Result
게시물 키워드""에 대한 9495개의 검색결과를 찾았습니다.
금속 없는 고분자 복합체로 전자파 막는다
금속 없는 고분자 복합체로 전자파 막는다 - 그래핀보다 훨씬 우수한 2D 新나노소재(전이금속 카바이트) 응용기술 개발 - 다층적층구조에 의한 강한 내부다중반사 효과 규명하여 우수한 전자파 차폐 입증 전자파 간섭(EMI, Electromagnetic Interference)은 전자, 통신, 운송, 항공, 군사 장비들에서 발생하는 전자기파 간에 의한 간섭 현상으로, 이 현상은 장치들의 오작동 원인이 될 뿐만 아니라 인간에게 유해한 영향을 줄 수 있다. 특히, 최근 전자 장치들이 소형화, 고집적화 및 고기능화 되면서 장치간의 전자파간섭 현상에 의한 오작동 문제가 더욱 심각해지고 있다. 최근 국내 연구진이 이러한 전자파 간섭을 막는 금속을 사용하지 않은 전자파 차폐 소재(EMI Shielding Materials)개발에 성공했다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구단 구종민 박사팀은 미국 Drexel 대학교 Yury Gogotsi 교수팀과 공동연구로 ‘MXene’이라 불리는 2D 新나노재료, 전이금속 카바이트(Transition Metal Carbide)를 이용하여 전기전도성이 우수하면서도 가볍고, 저가이며, 가공성 또한 우수한 전자파 차폐 소재를 개발했다. 전자파 차폐 소재는 전자파간섭 현상을 차단하는 소재로서, 전기전도성이 높은 소재일수록 전자파차폐 효율이 우수한 특성을 가진다. 기존에는 은, 구리와 같은 금속 소재들이 주로 사용되었지만 밀도가 높고, 제조비용이 비싸며, 무겁고 부식이 되기 쉬웠으며, 가공이 어려운 단점을 가지고 있어 차세대 모바일 전자/통신 장치들에 사용에 한계가 있었다. 구종민 박사팀은 기존 소재들의 문제점들을 극복하기 위해, 2D 나노재료인 전이금속 카바이트(Transition Metal carbide (MXene))를 포함하는 고분자 복합체를 이용하여 마치 흑연의 구조와 유사한 다층적층 구조의 전자파 차폐가 우수한 소재를 개발했다. 전이금속 카바이트(MXene) 소재는 티탄늄(Ti )과 같은 중금속 원자와 탄소 (C)원자의 이중 원소로 이루어진 나노물질로서 형상적으로는 1nm(나노) 두께 와 수 μm(마이크로미터) 길이를 가지는 이차원적인 판상구조를 가지는 2D 나노 재료이다. 기존 나노재료들에 비해 제조 공정이 간편하고 저비용으로 생산 가능할 뿐만 아니라 표면에 다수의 친수기(물과 친화성이 강한 원자단)를 포함하고 있어, 용매에 분산이 용이하고 고분자 복합체 제조가 용이하다. 또한 우수한 전기전도성을 가지고 있어 전기전도성이 요구되는 다양한 필름, 코팅 제품 응용에 유리한 특성을 가진다. 전이금속 카바이트 고분자 복합체는 기존 고분자 복합체에 비해 매우 얇은 두께에서도 우수한 전자파차폐 특성을 보인다. 이는 우수한 전기전도도(5000S/cm)를 가지고 있을 뿐만 아니라, 45μm(마이크로) 두께의 얇은 필름 상에서 92dB라는 기존의 금속필름과도 비견될만한 우수한 결과(*그림 3 참조)를 나타냈다. 이는 필름 내에서 MXene들이 다층 적층 구조로 되어있어 필름 내에서 강한 내부다중반사(Internal Multiple Reflection) 효과를 발생시켜 전자파를 흡수하기 때문이다. 연구진은 이번에 개발된 고분자 복합체는 스핀코팅, 스프레이코팅, 롤가공 등의 다양한 필름가공과 코팅성형이 가능하여 향후 전자파차폐재 상용화 연구에도 매우 유리한 장점이 있을 것으로 전망했다. KIST 구종민 박사는 “본 연구의 전이금속 카바이트(MXene) 고분자 복합체는 기존 소재에서 구현하기 힘들었던 우수한 전기전도성을 구현할 수 있을 뿐만 아니라, 용이한 가공성, 저비중, 저비용, 고유연 특성들을 가지고 있어 전자파차폐소재 뿐만 아니라 다양한 전자소재분야에도 응용이 기대되는 소재이다.”고 밝혔다. 현재 연구진은 개발된 MXene 고분자 복합체를 이용한 전자파차폐소재 상용화 후속연구에 박차를 가하고 있다. 본 연구는 대표적인 융합연구의 형태로 이루어졌으며, 미국 Drexel University, Yury Gogotsi 교수팀과 공동으로 수행되었다. 본 연구는 KIST 기관고유 연구사업과 미래창조과학부(장관 최양희) 미래원천기술개발사업, 산업소재원천기술개발사업, 해양경비안전사업의 지원을 받아 수행되었으며, 연구 결과는 세계적인 우수 과학 저널인 ‘Science’에 9월 9일자(한국시간) 온라인 판에 게재되었다. * (논문명) Electromagnetic interference shielding with 2D transition metal carbides (MXenes) - (제 1저자) 한국과학기술연구원 Faisal Shahzad - (교신저자) 한국과학기술연구원 구종민 박사, Drexel University Yury Gogotsi 교수 <그림자료> <그림 1> Ti3C2Tx 및 Ti3C2Tx-SA 고분자 복합체 필름 제조 모식도 Ti3C2Tx MXene 표면에 다양한 관능기가 존재하여 고분자 (SA)와의 친화도가 우수하여 고분자복합체 제조 및 필름 성형이 용이하다. <그림 2> Ti3C2Tx 및 Ti3C2Tx-SA 고분자 복합체 형상 및 특성 2D 나노 판상구조의 Ti3C2Tx MXene 및 이를 이용한 MXene 고분자 복합체 이미지와 두께에 따른 전자파 차폐 특성을 보인다. Ti3C2Tx는 1나노미터(nm) 두께에 수 마이크로미터 (μm) 길이를 가지는 2D 판상구조이며 고분자 복합체 제조시 여러 층이 적층된 구조를 보이고 고분자 내에 잘 분산 된다. 또한 두께에 따라 전자파차폐성능이 증가하며 2.5마이크로미터 두께에서 58 dB, 45마이크로미터 두께에서 92dB 의 높은 전자파차폐특성을 보인다. <그림 3> Ti3C2Tx-SA 전자파차폐 특성 비교 및 메커니즘 기존 전자파차폐재료와 비교했을 때 MXene 고분자 복합체는 기존 고분자복합체 재료에 비해 매우 우수한 전자파 성능을 보이며 그 특성은 금속필름의 특성에 가까운 우수한 특성이다. 이러한 우수한 전자파차폐특성은 2D 나노 판상구조인 MXene이 우수한 전기전도도를 가지고 있을 뿐만 아니라, 필름 내에서 MXene들이 다층 적층 구조로 존재하여 필름 내에서 강한 내부다중반사(internal multiple reflection) 효과가 발생하기 때문이다.
