Result
게시물 키워드""에 대한 9490개의 검색결과를 찾았습니다.
KIST, 단일층 맞춤형 그래핀으로 가스차단 기술 개발
KIST, 단일층 맞춤형 그래핀으로 가스차단 기술 개발 - 단일층 그래핀으로 수분을 60% 이상 차단하는 기술개발 - 수분으로 인한 플랙서블 디스플레이의 수명 단축 문제해결 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 양자응용복합소재연구센터 김명종 박사팀은 전기화학 연마 공정을 거친 그래핀 필름의 합성단계를 2단계(*2단계 성장법)로 나눠 진행하여 그래핀 결점을 최소화 하여 화학기상증착법(*CVD(Chemical Vapor Deposition))을 이용한 가스차a단 맞춤형 그래핀을 개발했다. 연구팀은 차단 특성을 확인하기 위하여 기존 방식과 다른 새로운 그래핀 가스차단 모델을 제시했다. 가스차단 필름은 작게는 식품포장재부터 크게는 디스플레이까지 다양한 범위의 제품에 활용되고 있다. 이러한 가스 차단 필름은 통상 산소나 수분을 차단하여 제품의 내구성을 높여준다. 특히 최근 폭발적인 성장을 보이고 있는 플렉시블 디스플레이 분야에서는 고분자 기반 소재가 기판으로 가장 많은 기대를 받고 있으나, 산소 및 수분 차단 특성이 부족하여 이에 대한 대안으로서 가스차단 필름에 대한 관심이 증가되고 있다. 하지만 기존의 가스차단 필름의 재료인 유리, 세라믹 및 금속 등은 비용 및 기술적인 문제로 인해 그 활용에 한계가 있었다. 이러한 한계점을 극복하고자 다양한 금속박막, 고분자, 나노 입자를 복합화하는 등 다양하고 폭 넓은 시도가 이루어지고 있으며 그 중 신소재인 그래핀이 주목을 받고 있다. 그래핀은 육각형 구조를 가진 탄소의 단일 소재로 가스와 같은 작은 분자단위 투과를 차단하는 효과 뿐만 아니라 높은 비표면적 (2,600 m2/g)을 가지며, 전기적 (20,000 cm2/Vs), 기계적(>1000 GPa), 열적 (~3000 W/mK)물성 등이 우수한 소재로 알려져 있다. 다만 기존의 화학기상증착법 (CVD)방식으로는 그래핀 합성과정상 문제로 가스차단 필름 생성에 어려움이 있었다. 김명종 박사팀은 맞춤형 화학기상증착법 (CVD)을 이용하되 금속 층에 탄소 전구체를 포함하는 반응 가스 및 열을 제공하여 반응시킴으로써 금속 층에 하나의 가스차단 맞춤형 CVD 그래핀을 합성하였다. 기존의 1단계 성장법으로 합성된 그래핀에서 발생되는 결점들로 인한 한계를 극복하기 위하여 금속 촉매 기판을 전기화학 연마 (Electro-chemical Polishing) 처리하여 금속 촉매 기판 표면의 불순물을 제거하고 거칠기 (Roughness)를 조절하였다. 더 나아가, 그래핀 필름의 합성 단계를 2단계로 나눈 2단계 성장법을 통해 그래핀의 결점을 제어하고 가스차단 특성을 향상시켰다. 이러한 가스차단 맞춤형 CVD 그래핀을 PET 기판에 전사하여 수분투과도 (Water Vapor Transmission Rate)를 측정한 결과, 그래핀 1장으로도 수분투과도가 PET 기판 대비 60% 정도 감소하였다. 김명종 박사팀은 이러한 결과를 토대로 수분투과도와 그래핀 결점 밀도 (Defect density)의 연관성을 확인하고 기존의 가스차단 특성 확인 방식과는 다른 해석방법으로 새로운 그래핀 가스차단 모델을 제시하였다. 본 연구는 미래창조과학부(장관, 최양희) 지원으로 KIST 기관고유사업과 산업부 그래핀 소재/부품 기술개발사업 3세부 과제 (주관: 상보)로 수행되었으며, 네이쳐 그룹 (Nature group) 에서 발간하는 사이언티픽 리포트 (Scientific Reports, Impact Factor: 5.578)의 2016년 4월호에 게재되었다. 