영수 박사는 기존에 ‘혈액기반 치매진단시스템 개발’ 및 치매에 대한 괄목할만한 성과로 세간의 주목을 받았던 치매 전문가다. 김 박사는 치매 연구를 하는 동시에, 자율성을 보장, 색다르고 도전적인 연구를 위해 수행되는 KIST 기관고유사업 ‘KIST Young Fellowship’ 프로그램에 참여했다. 단순한 호기심에 의해 시작한 연구가 새로운 분야를 발굴하여 이와 같은 성과를 내었다. 연구팀은 임상 데이터 분석과 생쥐모델 연구를 통해 정상 뇌조직에 비하여 뇌종양 부위에서 단백질 ‘GRP78(Glucose Regulated Protein 78 kDa)’이 특이하게 과발현 되어있다는 점에 주목했다. 다양한 뇌종양 세포막을 분석한 결과, 신규 단백질의 접힘(Folding, 고유의 2차구조의 배치순서로 중첩을 통한 고차구조 형성)을 조절하는 열충격단백질(Heat Shock Protein, 열충격에 의해 합성이 유도되는 단백질)의 일종인 ‘GRP78’은 정상세포 내부에만 존재한다고 알려져 있었으나, 특이하게 뇌종양 암세포의 표면으로 이동하여 비이상적으로 발현된다. 연구진은 단백질 ‘GRP78’이 단순히 암세포를 정상세포로부터 구분하는 표지인자 역할 뿐만이 아니라, ‘GRP78’을 항체로 표적하여 억제 할 경우 암의 치료가 가능하다는 것을 밝혀냈다. 가장 흥미로운 점은, ‘GRP78’은 변이가 없다는 점이다. 암 특이성이 유전자 변이가 아닌 암세포막 발현 여부이기 때문에 유전자 변이에 의한 내성 문제를 피해갈 수 있다. 김영수 박사는 이번 연구를 통해 “단백질 ‘GRP78’은 전이가 되는 암의 표지인자이자 치료인자이다. 즉, 뇌종양의 전이억제와 치료가 동시에 가능하다. 특히 변이가 없기 때문에 내성이 없는 항암제의 개발을 전망하고 있다. 또한, 뇌종양은 대표적인 전이 암으로, 다른 종류의 전이 암도 ‘GRP78’ 표적항암전략으로 치료 가능할 것으로 예측하고 있다”고 말했다. 본 연구 결과는 세계적인 우수 과학 저널인 ‘Scientific Reports’에 10월 7일(금) 온라인 게재되었다. <관련자료> <그림1> 뇌종양에서의 GRP78 과발현 A) 임상 데이터, B) 세포 실험, C) 생쥐모델 실험을 통해 뇌종양 특이적으로 GRP78이 과발현 되는 점을 확인함. <그림 2> 뇌종양 세포 표면에 발현된 GRP78 정상세포에서는 세포 내부에만 존재하는 GRP78이 전이성이 높은 다양한 뇌종양 세포의 표면에 과발현 됨.
치매 전문가, 색다른 도전으로 뇌종양 치료에 변이와 내성 없는 신약 타겟 찾았다
치매 전문가, 색다른 도전으로 뇌종양 치료에 변이와 내성 없는 신약 타겟 찾았다 - 단백질 ‘GRP78’*이 암 세포표면으로 이동하는 특이적 행동 규명 - 암 세포표면의 ‘GRP78’ 표적 시, 동시에 뇌종양의 전이억제와 치료가능 *단백질 ‘GRP78’ (포도당조절단백질(Glucose Regulated Protein 78 kDa)) : 분자량 78,000 포도당제어성 단백질 표적 항암치료제 ‘글리벡’은 정상세포에는 없고 암세포에만 있는 특이 유전자 변이를 찾아내고 암의 전이를 억제하는 "마법의 탄환(Magic Cancer Bullet)"이다. 