금속 없는 고분자 복합체로 전자파 막는다
금속 없는 고분자 복합체로 전자파 막는다 - 그래핀보다 훨씬 우수한 2D 新나노소재(전이금속 카바이트) 응용기술 개발 - 다층적층구조에 의한 강한 내부다중반사 효과 규명하여 우수한 전자파 차폐 입증 전자파 간섭(EMI, Electromagnetic Interference)은 전자, 통신, 운송, 항공, 군사 장비들에서 발생하는 전자기파 간에 의한 간섭 현상으로, 이 현상은 장치들의 오작동 원인이 될 뿐만 아니라 인간에게 유해한 영향을 줄 수 있다. 특히, 최근 전자 장치들이 소형화, 고집적화 및 고기능화 되면서 장치간의 전자파간섭 현상에 의한 오작동 문제가 더욱 심각해지고 있다. 최근 국내 연구진이 이러한 전자파 간섭을 막는 금속을 사용하지 않은 전자파 차폐 소재(EMI Shielding Materials)개발에 성공했다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구단 구종민 박사팀은 미국 Drexel 대학교 Yury Gogotsi 교수팀과 공동연구로 ‘MXene’이라 불리는 2D 新나노재료, 전이금속 카바이트(Transition Metal Carbide)를 이용하여 전기전도성이 우수하면서도 가볍고, 저가이며, 가공성 또한 우수한 전자파 차폐 소재를 개발했다. 전자파 차폐 소재는 전자파간섭 현상을 차단하는 소재로서, 전기전도성이 높은 소재일수록 전자파차폐 효율이 우수한 특성을 가진다. 기존에는 은, 구리와 같은 금속 소재들이 주로 사용되었지만 밀도가 높고, 제조비용이 비싸며, 무겁고 부식이 되기 쉬웠으며, 가공이 어려운 단점을 가지고 있어 차세대 모바일 전자/통신 장치들에 사용에 한계가 있었다. 구종민 박사팀은 기존 소재들의 문제점들을 극복하기 위해, 2D 나노재료인 전이금속 카바이트(Transition Metal carbide (MXene))를 포함하는 고분자 복합체를 이용하여 마치 흑연의 구조와 유사한 다층적층 구조의 전자파 차폐가 우수한 소재를 개발했다. 전이금속 카바이트(MXene) 소재는 티탄늄(Ti )과 같은 중금속 원자와 탄소 (C)원자의 이중 원소로 이루어진 나노물질로서 형상적으로는 1nm(나노) 두께 와 수 μm(마이크로미터) 길이를 가지는 이차원적인 판상구조를 가지는 2D 나노 재료이다. 기존 나노재료들에 비해 제조 공정이 간편하고 저비용으로 생산 가능할 뿐만 아니라 표면에 다수의 친수기(물과 친화성이 강한 원자단)를 포함하고 있어, 용매에 분산이 용이하고 고분자 복합체 제조가 용이하다. 또한 우수한 전기전도성을 가지고 있어 전기전도성이 요구되는 다양한 필름, 코팅 제품 응용에 유리한 특성을 가진다. 전이금속 카바이트 고분자 복합체는 기존 고분자 복합체에 비해 매우 얇은 두께에서도 우수한 전자파차폐 특성을 보인다. 이는 우수한 전기전도도(5000S/cm)를 가지고 있을 뿐만 아니라, 45μm(마이크로) 두께의 얇은 필름 상에서 92dB라는 기존의 금속필름과도 비견될만한 우수한 결과(*그림 3 참조)를 나타냈다. 이는 필름 내에서 MXene들이 다층 적층 구조로 되어있어 필름 내에서 강한 내부다중반사(Internal Multiple Reflection) 효과를 발생시켜 전자파를 흡수하기 때문이다. 연구진은 이번에 개발된 고분자 복합체는 스핀코팅, 스프레이코팅, 롤가공 등의 다양한 필름가공과 코팅성형이 가능하여 향후 전자파차폐재 상용화 연구에도 매우 유리한 장점이 있을 것으로 전망했다. KIST 구종민 박사는 “본 연구의 전이금속 카바이트(MXene) 고분자 복합체는 기존 소재에서 구현하기 힘들었던 우수한 전기전도성을 구현할 수 있을 뿐만 아니라, 용이한 가공성, 저비중, 저비용, 고유연 특성들을 가지고 있어 전자파차폐소재 뿐만 아니라 다양한 전자소재분야에도 응용이 기대되는 소재이다.”고 밝혔다. 현재 연구진은 개발된 MXene 고분자 복합체를 이용한 전자파차폐소재 상용화 후속연구에 박차를 가하고 있다. 본 연구는 대표적인 융합연구의 형태로 이루어졌으며, 미국 Drexel University, Yury Gogotsi 교수팀과 공동으로 수행되었다. 본 연구는 KIST 기관고유 연구사업과 미래창조과학부(장관 최양희) 미래원천기술개발사업, 산업소재원천기술개발사업, 해양경비안전사업의 지원을 받아 수행되었으며, 연구 결과는 세계적인 우수 과학 저널인 ‘Science’에 9월 9일자(한국시간) 온라인 판에 게재되었다. * (논문명) Electromagnetic interference shielding with 2D transition metal carbides (MXenes) - (제 1저자) 한국과학기술연구원 Faisal Shahzad - (교신저자) 한국과학기술연구원 구종민 박사, Drexel University Yury Gogotsi 교수 <그림자료> <그림 1> Ti3C2Tx 및 Ti3C2Tx-SA 고분자 복합체 필름 제조 모식도 Ti3C2Tx MXene 표면에 다양한 관능기가 존재하여 고분자 (SA)와의 친화도가 우수하여 고분자복합체 제조 및 필름 성형이 용이하다. <그림 2> Ti3C2Tx 및 Ti3C2Tx-SA 고분자 복합체 형상 및 특성 2D 나노 판상구조의 Ti3C2Tx MXene 및 이를 이용한 MXene 고분자 복합체 이미지와 두께에 따른 전자파 차폐 특성을 보인다. Ti3C2Tx는 1나노미터(nm) 두께에 수 마이크로미터 (μm) 길이를 가지는 2D 판상구조이며 고분자 복합체 제조시 여러 층이 적층된 구조를 보이고 고분자 내에 잘 분산 된다. 또한 두께에 따라 전자파차폐성능이 증가하며 2.5마이크로미터 두께에서 58 dB, 45마이크로미터 두께에서 92dB 의 높은 전자파차폐특성을 보인다. <그림 3> Ti3C2Tx-SA 전자파차폐 특성 비교 및 메커니즘 기존 전자파차폐재료와 비교했을 때 MXene 고분자 복합체는 기존 고분자복합체 재료에 비해 매우 우수한 전자파 성능을 보이며 그 특성은 금속필름의 특성에 가까운 우수한 특성이다. 이러한 우수한 전자파차폐특성은 2D 나노 판상구조인 MXene이 우수한 전기전도도를 가지고 있을 뿐만 아니라, 필름 내에서 MXene들이 다층 적층 구조로 존재하여 필름 내에서 강한 내부다중반사(internal multiple reflection) 효과가 발생하기 때문이다.