논문의 제1저자는 박사후 연구원인 서태훈 박사, KIST 조선대 학연 석사과정생인 이슬아 연구원이며, 조선대(이재관 교수), 동아대(이헌상 교수)와의 공동연구 결과이다. * (논문명) ‘Tailored CVD grahene coating as a transparent and flexible gas barrier’ - (제1저자) 서태훈 박사후 연구원, 이슬아 연구원 - (교신저자) 한국과학기술연구원 복합소재기술연구소 김명종 박사 <그림자료> <그림 1> KIST 김명종 선임연구원팀은 기존의 1단계 성장법으로 합성된 그래핀에서 발생하는 결점을 제어하기 위해, 전기화학 연마 (Electro-chemical polishing) 공정과 2단계 성장법을 통해 그래핀의 결점을 최소화한 가스차단 맞춤형 CVD 그래핀을 합성하였다. 위 그림은 전기화학 연마 공정과 2단께 성장법을 적용하여 합성한 가스차단 맞춤형 CVD 그래핀의 수분투과도 (Water Vapor Transmission Rate)를 측정하기 위해 PET 기판에 전사한 이미지이며, 이는 PET 기판에 전사한 그래핀의 훌륭한 유연성을 보여주고 있다. <그림 2> 해당 그림은 가스차단 맞춤형 CVD 그래핀의 수분투과도 (Water Vapor Transmission Rate) 및 투과성 (Permeability)을 보여주는 결과이다, 이는 수분투과도 장비를 이용하여 측정하였으며, 측정은 24 시간 동안 진행하여 정상 상태에 도달하였다. 그 결과, 전기화학 연마 공정과 2단계 성장법을 적용하여 합성한 가스차단 맞춤형 CVD 그래핀의 경우 PET 대비 60 % 정도 감소한 수분투과도 값을 나타냈다. <그림3> 해당 그림은 AFM (Atomic Force Microscope)를 통해 그래핀의 결점 밀도 (Defect density)를 보여주는 결과이다. 구리 에칭용 시약 (Copper etchant)를 통해 결점 분석 실험을 진행한 결과, 전기화학 연마 공정과 2단계 성장법을 적용하여 합성한 가스차단 맞춤형 CVD 그래핀의 경우 같은 면적 내의 결점 밀도 수가 가장 낮은 값을 보여주고 있다.
KIST, 단일층 맞춤형 그래핀으로 가스차단 기술 개발
KIST, 단일층 맞춤형 그래핀으로 가스차단 기술 개발 - 단일층 그래핀으로 수분을 60% 이상 차단하는 기술개발 - 수분으로 인한 플랙서블 디스플레이의 수명 단축 문제해결 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 양자응용복합소재연구센터 김명종 박사팀은 전기화학 연마 공정을 거친 그래핀 필름의 합성단계를 2단계(*2단계 성장법)로 나눠 진행하여 그래핀 결점을 최소화 하여 화학기상증착법(*CVD(Chemical Vapor Deposition))을 이용한 가스차a단 맞춤형 그래핀을 개발했다. 연구팀은 차단 특성을 확인하기 위하여 기존 방식과 다른 새로운 그래핀 가스차단 모델을 제시했다. 가스차단 필름은 작게는 식품포장재부터 크게는 디스플레이까지 다양한 범위의 제품에 활용되고 있다. 이러한 가스 차단 필름은 통상 산소나 수분을 차단하여 제품의 내구성을 높여준다. 특히 최근 폭발적인 성장을 보이고 있는 플렉시블 디스플레이 분야에서는 고분자 기반 소재가 기판으로 가장 많은 기대를 받고 있으나, 산소 및 수분 차단 특성이 부족하여 이에 대한 대안으로서 가스차단 필름에 대한 관심이 증가되고 있다. 하지만 기존의 가스차단 필름의 재료인 유리, 세라믹 및 금속 등은 비용 및 기술적인 문제로 인해 그 활용에 한계가 있었다. 이러한 한계점을 극복하고자 다양한 금속박막, 고분자, 나노 입자를 복합화하는 등 다양하고 폭 넓은 시도가 이루어지고 있으며 그 중 신소재인 그래핀이 주목을 받고 있다. 그래핀은 육각형 구조를 가진 탄소의 단일 소재로 가스와 같은 작은 분자단위 투과를 차단하는 효과 뿐만 아니라 높은 비표면적 (2,600 m2/g)을 가지며, 전기적 (20,000 cm2/Vs), 기계적(>1000 GPa), 열적 (~3000 W/mK)물성 등이 우수한 소재로 알려져 있다. 