하지만, 암세포가 새로운 유전자 변이를 만들 경우 내성이 생기고 표적항암제는 결국 무력화 되는 치명적인 단점이 있었다. 최근 KIST 연구진이 기존 표적항암제의 단점을 극복할 수 있는 획기적인 항암 치료전략을 개발했다. 한국과학기술연구원(KIST, 원장 이병권) 치매DTC융합연구단 김영수 박사팀은 뇌종양 발생 시, 평상시 세포 내부에만 존재하던 단백질 ‘GRP78’이 암세포표면으로 이동하여 과발현되며, 암의 전이를 조절하는 것을 세계 최초로 규명하였다. 연구진은 단백질 ‘GRP78’을 억제할 경우 뇌종양의 치료가 가능하다는 연구결과를 발표했다. 김영수 박사는 기존에 ‘혈액기반 치매진단시스템 개발’ 및 치매에 대한 괄목할만한 성과로 세간의 주목을 받았던 치매 전문가다. 김 박사는 치매 연구를 하는 동시에, 자율성을 보장, 색다르고 도전적인 연구를 위해 수행되는 KIST 기관고유사업 ‘KIST Young Fellowship’ 프로그램에 참여했다. 단순한 호기심에 의해 시작한 연구가 새로운 분야를 발굴하여 이와 같은 성과를 내었다. 연구팀은 임상 데이터 분석과 생쥐모델 연구를 통해 정상 뇌조직에 비하여 뇌종양 부위에서 단백질 ‘GRP78(Glucose Regulated Protein 78 kDa)’이 특이하게 과발현 되어있다는 점에 주목했다. 다양한 뇌종양 세포막을 분석한 결과, 신규 단백질의 접힘(Folding, 고유의 2차구조의 배치순서로 중첩을 통한 고차구조 형성)을 조절하는 열충격단백질(Heat Shock Protein, 열충격에 의해 합성이 유도되는 단백질)의 일종인 ‘GRP78’은 정상세포 내부에만 존재한다고 알려져 있었으나, 특이하게 뇌종양 암세포의 표면으로 이동하여 비이상적으로 발현된다. 연구진은 단백질 ‘GRP78’이 단순히 암세포를 정상세포로부터 구분하는 표지인자 역할 뿐만이 아니라, ‘GRP78’을 항체로 표적하여 억제 할 경우 암의 치료가 가능하다는 것을 밝혀냈다. 가장 흥미로운 점은, ‘GRP78’은 변이가 없다는 점이다. 암 특이성이 유전자 변이가 아닌 암세포막 발현 여부이기 때문에 유전자 변이에 의한 내성 문제를 피해갈 수 있다. 김영수 박사는 이번 연구를 통해 “단백질 ‘GRP78’은 전이가 되는 암의 표지인자이자 치료인자이다. 즉, 뇌종양의 전이억제와 치료가 동시에 가능하다. 특히 변이가 없기 때문에 내성이 없는 항암제의 개발을 전망하고 있다. 또한, 뇌종양은 대표적인 전이 암으로, 다른 종류의 전이 암도 ‘GRP78’ 표적항암전략으로 치료 가능할 것으로 예측하고 있다”고 말했다. 본 연구 결과는 세계적인 우수 과학 저널인 ‘Scientific Reports’에 10월 7일(금) 온라인 게재되었다. <관련자료> <그림1> 뇌종양에서의 GRP78 과발현 A) 임상 데이터, B) 세포 실험, C) 생쥐모델 실험을 통해 뇌종양 특이적으로 GRP78이 과발현 되는 점을 확인함. <그림 2> 뇌종양 세포 표면에 발현된 GRP78 정상세포에서는 세포 내부에만 존재하는 GRP78이 전이성이 높은 다양한 뇌종양 세포의 표면에 과발현 됨.