금속 없는 고분자 복합체로 전자파 막는다
금속 없는 고분자 복합체로 전자파 막는다 - 그래핀보다 훨씬 우수한 2D 新나노소재(전이금속 카바이트) 응용기술 개발 - 다층적층구조에 의한 강한 내부다중반사 효과 규명하여 우수한 전자파 차폐 입증 전자파 간섭(EMI, Electromagnetic Interference)은 전자, 통신, 운송, 항공, 군사 장비들에서 발생하는 전자기파 간에 의한 간섭 현상으로, 이 현상은 장치들의 오작동 원인이 될 뿐만 아니라 인간에게 유해한 영향을 줄 수 있다. 특히, 최근 전자 장치들이 소형화, 고집적화 및 고기능화 되면서 장치간의 전자파간섭 현상에 의한 오작동 문제가 더욱 심각해지고 있다. 최근 국내 연구진이 이러한 전자파 간섭을 막는 금속을 사용하지 않은 전자파 차폐 소재(EMI Shielding Materials)개발에 성공했다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구단 구종민 박사팀은 미국 Drexel 대학교 Yury Gogotsi 교수팀과 공동연구로 ‘MXene’이라 불리는 2D 新나노재료, 전이금속 카바이트(Transition Metal Carbide)를 이용하여 전기전도성이 우수하면서도 가볍고, 저가이며, 가공성 또한 우수한 전자파 차폐 소재를 개발했다. 전자파 차폐 소재는 전자파간섭 현상을 차단하는 소재로서, 전기전도성이 높은 소재일수록 전자파차폐 효율이 우수한 특성을 가진다. 기존에는 은, 구리와 같은 금속 소재들이 주로 사용되었지만 밀도가 높고, 제조비용이 비싸며, 무겁고 부식이 되기 쉬웠으며, 가공이 어려운 단점을 가지고 있어 차세대 모바일 전자/통신 장치들에 사용에 한계가 있었다. 구종민 박사팀은 기존 소재들의 문제점들을 극복하기 위해, 2D 나노재료인 전이금속 카바이트(Transition Metal carbide (MXene))를 포함하는 고분자 복합체를 이용하여 마치 흑연의 구조와 유사한 다층적층 구조의 전자파 차폐가 우수한 소재를 개발했다. 전이금속 카바이트(MXene) 소재는 티탄늄(Ti )과 같은 중금속 원자와 탄소 (C)원자의 이중 원소로 이루어진 나노물질로서 형상적으로는 1nm(나노) 두께 와 수 μm(마이크로미터) 길이를 가지는 이차원적인 판상구조를 가지는 2D 나노 재료이다. 기존 나노재료들에 비해 제조 공정이 간편하고 저비용으로 생산 가능할 뿐만 아니라 표면에 다수의 친수기(물과 친화성이 강한 원자단)를 포함하고 있어, 용매에 분산이 용이하고 고분자 복합체 제조가 용이하다. 또한 우수한 전기전도성을 가지고 있어 전기전도성이 요구되는 다양한 필름, 코팅 제품 응용에 유리한 특성을 가진다. 전이금속 카바이트 고분자 복합체는 기존 고분자 복합체에 비해 매우 얇은 두께에서도 우수한 전자파차폐 특성을 보인다. 이는 우수한 전기전도도(5000S/cm)를 가지고 있을 뿐만 아니라, 45μm(마이크로) 두께의 얇은 필름 상에서 92dB라는 기존의 금속필름과도 비견될만한 우수한 결과(*그림 3 참조)를 나타냈다. 이는 필름 내에서 MXene들이 다층 적층 구조로 되어있어 필름 내에서 강한 내부다중반사(Internal Multiple Reflection) 효과를 발생시켜 전자파를 흡수하기 때문이다. 연구진은 이번에 개발된 고분자 복합체는 스핀코팅, 스프레이코팅, 롤가공 등의 다양한 필름가공과 코팅성형이 가능하여 향후 전자파차폐재 상용화 연구에도 매우 유리한 장점이 있을 것으로 전망했다. KIST 구종민 박사는 “본 연구의 전이금속 카바이트(MXene) 고분자 복합체는 기존 소재에서 구현하기 힘들었던 우수한 전기전도성을 구현할 수 있을 뿐만 아니라, 용이한 가공성, 저비중, 저비용, 고유연 특성들을 가지고 있어 전자파차폐소재 뿐만 아니라 다양한 전자소재분야에도 응용이 기대되는 소재이다.”고 밝혔다. 현재 연구진은 개발된 MXene 고분자 복합체를 이용한 전자파차폐소재 상용화 후속연구에 박차를 가하고 있다. 본 연구는 대표적인 융합연구의 형태로 이루어졌으며, 미국 Drexel University, Yury Gogotsi 교수팀과 공동으로 수행되었다. 본 연구는 KIST 기관고유 연구사업과 미래창조과학부(장관 최양희) 미래원천기술개발사업, 산업소재원천기술개발사업, 해양경비안전사업의 지원을 받아 수행되었으며, 연구 결과는 세계적인 우수 과학 저널인 ‘Science’에 9월 9일자(한국시간) 온라인 판에 게재되었다. * (논문명) Electromagnetic interference shielding with 2D transition metal carbides (MXenes) - (제 1저자) 한국과학기술연구원 Faisal Shahzad - (교신저자) 한국과학기술연구원 구종민 박사, Drexel University Yury Gogotsi 교수 <그림자료> <그림 1> Ti3C2Tx 및 Ti3C2Tx-SA 고분자 복합체 필름 제조 모식도 Ti3C2Tx MXene 표면에 다양한 관능기가 존재하여 고분자 (SA)와의 친화도가 우수하여 고분자복합체 제조 및 필름 성형이 용이하다. <그림 2> Ti3C2Tx 및 Ti3C2Tx-SA 고분자 복합체 형상 및 특성 2D 나노 판상구조의 Ti3C2Tx MXene 및 이를 이용한 MXene 고분자 복합체 이미지와 두께에 따른 전자파 차폐 특성을 보인다. Ti3C2Tx는 1나노미터(nm) 두께에 수 마이크로미터 (μm) 길이를 가지는 2D 판상구조이며 고분자 복합체 제조시 여러 층이 적층된 구조를 보이고 고분자 내에 잘 분산 된다. 또한 두께에 따라 전자파차폐성능이 증가하며 2.5마이크로미터 두께에서 58 dB, 45마이크로미터 두께에서 92dB 의 높은 전자파차폐특성을 보인다. <그림 3> Ti3C2Tx-SA 전자파차폐 특성 비교 및 메커니즘 기존 전자파차폐재료와 비교했을 때 MXene 고분자 복합체는 기존 고분자복합체 재료에 비해 매우 우수한 전자파 성능을 보이며 그 특성은 금속필름의 특성에 가까운 우수한 특성이다. 이러한 우수한 전자파차폐특성은 2D 나노 판상구조인 MXene이 우수한 전기전도도를 가지고 있을 뿐만 아니라, 필름 내에서 MXene들이 다층 적층 구조로 존재하여 필름 내에서 강한 내부다중반사(internal multiple reflection) 효과가 발생하기 때문이다.