다만 기존의 화학기상증착법 (CVD)방식으로는 그래핀 합성과정상 문제로 가스차단 필름 생성에 어려움이 있었다. 김명종 박사팀은 맞춤형 화학기상증착법 (CVD)을 이용하되 금속 층에 탄소 전구체를 포함하는 반응 가스 및 열을 제공하여 반응시킴으로써 금속 층에 하나의 가스차단 맞춤형 CVD 그래핀을 합성하였다. 기존의 1단계 성장법으로 합성된 그래핀에서 발생되는 결점들로 인한 한계를 극복하기 위하여 금속 촉매 기판을 전기화학 연마 (Electro-chemical Polishing) 처리하여 금속 촉매 기판 표면의 불순물을 제거하고 거칠기 (Roughness)를 조절하였다. 더 나아가, 그래핀 필름의 합성 단계를 2단계로 나눈 2단계 성장법을 통해 그래핀의 결점을 제어하고 가스차단 특성을 향상시켰다. 이러한 가스차단 맞춤형 CVD 그래핀을 PET 기판에 전사하여 수분투과도 (Water Vapor Transmission Rate)를 측정한 결과, 그래핀 1장으로도 수분투과도가 PET 기판 대비 60% 정도 감소하였다. 김명종 박사팀은 이러한 결과를 토대로 수분투과도와 그래핀 결점 밀도 (Defect density)의 연관성을 확인하고 기존의 가스차단 특성 확인 방식과는 다른 해석방법으로 새로운 그래핀 가스차단 모델을 제시하였다. 본 연구는 미래창조과학부(장관, 최양희) 지원으로 KIST 기관고유사업과 산업부 그래핀 소재/부품 기술개발사업 3세부 과제 (주관: 상보)로 수행되었으며, 네이쳐 그룹 (Nature group) 에서 발간하는 사이언티픽 리포트 (Scientific Reports, Impact Factor: 5.578)의 2016년 4월호에 게재되었다. 논문의 제1저자는 박사후 연구원인 서태훈 박사, KIST 조선대 학연 석사과정생인 이슬아 연구원이며, 조선대(이재관 교수), 동아대(이헌상 교수)와의 공동연구 결과이다. * (논문명) ‘Tailored CVD grahene coating as a transparent and flexible gas barrier’ - (제1저자) 서태훈 박사후 연구원, 이슬아 연구원 - (교신저자) 한국과학기술연구원 복합소재기술연구소 김명종 박사 <그림자료> <그림 1> KIST 김명종 선임연구원팀은 기존의 1단계 성장법으로 합성된 그래핀에서 발생하는 결점을 제어하기 위해, 전기화학 연마 (Electro-chemical polishing) 공정과 2단계 성장법을 통해 그래핀의 결점을 최소화한 가스차단 맞춤형 CVD 그래핀을 합성하였다. 위 그림은 전기화학 연마 공정과 2단께 성장법을 적용하여 합성한 가스차단 맞춤형 CVD 그래핀의 수분투과도 (Water Vapor Transmission Rate)를 측정하기 위해 PET 기판에 전사한 이미지이며, 이는 PET 기판에 전사한 그래핀의 훌륭한 유연성을 보여주고 있다. <그림 2> 해당 그림은 가스차단 맞춤형 CVD 그래핀의 수분투과도 (Water Vapor Transmission Rate) 및 투과성 (Permeability)을 보여주는 결과이다, 이는 수분투과도 장비를 이용하여 측정하였으며, 측정은 24 시간 동안 진행하여 정상 상태에 도달하였다. 그 결과, 전기화학 연마 공정과 2단계 성장법을 적용하여 합성한 가스차단 맞춤형 CVD 그래핀의 경우 PET 대비 60 % 정도 감소한 수분투과도 값을 나타냈다. <그림3> 해당 그림은 AFM (Atomic Force Microscope)를 통해 그래핀의 결점 밀도 (Defect density)를 보여주는 결과이다. 구리 에칭용 시약 (Copper etchant)를 통해 결점 분석 실험을 진행한 결과, 전기화학 연마 공정과 2단계 성장법을 적용하여 합성한 가스차단 맞춤형 CVD 그래핀의 경우 같은 면적 내의 결점 밀도 수가 가장 낮은 값을 보여주고 있다.