초저전력 소비하는 신개념 정보전자소재 기술개발
초저전력 소비하는 신개념 정보전자소재 기술개발 - 높은 전하이동도와 강한 스핀궤도 결합의 신개념 산화물 전자 소재 개발 - 산화물 전자소자-스핀트로닉스 융합으로 초저전력 정보소자 개발에 기여 정보 처리 및 저장 기기의 에너지 소비량이 폭발적으로 증가함에 따라 이를 해결하기 위한 새로운 전자 소재, 더 나아가서는 새로운 동작원리에 기반을 둔 신개념 정보 소자의 개발에 대한 연구가 활발히 진행되고 있다. 최근 국내 연구진이 정보처리기기에 사용되는 고성능 스핀(*용어 설명) 트랜지스터를 제작하는데 필요한 전자소재를 새로운 방식으로 개발하는데 성공했다 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 전자재료연구단 이수연 박사팀(제1저자 진현우 연구원)은 건국대, 가톨릭대, 서울대, 美 켄터키주립대와 공동연구를 통해 대표적 부도체 산화물인 스트론튬-타이타늄 산화물(SrTiO3)에 금속 원소인 나이오븀(Nb)을 주입(도핑)하여, 이 신개념 소재의 전기적 특성에 대한 연구를 진행하여, 기존 소재와는 달리 높은 전하 이동도(*용어 설명)와 함께 강한 스핀-궤도 결합(*용어 설명)을 가지고 있음을 규명하여 초저전력으로 제어가 용이한 산화물 기반 고성능 스핀 트랜지스터 개발 가능성을 앞당겼다. 기존의 트랜지스터에서 전하를 제어하기 위해 실리콘과 같은 반도체 소재가 필수적이었으나, 스핀 트랜지스터에서는 스핀의 분포 및 흐름을 제어하기 위한 소재의 개발이 필요하다. 스핀 트랜지스터 소재의 필요조건을 정리하면, (1) 높은 전하이동도, (2) 강한 스핀-궤도 결합이다. 첫 번째로 저항이 작아 스핀 정보를 잃지 않고 먼 거리까지 전달할 수 있도록 전하의 이동도가 커야하고, 두 번째로 스핀의 운동을 제어하기가 용이해야 한다. 스핀의 운동을 제어하는 방법으로 스핀-궤도 결합(Spin-orbit coupling, *용어 설명)을 이용하는데, 어떤 물질에 걸린 전압을 조정하여 전자의 운동을 제어하고, 이를 통해 다시 스핀 운동의 제어가 가능하다는 원리이다. 지금까지는 화합물 반도체(갈륨-비소 화합물(GaAs))와 같은 소자가 가장 활발히 연구되고 있었으나, 매우 높은 전하 이동도를 가지고 있는 반면 스핀-궤도 결합이 약하다는 단점을 가지고 있었다. 이수연 박사팀이 개발한 이 소재는 두 필요조건을 동시에 상당히 높은 수준으로 충족시켰다. 연구팀이 개발한 산화물 전자소재는 매우 다양한 전기적-자기적 특성을 가지는 산화물 재료의 기초 소재이다. 다시 말해, 개발된 소재는 다른 특성을 지닌 다양한 산화물 전자 소재와 결합하여 새롭고 우수한 성능을 가진 정보 소자를 개발할 수 있는 가능성을 넓힐 수 있다. 이수연 박사는 “본 연구 결과는 스핀트로닉스 분야에서 고성능 스핀 트랜지스터의 개발을 한 단계 앞당길 수 있을 것으로 기대한다. 또한 산화물 전자 소자 분야에서 다양한 기능성 산화물과의 접합을 통한 새로운 물리 현상을 관찰할 수 있는 토대를 제공하고, 새로운 동작 원리를 가진 신개념 정보 소자의 개발에 기여할 수 있을 것으로 기대한다.”라고 밝혔다. 신개념 정보 소자 개발 분야에서는 전자의 고유 자기적 특성인 스핀(Spin)을 정보 매개체로 이용하는 스핀트로닉스(스핀전자공학, Spintronics) 소자가 가장 가능성 높은 기술로 평가되고 있다. 스핀트로닉스 기술은 정보 저장 기술에 있어서는 하드 디스크 드라이브의 읽기 장치, 자성 메모리 (MRAM, magnetic random access memory) 등과 같이 이미 현실 생활에서 활발히 활용되고 있으며, 정보 처리를 위한 트랜지스터 및 논리-연산 소자에도 활용 범위를 넓히기 위한 연구가 매우 활발히 진행 중이다. 본 연구는 미래창조과학부의 지원으로 KIST 기관고유 Flagship/미래원천연구사업으로 수행되었으며, 10월 5일(수요일)자 Scientific Reports(IF: 5.228)에 온라인 게재되었다. <그림설명> <그림 1 > 나이오븀-타이타늄(Nb:SrTiO3) 산화물 (은색(Sr), 청색(Ti), 적색(O) 공으로 이루어진 격자 구조) 내에서 전자가 고유의 스핀을 가지고 빠른 속도로 움직이는 모습. - 전자(금색)가 빠른 속도로 움직이는 것을 규명하여 전하이동도가 높음을 밝혀냄. 이는 곧 저항이 거의 없다는 뜻으로 높은 전하이동도를 가지고 있음을 알수 있다. - 위, 아래 화살표로 인해 전자가 스핀의 정보를 유지한채 위,아래로 움직이는 것을 관찰하여 스핀궤도 결합이 강함을 규명. 이는 전자의 제어가 용이하다는 것을 알 수 있다. <그림 2> (a) 자기장 방향에 따른 자기 저항 곡선, 점선은 선형 fitting 곡선 (inset: 소자 및 전류-자기장의 방향을 보이기 위한 개념도) (b) 수직 자기장 하에서의 온도에 따른 자기 저항 곡선 - (a) 일반적인 재료에서의 자기저항곡선은 포물선(곡선) 형태를 그리게 되는데, 본 실험에서는 직선(선형) 그래프를 나타내는 결과를 볼 때, 이것은 높은 전하이동도와 스핀궤도결합이 커서 나타나는 결과임을 알 수 있음. - (b) 온도에 따라서 다른 색깔의 선형그래프가 나타나게 되는데, 각 온도마다 개발된 소재의 성능이 유지된다는 것을 의미한다.