금속 없는 고분자 복합체로 전자파 막는다
금속 없는 고분자 복합체로 전자파 막는다 - 그래핀보다 훨씬 우수한 2D 新나노소재(전이금속 카바이트) 응용기술 개발 - 다층적층구조에 의한 강한 내부다중반사 효과 규명하여 우수한 전자파 차폐 입증 전자파 간섭(EMI, Electromagnetic Interference)은 전자, 통신, 운송, 항공, 군사 장비들에서 발생하는 전자기파 간에 의한 간섭 현상으로, 이 현상은 장치들의 오작동 원인이 될 뿐만 아니라 인간에게 유해한 영향을 줄 수 있다. 특히, 최근 전자 장치들이 소형화, 고집적화 및 고기능화 되면서 장치간의 전자파간섭 현상에 의한 오작동 문제가 더욱 심각해지고 있다. 최근 국내 연구진이 이러한 전자파 간섭을 막는 금속을 사용하지 않은 전자파 차폐 소재(EMI Shielding Materials)개발에 성공했다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구단 구종민 박사팀은 미국 Drexel 대학교 Yury Gogotsi 교수팀과 공동연구로 ‘MXene’이라 불리는 2D 新나노재료, 전이금속 카바이트(Transition Metal Carbide)를 이용하여 전기전도성이 우수하면서도 가볍고, 저가이며, 가공성 또한 우수한 전자파 차폐 소재를 개발했다. 전자파 차폐 소재는 전자파간섭 현상을 차단하는 소재로서, 전기전도성이 높은 소재일수록 전자파차폐 효율이 우수한 특성을 가진다. 기존에는 은, 구리와 같은 금속 소재들이 주로 사용되었지만 밀도가 높고, 제조비용이 비싸며, 무겁고 부식이 되기 쉬웠으며, 가공이 어려운 단점을 가지고 있어 차세대 모바일 전자/통신 장치들에 사용에 한계가 있었다. 구종민 박사팀은 기존 소재들의 문제점들을 극복하기 위해, 2D 나노재료인 전이금속 카바이트(Transition Metal carbide (MXene))를 포함하는 고분자 복합체를 이용하여 마치 흑연의 구조와 유사한 다층적층 구조의 전자파 차폐가 우수한 소재를 개발했다. 전이금속 카바이트(MXene) 소재는 티탄늄(Ti )과 같은 중금속 원자와 탄소 (C)원자의 이중 원소로 이루어진 나노물질로서 형상적으로는 1nm(나노) 두께 와 수 μm(마이크로미터) 길이를 가지는 이차원적인 판상구조를 가지는 2D 나노 재료이다. 기존 나노재료들에 비해 제조 공정이 간편하고 저비용으로 생산 가능할 뿐만 아니라 표면에 다수의 친수기(물과 친화성이 강한 원자단)를 포함하고 있어, 용매에 분산이 용이하고 고분자 복합체 제조가 용이하다. 또한 우수한 전기전도성을 가지고 있어 전기전도성이 요구되는 다양한 필름, 코팅 제품 응용에 유리한 특성을 가진다. 전이금속 카바이트 고분자 복합체는 기존 고분자 복합체에 비해 매우 얇은 두께에서도 우수한 전자파차폐 특성을 보인다. 이는 우수한 전기전도도(5000S/cm)를 가지고 있을 뿐만 아니라, 45μm(마이크로) 두께의 얇은 필름 상에서 92dB라는 기존의 금속필름과도 비견될만한 우수한 결과(*그림 3 참조)를 나타냈다. 이는 필름 내에서 MXene들이 다층 적층 구조로 되어있어 필름 내에서 강한 내부다중반사(Internal Multiple Reflection) 효과를 발생시켜 전자파를 흡수하기 때문이다. 연구진은 이번에 개발된 고분자 복합체는 스핀코팅, 스프레이코팅, 롤가공 등의 다양한 필름가공과 코팅성형이 가능하여 향후 전자파차폐재 상용화 연구에도 매우 유리한 장점이 있을 것으로 전망했다. KIST 구종민 박사는 “본 연구의 전이금속 카바이트(MXene) 고분자 복합체는 기존 소재에서 구현하기 힘들었던 우수한 전기전도성을 구현할 수 있을 뿐만 아니라, 용이한 가공성, 저비중, 저비용, 고유연 특성들을 가지고 있어 전자파차폐소재 뿐만 아니라 다양한 전자소재분야에도 응용이 기대되는 소재이다.”고 밝혔다. 현재 연구진은 개발된 MXene 고분자 복합체를 이용한 전자파차폐소재 상용화 후속연구에 박차를 가하고 있다. 본 연구는 대표적인 융합연구의 형태로 이루어졌으며, 미국 Drexel University, Yury Gogotsi 교수팀과 공동으로 수행되었다. 본 연구는 KIST 기관고유 연구사업과 미래창조과학부(장관 최양희) 미래원천기술개발사업, 산업소재원천기술개발사업, 해양경비안전사업의 지원을 받아 수행되었으며, 연구 결과는 세계적인 우수 과학 저널인 ‘Science’에 9월 9일자(한국시간) 온라인 판에 게재되었다. * (논문명) Electromagnetic interference shielding with 2D transition metal carbides (MXenes) - (제 1저자) 한국과학기술연구원 Faisal Shahzad - (교신저자) 한국과학기술연구원 구종민 박사, Drexel University Yury Gogotsi 교수 <그림자료> <그림 1> Ti3C2Tx 및 Ti3C2Tx-SA 고분자 복합체 필름 제조 모식도 Ti3C2Tx MXene 표면에 다양한 관능기가 존재하여 고분자 (SA)와의 친화도가 우수하여 고분자복합체 제조 및 필름 성형이 용이하다. <그림 2> Ti3C2Tx 및 Ti3C2Tx-SA 고분자 복합체 형상 및 특성 2D 나노 판상구조의 Ti3C2Tx MXene 및 이를 이용한 MXene 고분자 복합체 이미지와 두께에 따른 전자파 차폐 특성을 보인다. Ti3C2Tx는 1나노미터(nm) 두께에 수 마이크로미터 (μm) 길이를 가지는 2D 판상구조이며 고분자 복합체 제조시 여러 층이 적층된 구조를 보이고 고분자 내에 잘 분산 된다. 또한 두께에 따라 전자파차폐성능이 증가하며 2.5마이크로미터 두께에서 58 dB, 45마이크로미터 두께에서 92dB 의 높은 전자파차폐특성을 보인다. <그림 3> Ti3C2Tx-SA 전자파차폐 특성 비교 및 메커니즘 기존 전자파차폐재료와 비교했을 때 MXene 고분자 복합체는 기존 고분자복합체 재료에 비해 매우 우수한 전자파 성능을 보이며 그 특성은 금속필름의 특성에 가까운 우수한 특성이다. 이러한 우수한 전자파차폐특성은 2D 나노 판상구조인 MXene이 우수한 전기전도도를 가지고 있을 뿐만 아니라, 필름 내에서 MXene들이 다층 적층 구조로 존재하여 필름 내에서 강한 내부다중반사(internal multiple reflection) 효과가 발생하기 때문이다.