KIST, 단일층 맞춤형 그래핀으로 가스차단 기술 개발
KIST, 단일층 맞춤형 그래핀으로 가스차단 기술 개발 - 단일층 그래핀으로 수분을 60% 이상 차단하는 기술개발 - 수분으로 인한 플랙서블 디스플레이의 수명 단축 문제해결 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 양자응용복합소재연구센터 김명종 박사팀은 전기화학 연마 공정을 거친 그래핀 필름의 합성단계를 2단계(*2단계 성장법)로 나눠 진행하여 그래핀 결점을 최소화 하여 화학기상증착법(*CVD(Chemical Vapor Deposition))을 이용한 가스차a단 맞춤형 그래핀을 개발했다. 연구팀은 차단 특성을 확인하기 위하여 기존 방식과 다른 새로운 그래핀 가스차단 모델을 제시했다. 가스차단 필름은 작게는 식품포장재부터 크게는 디스플레이까지 다양한 범위의 제품에 활용되고 있다. 이러한 가스 차단 필름은 통상 산소나 수분을 차단하여 제품의 내구성을 높여준다. 특히 최근 폭발적인 성장을 보이고 있는 플렉시블 디스플레이 분야에서는 고분자 기반 소재가 기판으로 가장 많은 기대를 받고 있으나, 산소 및 수분 차단 특성이 부족하여 이에 대한 대안으로서 가스차단 필름에 대한 관심이 증가되고 있다. 하지만 기존의 가스차단 필름의 재료인 유리, 세라믹 및 금속 등은 비용 및 기술적인 문제로 인해 그 활용에 한계가 있었다. 이러한 한계점을 극복하고자 다양한 금속박막, 고분자, 나노 입자를 복합화하는 등 다양하고 폭 넓은 시도가 이루어지고 있으며 그 중 신소재인 그래핀이 주목을 받고 있다. 그래핀은 육각형 구조를 가진 탄소의 단일 소재로 가스와 같은 작은 분자단위 투과를 차단하는 효과 뿐만 아니라 높은 비표면적 (2,600 m2/g)을 가지며, 전기적 (20,000 cm2/Vs), 기계적(>1000 GPa), 열적 (~3000 W/mK)물성 등이 우수한 소재로 알려져 있다. 다만 기존의 화학기상증착법 (CVD)방식으로는 그래핀 합성과정상 문제로 가스차단 필름 생성에 어려움이 있었다. 김명종 박사팀은 맞춤형 화학기상증착법 (CVD)을 이용하되 금속 층에 탄소 전구체를 포함하는 반응 가스 및 열을 제공하여 반응시킴으로써 금속 층에 하나의 가스차단 맞춤형 CVD 그래핀을 합성하였다. 기존의 1단계 성장법으로 합성된 그래핀에서 발생되는 결점들로 인한 한계를 극복하기 위하여 금속 촉매 기판을 전기화학 연마 (Electro-chemical Polishing) 처리하여 금속 촉매 기판 표면의 불순물을 제거하고 거칠기 (Roughness)를 조절하였다. 더 나아가, 그래핀 필름의 합성 단계를 2단계로 나눈 2단계 성장법을 통해 그래핀의 결점을 제어하고 가스차단 특성을 향상시켰다. 이러한 가스차단 맞춤형 CVD 그래핀을 PET 기판에 전사하여 수분투과도 (Water Vapor Transmission Rate)를 측정한 결과, 그래핀 1장으로도 수분투과도가 PET 기판 대비 60% 정도 감소하였다. 