초저전력 소비하는 신개념 정보전자소재 기술개발
초저전력 소비하는 신개념 정보전자소재 기술개발 - 높은 전하이동도와 강한 스핀궤도 결합의 신개념 산화물 전자 소재 개발 - 산화물 전자소자-스핀트로닉스 융합으로 초저전력 정보소자 개발에 기여 정보 처리 및 저장 기기의 에너지 소비량이 폭발적으로 증가함에 따라 이를 해결하기 위한 새로운 전자 소재, 더 나아가서는 새로운 동작원리에 기반을 둔 신개념 정보 소자의 개발에 대한 연구가 활발히 진행되고 있다. 최근 국내 연구진이 정보처리기기에 사용되는 고성능 스핀(*용어 설명) 트랜지스터를 제작하는데 필요한 전자소재를 새로운 방식으로 개발하는데 성공했다 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 전자재료연구단 이수연 박사팀(제1저자 진현우 연구원)은 건국대, 가톨릭대, 서울대, 美 켄터키주립대와 공동연구를 통해 대표적 부도체 산화물인 스트론튬-타이타늄 산화물(SrTiO3)에 금속 원소인 나이오븀(Nb)을 주입(도핑)하여, 이 신개념 소재의 전기적 특성에 대한 연구를 진행하여, 기존 소재와는 달리 높은 전하 이동도(*용어 설명)와 함께 강한 스핀-궤도 결합(*용어 설명)을 가지고 있음을 규명하여 초저전력으로 제어가 용이한 산화물 기반 고성능 스핀 트랜지스터 개발 가능성을 앞당겼다. 기존의 트랜지스터에서 전하를 제어하기 위해 실리콘과 같은 반도체 소재가 필수적이었으나, 스핀 트랜지스터에서는 스핀의 분포 및 흐름을 제어하기 위한 소재의 개발이 필요하다. 스핀 트랜지스터 소재의 필요조건을 정리하면, (1) 높은 전하이동도, (2) 강한 스핀-궤도 결합이다. 첫 번째로 저항이 작아 스핀 정보를 잃지 않고 먼 거리까지 전달할 수 있도록 전하의 이동도가 커야하고, 두 번째로 스핀의 운동을 제어하기가 용이해야 한다. 스핀의 운동을 제어하는 방법으로 스핀-궤도 결합(Spin-orbit coupling, *용어 설명)을 이용하는데, 어떤 물질에 걸린 전압을 조정하여 전자의 운동을 제어하고, 이를 통해 다시 스핀 운동의 제어가 가능하다는 원리이다. 지금까지는 화합물 반도체(갈륨-비소 화합물(GaAs))와 같은 소자가 가장 활발히 연구되고 있었으나, 매우 높은 전하 이동도를 가지고 있는 반면 스핀-궤도 결합이 약하다는 단점을 가지고 있었다. 이수연 박사팀이 개발한 이 소재는 두 필요조건을 동시에 상당히 높은 수준으로 충족시켰다. 연구팀이 개발한 산화물 전자소재는 매우 다양한 전기적-자기적 특성을 가지는 산화물 재료의 기초 소재이다. 다시 말해, 개발된 소재는 다른 특성을 지닌 다양한 산화물 전자 소재와 결합하여 새롭고 우수한 성능을 가진 정보 소자를 개발할 수 있는 가능성을 넓힐 수 있다. 이수연 박사는 “본 연구 결과는 스핀트로닉스 분야에서 고성능 스핀 트랜지스터의 개발을 한 단계 앞당길 수 있을 것으로 기대한다. 또한 산화물 전자 소자 분야에서 다양한 기능성 산화물과의 접합을 통한 새로운 물리 현상을 관찰할 수 있는 토대를 제공하고, 새로운 동작 원리를 가진 신개념 정보 소자의 개발에 기여할 수 있을 것으로 기대한다.”라고 밝혔다. 신개념 정보 소자 개발 분야에서는 전자의 고유 자기적 특성인 스핀(Spin)을 정보 매개체로 이용하는 스핀트로닉스(스핀전자공학, Spintronics) 소자가 가장 가능성 높은 기술로 평가되고 있다. 