[Vol.134] 뇌 연구는 우리의 미래다
[사이언스포럼] 뇌 연구는 우리의 미래다 [전문가 기고]한국형 포켓몬 고를 만드는 방법 (안상철 영상미디어연구단장) [과학산책] 초미세먼지, 열쇠는 과학 지식이다 (배귀남 환경복지연구단장) 그래핀으로 질병 진단 바이오센서 개발 (바이오마이크로시스템연구단 황교선 박사) 나노구조 제어로 열전 반도체 성능 '업’ (전자재료연구단 김진상 박사, 백승협 박사) 포켓몬 찾는 것만으론 만족 못해... 손으로 느껴 볼테야!(오용환 로봇연구단장) 세계서 가장 저렴한 탄소섬유 재활용 기술 (탄소융합소재연구센터 고문주 박사) 가격 확 낮춘 태양전지 신소재 찾았다 (광전하이브리드연구센터 고민재 박사) [TePRI FOCUS] 리우 올림픽을 통해 재조명해보는 과학과 스포츠의 융합 [이슈분석] 출연(연)의 대중국 R&D전략
KIST, 고효율·저가형 촉매 원천기술 개발로 수소에너지 상용화에 기여
KIST, 고효율·저가형 촉매 원천기술 개발로 수소에너지 상용화에 기여 - 고가의 귀금속 촉매 대체할 저렴한 니켈계 촉매 사용으로 수소 에너지 경제성 향상 - 친환경 물 분해과정을 통한 수소에너지 상용화 및 보급화에 기여 친환경에너지인 수소를 만들기 위해 전 세계적으로 다양한 연구가 진행 중이다. 국내 연구진이 물의 전기분해방법으로 수소를 만드는 데 필요한 촉매의 원료를 저렴하고 내구성이 높은 니켈계 화합물로 제작하는 기술을 개발했다. 기존에 사용했던 고가의 귀금속 촉매 비용보다 약 100배 저렴하고 성능은 거의 동일하여 수소 에너지 상용화에 한발짝 더 가까워질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 연료전지연구센터 유성종 박사와 KIST 한-인도협력센터 이승철 박사는 물 분해를 통한 수소 발생 반응과정에서 고결정성 인화니켈 나노선 화합물을 전극 촉매로 사용, 귀금속 촉매보다 가격을 획기적으로 낮추면서 내구성이 높고 성능이 뛰어난 새로운 촉매를 개발하는데 성공했다고 밝혔다. 수소에너지는 채굴량 한계 및 지역 편재성이 없고, 환경 친화적이기 때문에 차세대 에너지로 각광받는 에너지원이다. 하지만 상용화를 위해서 몇 가지 걸림돌이 있다. 첫째로 현재 많이 사용되고 있는 수소에너지 발전 방식은 물의 전기분해를 통해 수소를 발생시키는 ‘수소 스테이션’ 방법이다. 이 방법은 고순도의 수소를 환경파괴 없이 생산할 수 있지만 웬만한 건물 크기에 맞먹는 대용량 수조가 필요해 도심의 에너지 공급원으로 사용하기 위한 전극의 소형화가 필요하다. 둘째, 전지의 +극인 산소 발생용 전극 재료로는 이리듐 및 루테늄 계열의 귀금속 촉매가, -극인 수소 발생 전극 재료로는 백금이 각각 사용되고 있는데 비용이 높기 때문에 이를 대체하는 값 싼 재료의 개발이 요구된다. 셋째, 현재까지는 백금 촉매가 물을 수소로 전환시키는데 가장 효과적이라고 알려져 있었지만 비싼 가격과 낮은 안정성 문제 때문에 한계에 봉착해 있었다. 니켈계 금속 또는 화합물 촉매의 경우는 백금 촉매에 비해 과전압이 많이 필요로 하여, 가격적인 면의 이점(백금 가격의 1/100)에도 불구하고 주목을 받지 못하고 있었다. 연구팀은 기존 희소 금속인 백금 기반의 촉매보다 뛰어난 고효율, 저가형 촉매 제조를 위해 니켈계 화합물의 일종인 인화니켈의 고효율 반응 가능성에 주목하였다. 이에 연구팀은 양자역학 계산기법을 활용, 인화니켈을 나노선(nanowire)으로 성장시키는 기술을 개발하였다. 연구팀이 개발한 단결정 인화니켈 나노선은 표면에서 니켈 금속과 인의 강한 상호 작용을 통해 니켈금속의 전자 구조를 변형시켜 수소 발생 반응을 극대화시켰음을 보여주었으며 이는 유무기 복합체 사이의 전하 전달이 매우 중요한 역할을 한다는 것을 싱크로트론 X-ray로 세계 최초로 밝혔다. 이는 또한, 물로부터 수소를 발생시키는 경우 니켈계 금속 촉매에서 필요한 과전압보다 60% 더 낮은 과전압에서 고효율로 생산할 수 있음을 보여줌과 동시에 뛰어난 내구성으로 높은 전류와 전압조건에서 운행된 12시간 동안의 물 분해 실험에서 성능이 거의 감소되지 않았다. 이 실험은 새로운 촉매가 기존의 니켈 산화물 촉매와 귀금속계 촉매보다 내구성이 우수함을 입증한 것이다. 특히 인화니켈 나노선 촉매는 단위 면적당 높은 반응성을 보여 현재까지 보고된 니켈계 촉매들의 성능 중 최고 수준이다. KIST 유성종 박사는 “미래 청정에너지에 대한 관심이 높아지는 가운데 재생에너지로서 물을 수소와 같은 화학에너지로 변환하는 기술의 상용화는 중요한 이슈가 되고 있다.”라며, “그런 의미에서 이번 연구는 수소에너지 상용화를 한 발 앞당겼다는데 큰 의의가 있다”고 말했다. 본 연구는 KIST 기관고유 연구사업과 미래창조과학부(장관 최양희)의 글로벌프론티어사업과 한국연구재단 중견연구자지원사업 그리고 한인도협력센터 GKP (Global Knowledge Platform) 사업을 통해 수행되었으며 연구결과는 에너지 및 나노 분야의 국제 저명 학술지인 Nano Energy (IF: 11.553) 8월호에 게재되었다. 더욱이, 해당 연구결과는 국내특허 출원 및 해외 특허 출원도 진행 중에 있다. * (논문명) Rationalization of electrocatalysis of nickel phosphide nanowires for efficient hydrogen production - (제1저자) 한국과학기술연구원 정영훈 박사 - (교신저자) 한국과학기술연구원 유성종 박사, 이승철 박사 <그림자료> <그림1> 인화니켈 나노선 촉매를 통한 고효율 수소 발생 반응 스킴. 인화니켈 나노선은 백금과 맞먹는 수준의 수소 발생 능력을 가진 물질이다. <그림2> 고효율, 저가 촉매 제조를 위해 인화니켈을 나노 선으로 성장시키는 과정 및 반응 사이트 분석 <그림 3> 인화니켈 나노선에서 양자역학적 계산을 통한 반응 메커니즘 분석 및 싱크로트론 X-ray로 촉매 전자 구조 분석
KIST, 고효율·저가형 촉매 원천기술 개발로 수소에너지 상용화에 기여