김명종 박사팀은 이러한 결과를 토대로 수분투과도와 그래핀 결점 밀도 (Defect density)의 연관성을 확인하고 기존의 가스차단 특성 확인 방식과는 다른 해석방법으로 새로운 그래핀 가스차단 모델을 제시하였다. 본 연구는 미래창조과학부(장관, 최양희) 지원으로 KIST 기관고유사업과 산업부 그래핀 소재/부품 기술개발사업 3세부 과제 (주관: 상보)로 수행되었으며, 네이쳐 그룹 (Nature group) 에서 발간하는 사이언티픽 리포트 (Scientific Reports, Impact Factor: 5.578)의 2016년 4월호에 게재되었다. 논문의 제1저자는 박사후 연구원인 서태훈 박사, KIST 조선대 학연 석사과정생인 이슬아 연구원이며, 조선대(이재관 교수), 동아대(이헌상 교수)와의 공동연구 결과이다. * (논문명) ‘Tailored CVD grahene coating as a transparent and flexible gas barrier’ - (제1저자) 서태훈 박사후 연구원, 이슬아 연구원 - (교신저자) 한국과학기술연구원 복합소재기술연구소 김명종 박사 <그림자료> <그림 1> KIST 김명종 선임연구원팀은 기존의 1단계 성장법으로 합성된 그래핀에서 발생하는 결점을 제어하기 위해, 전기화학 연마 (Electro-chemical polishing) 공정과 2단계 성장법을 통해 그래핀의 결점을 최소화한 가스차단 맞춤형 CVD 그래핀을 합성하였다. 위 그림은 전기화학 연마 공정과 2단께 성장법을 적용하여 합성한 가스차단 맞춤형 CVD 그래핀의 수분투과도 (Water Vapor Transmission Rate)를 측정하기 위해 PET 기판에 전사한 이미지이며, 이는 PET 기판에 전사한 그래핀의 훌륭한 유연성을 보여주고 있다. <그림 2> 해당 그림은 가스차단 맞춤형 CVD 그래핀의 수분투과도 (Water Vapor Transmission Rate) 및 투과성 (Permeability)을 보여주는 결과이다, 이는 수분투과도 장비를 이용하여 측정하였으며, 측정은 24 시간 동안 진행하여 정상 상태에 도달하였다. 그 결과, 전기화학 연마 공정과 2단계 성장법을 적용하여 합성한 가스차단 맞춤형 CVD 그래핀의 경우 PET 대비 60 % 정도 감소한 수분투과도 값을 나타냈다. <그림3> 해당 그림은 AFM (Atomic Force Microscope)를 통해 그래핀의 결점 밀도 (Defect density)를 보여주는 결과이다. 구리 에칭용 시약 (Copper etchant)를 통해 결점 분석 실험을 진행한 결과, 전기화학 연마 공정과 2단계 성장법을 적용하여 합성한 가스차단 맞춤형 CVD 그래핀의 경우 같은 면적 내의 결점 밀도 수가 가장 낮은 값을 보여주고 있다.