스핀트로닉스 기술은 정보 저장 기술에 있어서는 하드 디스크 드라이브의 읽기 장치, 자성 메모리 (MRAM, magnetic random access memory) 등과 같이 이미 현실 생활에서 활발히 활용되고 있으며, 정보 처리를 위한 트랜지스터 및 논리-연산 소자에도 활용 범위를 넓히기 위한 연구가 매우 활발히 진행 중이다. 본 연구는 미래창조과학부의 지원으로 KIST 기관고유 Flagship/미래원천연구사업으로 수행되었으며, 10월 5일(수요일)자 Scientific Reports(IF: 5.228)에 온라인 게재되었다. <그림설명> <그림 1 > 나이오븀-타이타늄(Nb:SrTiO3) 산화물 (은색(Sr), 청색(Ti), 적색(O) 공으로 이루어진 격자 구조) 내에서 전자가 고유의 스핀을 가지고 빠른 속도로 움직이는 모습. - 전자(금색)가 빠른 속도로 움직이는 것을 규명하여 전하이동도가 높음을 밝혀냄. 이는 곧 저항이 거의 없다는 뜻으로 높은 전하이동도를 가지고 있음을 알수 있다. - 위, 아래 화살표로 인해 전자가 스핀의 정보를 유지한채 위,아래로 움직이는 것을 관찰하여 스핀궤도 결합이 강함을 규명. 이는 전자의 제어가 용이하다는 것을 알 수 있다. <그림 2> (a) 자기장 방향에 따른 자기 저항 곡선, 점선은 선형 fitting 곡선 (inset: 소자 및 전류-자기장의 방향을 보이기 위한 개념도) (b) 수직 자기장 하에서의 온도에 따른 자기 저항 곡선 - (a) 일반적인 재료에서의 자기저항곡선은 포물선(곡선) 형태를 그리게 되는데, 본 실험에서는 직선(선형) 그래프를 나타내는 결과를 볼 때, 이것은 높은 전하이동도와 스핀궤도결합이 커서 나타나는 결과임을 알 수 있음. - (b) 온도에 따라서 다른 색깔의 선형그래프가 나타나게 되는데, 각 온도마다 개발된 소재의 성능이 유지된다는 것을 의미한다.
초저전력 소비하는 신개념 정보전자소재 기술개발
초저전력 소비하는 신개념 정보전자소재 기술개발 - 높은 전하이동도와 강한 스핀궤도 결합의 신개념 산화물 전자 소재 개발 - 산화물 전자소자-스핀트로닉스 융합으로 초저전력 정보소자 개발에 기여 정보 처리 및 저장 기기의 에너지 소비량이 폭발적으로 증가함에 따라 이를 해결하기 위한 새로운 전자 소재, 더 나아가서는 새로운 동작원리에 기반을 둔 신개념 정보 소자의 개발에 대한 연구가 활발히 진행되고 있다. 최근 국내 연구진이 정보처리기기에 사용되는 고성능 스핀(*용어 설명) 트랜지스터를 제작하는데 필요한 전자소재를 새로운 방식으로 개발하는데 성공했다 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 전자재료연구단 이수연 박사팀(제1저자 진현우 연구원)은 건국대, 가톨릭대, 서울대, 美 켄터키주립대와 공동연구를 통해 대표적 부도체 산화물인 스트론튬-타이타늄 산화물(SrTiO3)에 금속 원소인 나이오븀(Nb)을 주입(도핑)하여, 이 신개념 소재의 전기적 특성에 대한 연구를 진행하여, 기존 소재와는 달리 높은 전하 이동도(*용어 설명)와 함께 강한 스핀-궤도 결합(*용어 설명)을 가지고 있음을 규명하여 초저전력으로 제어가 용이한 산화물 기반 고성능 스핀 트랜지스터 개발 가능성을 앞당겼다. 기존의 트랜지스터에서 전하를 제어하기 위해 실리콘과 같은 반도체 소재가 필수적이었으나, 스핀 트랜지스터에서는 스핀의 분포 및 흐름을 제어하기 위한 소재의 개발이 필요하다. 스핀 트랜지스터 소재의 필요조건을 정리하면, (1) 높은 전하이동도, (2) 강한 스핀-궤도 결합이다. 