KIST, 고효율·저가형 촉매 원천기술 개발로 수소에너지 상용화에 기여 - 고가의 귀금속 촉매 대체할 저렴한 니켈계 촉매 사용으로 수소 에너지 경제성 향상 - 친환경 물 분해과정을 통한 수소에너지 상용화 및 보급화에 기여 친환경에너지인 수소를 만들기 위해 전 세계적으로 다양한 연구가 진행 중이다. 국내 연구진이 물의 전기분해방법으로 수소를 만드는 데 필요한 촉매의 원료를 저렴하고 내구성이 높은 니켈계 화합물로 제작하는 기술을 개발했다. 기존에 사용했던 고가의 귀금속 촉매 비용보다 약 100배 저렴하고 성능은 거의 동일하여 수소 에너지 상용화에 한발짝 더 가까워질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 연료전지연구센터 유성종 박사와 KIST 한-인도협력센터 이승철 박사는 물 분해를 통한 수소 발생 반응과정에서 고결정성 인화니켈 나노선 화합물을 전극 촉매로 사용, 귀금속 촉매보다 가격을 획기적으로 낮추면서 내구성이 높고 성능이 뛰어난 새로운 촉매를 개발하는데 성공했다고 밝혔다. 수소에너지는 채굴량 한계 및 지역 편재성이 없고, 환경 친화적이기 때문에 차세대 에너지로 각광받는 에너지원이다. 하지만 상용화를 위해서 몇 가지 걸림돌이 있다. 첫째로 현재 많이 사용되고 있는 수소에너지 발전 방식은 물의 전기분해를 통해 수소를 발생시키는 ‘수소 스테이션’ 방법이다. 이 방법은 고순도의 수소를 환경파괴 없이 생산할 수 있지만 웬만한 건물 크기에 맞먹는 대용량 수조가 필요해 도심의 에너지 공급원으로 사용하기 위한 전극의 소형화가 필요하다. 둘째, 전지의 +극인 산소 발생용 전극 재료로는 이리듐 및 루테늄 계열의 귀금속 촉매가, -극인 수소 발생 전극 재료로는 백금이 각각 사용되고 있는데 비용이 높기 때문에 이를 대체하는 값 싼 재료의 개발이 요구된다. 셋째, 현재까지는 백금 촉매가 물을 수소로 전환시키는데 가장 효과적이라고 알려져 있었지만 비싼 가격과 낮은 안정성 문제 때문에 한계에 봉착해 있었다. 니켈계 금속 또는 화합물 촉매의 경우는 백금 촉매에 비해 과전압이 많이 필요로 하여, 가격적인 면의 이점(백금 가격의 1/100)에도 불구하고 주목을 받지 못하고 있었다. 연구팀은 기존 희소 금속인 백금 기반의 촉매보다 뛰어난 고효율, 저가형 촉매 제조를 위해 니켈계 화합물의 일종인 인화니켈의 고효율 반응 가능성에 주목하였다. 이에 연구팀은 양자역학 계산기법을 활용, 인화니켈을 나노선(nanowire)으로 성장시키는 기술을 개발하였다. 연구팀이 개발한 단결정 인화니켈 나노선은 표면에서 니켈 금속과 인의 강한 상호 작용을 통해 니켈금속의 전자 구조를 변형시켜 수소 발생 반응을 극대화시켰음을 보여주었으며 이는 유무기 복합체 사이의 전하 전달이 매우 중요한 역할을 한다는 것을 싱크로트론 X-ray로 세계 최초로 밝혔다. 이는 또한, 물로부터 수소를 발생시키는 경우 니켈계 금속 촉매에서 필요한 과전압보다 60% 더 낮은 과전압에서 고효율로 생산할 수 있음을 보여줌과 동시에 뛰어난 내구성으로 높은 전류와 전압조건에서 운행된 12시간 동안의 물 분해 실험에서 성능이 거의 감소되지 않았다. 이 실험은 새로운 촉매가 기존의 니켈 산화물 촉매와 귀금속계 촉매보다 내구성이 우수함을 입증한 것이다. 특히 인화니켈 나노선 촉매는 단위 면적당 높은 반응성을 보여 현재까지 보고된 니켈계 촉매들의 성능 중 최고 수준이다. KIST 유성종 박사는 “미래 청정에너지에 대한 관심이 높아지는 가운데 재생에너지로서 물을 수소와 같은 화학에너지로 변환하는 기술의 상용화는 중요한 이슈가 되고 있다.”라며, “그런 의미에서 이번 연구는 수소에너지 상용화를 한 발 앞당겼다는데 큰 의의가 있다”고 말했다. 본 연구는 KIST 기관고유 연구사업과 미래창조과학부(장관 최양희)의 글로벌프론티어사업과 한국연구재단 중견연구자지원사업 그리고 한인도협력센터 GKP (Global Knowledge Platform) 사업을 통해 수행되었으며 연구결과는 에너지 및 나노 분야의 국제 저명 학술지인 Nano Energy (IF: 11.553) 8월호에 게재되었다. 더욱이, 해당 연구결과는 국내특허 출원 및 해외 특허 출원도 진행 중에 있다. * (논문명) Rationalization of electrocatalysis of nickel phosphide nanowires for efficient hydrogen production - (제1저자) 한국과학기술연구원 정영훈 박사 - (교신저자) 한국과학기술연구원 유성종 박사, 이승철 박사 <그림자료> <그림1> 인화니켈 나노선 촉매를 통한 고효율 수소 발생 반응 스킴. 인화니켈 나노선은 백금과 맞먹는 수준의 수소 발생 능력을 가진 물질이다. <그림2> 고효율, 저가 촉매 제조를 위해 인화니켈을 나노 선으로 성장시키는 과정 및 반응 사이트 분석 <그림 3> 인화니켈 나노선에서 양자역학적 계산을 통한 반응 메커니즘 분석 및 싱크로트론 X-ray로 촉매 전자 구조 분석
KIST, 고효율·저가형 촉매 원천기술 개발로 수소에너지 상용화에 기여
KIST, 고효율·저가형 촉매 원천기술 개발로 수소에너지 상용화에 기여 - 고가의 귀금속 촉매 대체할 저렴한 니켈계 촉매 사용으로 수소 에너지 경제성 향상 - 친환경 물 분해과정을 통한 수소에너지 상용화 및 보급화에 기여 친환경에너지인 수소를 만들기 위해 전 세계적으로 다양한 연구가 진행 중이다. 국내 연구진이 물의 전기분해방법으로 수소를 만드는 데 필요한 촉매의 원료를 저렴하고 내구성이 높은 니켈계 화합물로 제작하는 기술을 개발했다. 기존에 사용했던 고가의 귀금속 촉매 비용보다 약 100배 저렴하고 성능은 거의 동일하여 수소 에너지 상용화에 한발짝 더 가까워질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 연료전지연구센터 유성종 박사와 KIST 한-인도협력센터 이승철 박사는 물 분해를 통한 수소 발생 반응과정에서 고결정성 인화니켈 나노선 화합물을 전극 촉매로 사용, 귀금속 촉매보다 가격을 획기적으로 낮추면서 내구성이 높고 성능이 뛰어난 새로운 촉매를 개발하는데 성공했다고 밝혔다. 수소에너지는 채굴량 한계 및 지역 편재성이 없고, 환경 친화적이기 때문에 차세대 에너지로 각광받는 에너지원이다. 하지만 상용화를 위해서 몇 가지 걸림돌이 있다. 첫째로 현재 많이 사용되고 있는 수소에너지 발전 방식은 물의 전기분해를 통해 수소를 발생시키는 ‘수소 스테이션’ 방법이다. 이 방법은 고순도의 수소를 환경파괴 없이 생산할 수 있지만 웬만한 건물 크기에 맞먹는 대용량 수조가 필요해 도심의 에너지 공급원으로 사용하기 위한 전극의 소형화가 필요하다. 둘째, 전지의 +극인 산소 발생용 전극 재료로는 이리듐 및 루테늄 계열의 귀금속 촉매가, -극인 수소 발생 전극 재료로는 백금이 각각 사용되고 있는데 비용이 높기 때문에 이를 대체하는 값 싼 재료의 개발이 요구된다. 셋째, 현재까지는 백금 촉매가 물을 수소로 전환시키는데 가장 효과적이라고 알려져 있었지만 비싼 가격과 낮은 안정성 문제 때문에 한계에 봉착해 있었다. 