KIST, 단일층 맞춤형 그래핀으로 가스차단 기술 개발
KIST, 단일층 맞춤형 그래핀으로 가스차단 기술 개발 - 단일층 그래핀으로 수분을 60% 이상 차단하는 기술개발 - 수분으로 인한 플랙서블 디스플레이의 수명 단축 문제해결 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 양자응용복합소재연구센터 김명종 박사팀은 전기화학 연마 공정을 거친 그래핀 필름의 합성단계를 2단계(*2단계 성장법)로 나눠 진행하여 그래핀 결점을 최소화 하여 화학기상증착법(*CVD(Chemical Vapor Deposition))을 이용한 가스차a단 맞춤형 그래핀을 개발했다. 연구팀은 차단 특성을 확인하기 위하여 기존 방식과 다른 새로운 그래핀 가스차단 모델을 제시했다. 가스차단 필름은 작게는 식품포장재부터 크게는 디스플레이까지 다양한 범위의 제품에 활용되고 있다. 이러한 가스 차단 필름은 통상 산소나 수분을 차단하여 제품의 내구성을 높여준다. 특히 최근 폭발적인 성장을 보이고 있는 플렉시블 디스플레이 분야에서는 고분자 기반 소재가 기판으로 가장 많은 기대를 받고 있으나, 산소 및 수분 차단 특성이 부족하여 이에 대한 대안으로서 가스차단 필름에 대한 관심이 증가되고 있다. 하지만 기존의 가스차단 필름의 재료인 유리, 세라믹 및 금속 등은 비용 및 기술적인 문제로 인해 그 활용에 한계가 있었다. 이러한 한계점을 극복하고자 다양한 금속박막, 고분자, 나노 입자를 복합화하는 등 다양하고 폭 넓은 시도가 이루어지고 있으며 그 중 신소재인 그래핀이 주목을 받고 있다. 그래핀은 육각형 구조를 가진 탄소의 단일 소재로 가스와 같은 작은 분자단위 투과를 차단하는 효과 뿐만 아니라 높은 비표면적 (2,600 m2/g)을 가지며, 전기적 (20,000 cm2/Vs), 기계적(>1000 GPa), 열적 (~3000 W/mK)물성 등이 우수한 소재로 알려져 있다. 다만 기존의 화학기상증착법 (CVD)방식으로는 그래핀 합성과정상 문제로 가스차단 필름 생성에 어려움이 있었다. 김명종 박사팀은 맞춤형 화학기상증착법 (CVD)을 이용하되 금속 층에 탄소 전구체를 포함하는 반응 가스 및 열을 제공하여 반응시킴으로써 금속 층에 하나의 가스차단 맞춤형 CVD 그래핀을 합성하였다. 기존의 1단계 성장법으로 합성된 그래핀에서 발생되는 결점들로 인한 한계를 극복하기 위하여 금속 촉매 기판을 전기화학 연마 (Electro-chemical Polishing) 처리하여 금속 촉매 기판 표면의 불순물을 제거하고 거칠기 (Roughness)를 조절하였다. 더 나아가, 그래핀 필름의 합성 단계를 2단계로 나눈 2단계 성장법을 통해 그래핀의 결점을 제어하고 가스차단 특성을 향상시켰다. 이러한 가스차단 맞춤형 CVD 그래핀을 PET 기판에 전사하여 수분투과도 (Water Vapor Transmission Rate)를 측정한 결과, 그래핀 1장으로도 수분투과도가 PET 기판 대비 60% 정도 감소하였다. 김명종 박사팀은 이러한 결과를 토대로 수분투과도와 그래핀 결점 밀도 (Defect density)의 연관성을 확인하고 기존의 가스차단 특성 확인 방식과는 다른 해석방법으로 새로운 그래핀 가스차단 모델을 제시하였다. 본 연구는 미래창조과학부(장관, 최양희) 지원으로 KIST 기관고유사업과 산업부 그래핀 소재/부품 기술개발사업 3세부 과제 (주관: 상보)로 수행되었으며, 네이쳐 그룹 (Nature group) 에서 발간하는 사이언티픽 리포트 (Scientific Reports, Impact Factor: 5.578)의 2016년 4월호에 게재되었다. 