첫 번째로 저항이 작아 스핀 정보를 잃지 않고 먼 거리까지 전달할 수 있도록 전하의 이동도가 커야하고, 두 번째로 스핀의 운동을 제어하기가 용이해야 한다. 스핀의 운동을 제어하는 방법으로 스핀-궤도 결합(Spin-orbit coupling, *용어 설명)을 이용하는데, 어떤 물질에 걸린 전압을 조정하여 전자의 운동을 제어하고, 이를 통해 다시 스핀 운동의 제어가 가능하다는 원리이다. 지금까지는 화합물 반도체(갈륨-비소 화합물(GaAs))와 같은 소자가 가장 활발히 연구되고 있었으나, 매우 높은 전하 이동도를 가지고 있는 반면 스핀-궤도 결합이 약하다는 단점을 가지고 있었다. 이수연 박사팀이 개발한 이 소재는 두 필요조건을 동시에 상당히 높은 수준으로 충족시켰다. 연구팀이 개발한 산화물 전자소재는 매우 다양한 전기적-자기적 특성을 가지는 산화물 재료의 기초 소재이다. 다시 말해, 개발된 소재는 다른 특성을 지닌 다양한 산화물 전자 소재와 결합하여 새롭고 우수한 성능을 가진 정보 소자를 개발할 수 있는 가능성을 넓힐 수 있다. 이수연 박사는 “본 연구 결과는 스핀트로닉스 분야에서 고성능 스핀 트랜지스터의 개발을 한 단계 앞당길 수 있을 것으로 기대한다. 또한 산화물 전자 소자 분야에서 다양한 기능성 산화물과의 접합을 통한 새로운 물리 현상을 관찰할 수 있는 토대를 제공하고, 새로운 동작 원리를 가진 신개념 정보 소자의 개발에 기여할 수 있을 것으로 기대한다.”라고 밝혔다. 신개념 정보 소자 개발 분야에서는 전자의 고유 자기적 특성인 스핀(Spin)을 정보 매개체로 이용하는 스핀트로닉스(스핀전자공학, Spintronics) 소자가 가장 가능성 높은 기술로 평가되고 있다. 스핀트로닉스 기술은 정보 저장 기술에 있어서는 하드 디스크 드라이브의 읽기 장치, 자성 메모리 (MRAM, magnetic random access memory) 등과 같이 이미 현실 생활에서 활발히 활용되고 있으며, 정보 처리를 위한 트랜지스터 및 논리-연산 소자에도 활용 범위를 넓히기 위한 연구가 매우 활발히 진행 중이다. 본 연구는 미래창조과학부의 지원으로 KIST 기관고유 Flagship/미래원천연구사업으로 수행되었으며, 10월 5일(수요일)자 Scientific Reports(IF: 5.228)에 온라인 게재되었다. <그림설명> <그림 1 > 나이오븀-타이타늄(Nb:SrTiO3) 산화물 (은색(Sr), 청색(Ti), 적색(O) 공으로 이루어진 격자 구조) 내에서 전자가 고유의 스핀을 가지고 빠른 속도로 움직이는 모습. - 전자(금색)가 빠른 속도로 움직이는 것을 규명하여 전하이동도가 높음을 밝혀냄. 이는 곧 저항이 거의 없다는 뜻으로 높은 전하이동도를 가지고 있음을 알수 있다. - 위, 아래 화살표로 인해 전자가 스핀의 정보를 유지한채 위,아래로 움직이는 것을 관찰하여 스핀궤도 결합이 강함을 규명. 이는 전자의 제어가 용이하다는 것을 알 수 있다. <그림 2> (a) 자기장 방향에 따른 자기 저항 곡선, 점선은 선형 fitting 곡선 (inset: 소자 및 전류-자기장의 방향을 보이기 위한 개념도) (b) 수직 자기장 하에서의 온도에 따른 자기 저항 곡선 - (a) 일반적인 재료에서의 자기저항곡선은 포물선(곡선) 형태를 그리게 되는데, 본 실험에서는 직선(선형) 그래프를 나타내는 결과를 볼 때, 이것은 높은 전하이동도와 스핀궤도결합이 커서 나타나는 결과임을 알 수 있음. - (b) 온도에 따라서 다른 색깔의 선형그래프가 나타나게 되는데, 각 온도마다 개발된 소재의 성능이 유지된다는 것을 의미한다.