니켈계 금속 또는 화합물 촉매의 경우는 백금 촉매에 비해 과전압이 많이 필요로 하여, 가격적인 면의 이점(백금 가격의 1/100)에도 불구하고 주목을 받지 못하고 있었다. 연구팀은 기존 희소 금속인 백금 기반의 촉매보다 뛰어난 고효율, 저가형 촉매 제조를 위해 니켈계 화합물의 일종인 인화니켈의 고효율 반응 가능성에 주목하였다. 이에 연구팀은 양자역학 계산기법을 활용, 인화니켈을 나노선(nanowire)으로 성장시키는 기술을 개발하였다. 연구팀이 개발한 단결정 인화니켈 나노선은 표면에서 니켈 금속과 인의 강한 상호 작용을 통해 니켈금속의 전자 구조를 변형시켜 수소 발생 반응을 극대화시켰음을 보여주었으며 이는 유무기 복합체 사이의 전하 전달이 매우 중요한 역할을 한다는 것을 싱크로트론 X-ray로 세계 최초로 밝혔다. 이는 또한, 물로부터 수소를 발생시키는 경우 니켈계 금속 촉매에서 필요한 과전압보다 60% 더 낮은 과전압에서 고효율로 생산할 수 있음을 보여줌과 동시에 뛰어난 내구성으로 높은 전류와 전압조건에서 운행된 12시간 동안의 물 분해 실험에서 성능이 거의 감소되지 않았다. 이 실험은 새로운 촉매가 기존의 니켈 산화물 촉매와 귀금속계 촉매보다 내구성이 우수함을 입증한 것이다. 특히 인화니켈 나노선 촉매는 단위 면적당 높은 반응성을 보여 현재까지 보고된 니켈계 촉매들의 성능 중 최고 수준이다. KIST 유성종 박사는 “미래 청정에너지에 대한 관심이 높아지는 가운데 재생에너지로서 물을 수소와 같은 화학에너지로 변환하는 기술의 상용화는 중요한 이슈가 되고 있다.”라며, “그런 의미에서 이번 연구는 수소에너지 상용화를 한 발 앞당겼다는데 큰 의의가 있다”고 말했다. 본 연구는 KIST 기관고유 연구사업과 미래창조과학부(장관 최양희)의 글로벌프론티어사업과 한국연구재단 중견연구자지원사업 그리고 한인도협력센터 GKP (Global Knowledge Platform) 사업을 통해 수행되었으며 연구결과는 에너지 및 나노 분야의 국제 저명 학술지인 Nano Energy (IF: 11.553) 8월호에 게재되었다. 더욱이, 해당 연구결과는 국내특허 출원 및 해외 특허 출원도 진행 중에 있다. * (논문명) Rationalization of electrocatalysis of nickel phosphide nanowires for efficient hydrogen production - (제1저자) 한국과학기술연구원 정영훈 박사 - (교신저자) 한국과학기술연구원 유성종 박사, 이승철 박사 <그림자료> <그림1> 인화니켈 나노선 촉매를 통한 고효율 수소 발생 반응 스킴. 인화니켈 나노선은 백금과 맞먹는 수준의 수소 발생 능력을 가진 물질이다. <그림2> 고효율, 저가 촉매 제조를 위해 인화니켈을 나노 선으로 성장시키는 과정 및 반응 사이트 분석 <그림 3> 인화니켈 나노선에서 양자역학적 계산을 통한 반응 메커니즘 분석 및 싱크로트론 X-ray로 촉매 전자 구조 분석
KIST, 고효율·저가형 촉매 원천기술 개발로 수소에너지 상용화에 기여
KIST, 고효율·저가형 촉매 원천기술 개발로 수소에너지 상용화에 기여 - 고가의 귀금속 촉매 대체할 저렴한 니켈계 촉매 사용으로 수소 에너지 경제성 향상 - 친환경 물 분해과정을 통한 수소에너지 상용화 및 보급화에 기여 친환경에너지인 수소를 만들기 위해 전 세계적으로 다양한 연구가 진행 중이다. 국내 연구진이 물의 전기분해방법으로 수소를 만드는 데 필요한 촉매의 원료를 저렴하고 내구성이 높은 니켈계 화합물로 제작하는 기술을 개발했다. 기존에 사용했던 고가의 귀금속 촉매 비용보다 약 100배 저렴하고 성능은 거의 동일하여 수소 에너지 상용화에 한발짝 더 가까워질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 연료전지연구센터 유성종 박사와 KIST 한-인도협력센터 이승철 박사는 물 분해를 통한 수소 발생 반응과정에서 고결정성 인화니켈 나노선 화합물을 전극 촉매로 사용, 귀금속 촉매보다 가격을 획기적으로 낮추면서 내구성이 높고 성능이 뛰어난 새로운 촉매를 개발하는데 성공했다고 밝혔다. 수소에너지는 채굴량 한계 및 지역 편재성이 없고, 환경 친화적이기 때문에 차세대 에너지로 각광받는 에너지원이다. 하지만 상용화를 위해서 몇 가지 걸림돌이 있다. 첫째로 현재 많이 사용되고 있는 수소에너지 발전 방식은 물의 전기분해를 통해 수소를 발생시키는 ‘수소 스테이션’ 방법이다. 이 방법은 고순도의 수소를 환경파괴 없이 생산할 수 있지만 웬만한 건물 크기에 맞먹는 대용량 수조가 필요해 도심의 에너지 공급원으로 사용하기 위한 전극의 소형화가 필요하다. 둘째, 전지의 +극인 산소 발생용 전극 재료로는 이리듐 및 루테늄 계열의 귀금속 촉매가, -극인 수소 발생 전극 재료로는 백금이 각각 사용되고 있는데 비용이 높기 때문에 이를 대체하는 값 싼 재료의 개발이 요구된다. 셋째, 현재까지는 백금 촉매가 물을 수소로 전환시키는데 가장 효과적이라고 알려져 있었지만 비싼 가격과 낮은 안정성 문제 때문에 한계에 봉착해 있었다. 니켈계 금속 또는 화합물 촉매의 경우는 백금 촉매에 비해 과전압이 많이 필요로 하여, 가격적인 면의 이점(백금 가격의 1/100)에도 불구하고 주목을 받지 못하고 있었다. 연구팀은 기존 희소 금속인 백금 기반의 촉매보다 뛰어난 고효율, 저가형 촉매 제조를 위해 니켈계 화합물의 일종인 인화니켈의 고효율 반응 가능성에 주목하였다. 이에 연구팀은 양자역학 계산기법을 활용, 인화니켈을 나노선(nanowire)으로 성장시키는 기술을 개발하였다. 연구팀이 개발한 단결정 인화니켈 나노선은 표면에서 니켈 금속과 인의 강한 상호 작용을 통해 니켈금속의 전자 구조를 변형시켜 수소 발생 반응을 극대화시켰음을 보여주었으며 이는 유무기 복합체 사이의 전하 전달이 매우 중요한 역할을 한다는 것을 싱크로트론 X-ray로 세계 최초로 밝혔다. 이는 또한, 물로부터 수소를 발생시키는 경우 니켈계 금속 촉매에서 필요한 과전압보다 60% 더 낮은 과전압에서 고효율로 생산할 수 있음을 보여줌과 동시에 뛰어난 내구성으로 높은 전류와 전압조건에서 운행된 12시간 동안의 물 분해 실험에서 성능이 거의 감소되지 않았다. 이 실험은 새로운 촉매가 기존의 니켈 산화물 촉매와 귀금속계 촉매보다 내구성이 우수함을 입증한 것이다. 특히 인화니켈 나노선 촉매는 단위 면적당 높은 반응성을 보여 현재까지 보고된 니켈계 촉매들의 성능 중 최고 수준이다. KIST 유성종 박사는 “미래 청정에너지에 대한 관심이 높아지는 가운데 재생에너지로서 물을 수소와 같은 화학에너지로 변환하는 기술의 상용화는 중요한 이슈가 되고 있다.”라며, “그런 의미에서 이번 연구는 수소에너지 상용화를 한 발 앞당겼다는데 큰 의의가 있다”고 말했다. 본 연구는 KIST 기관고유 연구사업과 미래창조과학부(장관 최양희)의 글로벌프론티어사업과 한국연구재단 중견연구자지원사업 그리고 한인도협력센터 GKP (Global Knowledge Platform) 사업을 통해 수행되었으며 연구결과는 에너지 및 나노 분야의 국제 저명 학술지인 Nano Energy (IF: 11.553) 8월호에 게재되었다. 더욱이, 해당 연구결과는 국내특허 출원 및 해외 특허 출원도 진행 중에 있다. * (논문명) Rationalization of electrocatalysis of nickel phosphide nanowires for efficient hydrogen production - (제1저자) 한국과학기술연구원 정영훈 박사 - (교신저자) 한국과학기술연구원 유성종 박사, 이승철 박사 <그림자료> <그림1> 인화니켈 나노선 촉매를 통한 고효율 수소 발생 반응 스킴. 인화니켈 나노선은 백금과 맞먹는 수준의 수소 발생 능력을 가진 물질이다. <그림2> 고효율, 저가 촉매 제조를 위해 인화니켈을 나노 선으로 성장시키는 과정 및 반응 사이트 분석 <그림 3> 인화니켈 나노선에서 양자역학적 계산을 통한 반응 메커니즘 분석 및 싱크로트론 X-ray로 촉매 전자 구조 분석
KIST, 고효율·저가형 촉매 원천기술 개발로 수소에너지 상용화에 기여
KIST, 고효율·저가형 촉매 원천기술 개발로 수소에너지 상용화에 기여 - 고가의 귀금속 촉매 대체할 저렴한 니켈계 촉매 사용으로 수소 에너지 경제성 향상 - 친환경 물 분해과정을 통한 수소에너지 상용화 및 보급화에 기여 친환경에너지인 수소를 만들기 위해 전 세계적으로 다양한 연구가 진행 중이다. 국내 연구진이 물의 전기분해방법으로 수소를 만드는 데 필요한 촉매의 원료를 저렴하고 내구성이 높은 니켈계 화합물로 제작하는 기술을 개발했다. 기존에 사용했던 고가의 귀금속 촉매 비용보다 약 100배 저렴하고 성능은 거의 동일하여 수소 에너지 상용화에 한발짝 더 가까워질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 연료전지연구센터 유성종 박사와 KIST 한-인도협력센터 이승철 박사는 물 분해를 통한 수소 발생 반응과정에서 고결정성 인화니켈 나노선 화합물을 전극 촉매로 사용, 귀금속 촉매보다 가격을 획기적으로 낮추면서 내구성이 높고 성능이 뛰어난 새로운 촉매를 개발하는데 성공했다고 밝혔다. 수소에너지는 채굴량 한계 및 지역 편재성이 없고, 환경 친화적이기 때문에 차세대 에너지로 각광받는 에너지원이다. 하지만 상용화를 위해서 몇 가지 걸림돌이 있다. 첫째로 현재 많이 사용되고 있는 수소에너지 발전 방식은 물의 전기분해를 통해 수소를 발생시키는 ‘수소 스테이션’ 방법이다. 이 방법은 고순도의 수소를 환경파괴 없이 생산할 수 있지만 웬만한 건물 크기에 맞먹는 대용량 수조가 필요해 도심의 에너지 공급원으로 사용하기 위한 전극의 소형화가 필요하다. 둘째, 전지의 +극인 산소 발생용 전극 재료로는 이리듐 및 루테늄 계열의 귀금속 촉매가, -극인 수소 발생 전극 재료로는 백금이 각각 사용되고 있는데 비용이 높기 때문에 이를 대체하는 값 싼 재료의 개발이 요구된다. 셋째, 현재까지는 백금 촉매가 물을 수소로 전환시키는데 가장 효과적이라고 알려져 있었지만 비싼 가격과 낮은 안정성 문제 때문에 한계에 봉착해 있었다. 니켈계 금속 또는 화합물 촉매의 경우는 백금 촉매에 비해 과전압이 많이 필요로 하여, 가격적인 면의 이점(백금 가격의 1/100)에도 불구하고 주목을 받지 못하고 있었다. 연구팀은 기존 희소 금속인 백금 기반의 촉매보다 뛰어난 고효율, 저가형 촉매 제조를 위해 니켈계 화합물의 일종인 인화니켈의 고효율 반응 가능성에 주목하였다. 이에 연구팀은 양자역학 계산기법을 활용, 인화니켈을 나노선(nanowire)으로 성장시키는 기술을 개발하였다. 연구팀이 개발한 단결정 인화니켈 나노선은 표면에서 니켈 금속과 인의 강한 상호 작용을 통해 니켈금속의 전자 구조를 변형시켜 수소 발생 반응을 극대화시켰음을 보여주었으며 이는 유무기 복합체 사이의 전하 전달이 매우 중요한 역할을 한다는 것을 싱크로트론 X-ray로 세계 최초로 밝혔다. 이는 또한, 물로부터 수소를 발생시키는 경우 니켈계 금속 촉매에서 필요한 과전압보다 60% 더 낮은 과전압에서 고효율로 생산할 수 있음을 보여줌과 동시에 뛰어난 내구성으로 높은 전류와 전압조건에서 운행된 12시간 동안의 물 분해 실험에서 성능이 거의 감소되지 않았다. 이 실험은 새로운 촉매가 기존의 니켈 산화물 촉매와 귀금속계 촉매보다 내구성이 우수함을 입증한 것이다. 특히 인화니켈 나노선 촉매는 단위 면적당 높은 반응성을 보여 현재까지 보고된 니켈계 촉매들의 성능 중 최고 수준이다. KIST 유성종 박사는 “미래 청정에너지에 대한 관심이 높아지는 가운데 재생에너지로서 물을 수소와 같은 화학에너지로 변환하는 기술의 상용화는 중요한 이슈가 되고 있다.”라며, “그런 의미에서 이번 연구는 수소에너지 상용화를 한 발 앞당겼다는데 큰 의의가 있다”고 말했다. 본 연구는 KIST 기관고유 연구사업과 미래창조과학부(장관 최양희)의 글로벌프론티어사업과 한국연구재단 중견연구자지원사업 그리고 한인도협력센터 GKP (Global Knowledge Platform) 사업을 통해 수행되었으며 연구결과는 에너지 및 나노 분야의 국제 저명 학술지인 Nano Energy (IF: 11.553) 8월호에 게재되었다. 더욱이, 해당 연구결과는 국내특허 출원 및 해외 특허 출원도 진행 중에 있다. * (논문명) Rationalization of electrocatalysis of nickel phosphide nanowires for efficient hydrogen production - (제1저자) 한국과학기술연구원 정영훈 박사 - (교신저자) 한국과학기술연구원 유성종 박사, 이승철 박사 <그림자료> <그림1> 인화니켈 나노선 촉매를 통한 고효율 수소 발생 반응 스킴. 인화니켈 나노선은 백금과 맞먹는 수준의 수소 발생 능력을 가진 물질이다. <그림2> 고효율, 저가 촉매 제조를 위해 인화니켈을 나노 선으로 성장시키는 과정 및 반응 사이트 분석 <그림 3> 인화니켈 나노선에서 양자역학적 계산을 통한 반응 메커니즘 분석 및 싱크로트론 X-ray로 촉매 전자 구조 분석