논문의 제1저자는 박사후 연구원인 서태훈 박사, KIST 조선대 학연 석사과정생인 이슬아 연구원이며, 조선대(이재관 교수), 동아대(이헌상 교수)와의 공동연구 결과이다. * (논문명) ‘Tailored CVD grahene coating as a transparent and flexible gas barrier’ - (제1저자) 서태훈 박사후 연구원, 이슬아 연구원 - (교신저자) 한국과학기술연구원 복합소재기술연구소 김명종 박사 <그림자료> <그림 1> KIST 김명종 선임연구원팀은 기존의 1단계 성장법으로 합성된 그래핀에서 발생하는 결점을 제어하기 위해, 전기화학 연마 (Electro-chemical polishing) 공정과 2단계 성장법을 통해 그래핀의 결점을 최소화한 가스차단 맞춤형 CVD 그래핀을 합성하였다. 위 그림은 전기화학 연마 공정과 2단께 성장법을 적용하여 합성한 가스차단 맞춤형 CVD 그래핀의 수분투과도 (Water Vapor Transmission Rate)를 측정하기 위해 PET 기판에 전사한 이미지이며, 이는 PET 기판에 전사한 그래핀의 훌륭한 유연성을 보여주고 있다. <그림 2> 해당 그림은 가스차단 맞춤형 CVD 그래핀의 수분투과도 (Water Vapor Transmission Rate) 및 투과성 (Permeability)을 보여주는 결과이다, 이는 수분투과도 장비를 이용하여 측정하였으며, 측정은 24 시간 동안 진행하여 정상 상태에 도달하였다. 그 결과, 전기화학 연마 공정과 2단계 성장법을 적용하여 합성한 가스차단 맞춤형 CVD 그래핀의 경우 PET 대비 60 % 정도 감소한 수분투과도 값을 나타냈다. <그림3> 해당 그림은 AFM (Atomic Force Microscope)를 통해 그래핀의 결점 밀도 (Defect density)를 보여주는 결과이다. 구리 에칭용 시약 (Copper etchant)를 통해 결점 분석 실험을 진행한 결과, 전기화학 연마 공정과 2단계 성장법을 적용하여 합성한 가스차단 맞춤형 CVD 그래핀의 경우 같은 면적 내의 결점 밀도 수가 가장 낮은 값을 보여주고 있다.
KIST ‘치매 DTC 융합연구단’ 현판식 개최 (2016.05.18)
KIST ‘치매 DTC 융합연구단’ 현판식 개최 - 치매 조기예측, 치료제 및 환자케어 기술개발로 치매 해결 한국과학기술연구원(KIST, 원장 이병권)은 5월 18일(수) 오후 KIST 서울 본원에서 국가과학기술연구회(NST, 이사장 이상천)가 시행하는 융합연구단사업으로 선정돼 본격적인 활동을 시작한 ‘치매 DTC(Diagnosis/Treatment/Care) 융합연구단(단장 배애님)’의 현판식을 가졌다. 치매 DTC융합연구단은 국가과학기술연구회의 지원으로 KIST가 주관하여 치매조기 예측, 치매치료제 유효성 확보, 치매평가 신규 플랫폼 구현, 인지재활용 라이프케어로봇 개발을 통해 국가 현안인 치매 해결을 위한 기술 개발을 목표로 하고 있다. 또한, 한국생명공학연구원, 한국과학기술정보연구원, 한국한의학연구원 등 4개의 정부 출연연, 동아쏘시오 홀딩스 등 5개의 참여기업, 삼성의료원 등 3개 대학병원, 서울대 등 6개 대학이 참여하여 6년간 총 512억원의 연구개발비가 투입될 예정이다. 이 사업을 통해 치매 관련 예측 기술, 신규 치료제 플랫폼 및 케어 로봇 원천기술 확보, 노인 치매 조기 발견으로 유병율 감소 및 조호 지원을 통한 사회적 비용 절감 및 보다 건강한 삶 실현, IT가 적용된 의료산업의 신시장 창출, 고령사회를 대비한 기술의 국제경쟁력 확보가 기대된다.
KIST, ATC(우수기술연구센터)협회와 산업인력양성 및 연구협력협정 체결 (2016.05.12)
KIST, ATC(우수기술연구센터)협회와 산업인력양성 및 연구협력협정 체결 - UST 계약학과 제도로 산업계 맞춤형 인재 양성 한국과학기술연구원(KIST, 원장 이병권)과 ATC협회(협회장 나종주)는 5월 12일(목) KIST 서울 본원에서 산업계 맞춤형 인재양성과 상용화 기술개발을 위한 연구협력협정을 체결했다. 이번 협력협정 체결을 통하여 KIST는 ATC협회 산하 200여 회원사의 맞춤형 산업 인력 양성을 위하여 UST 계약학과를 운영하고, 이를 위하여 양 기관이 상호 협력하기로 했다. 또한 ATC협회는 KIST가 운영하고 있는 기술사업화 지원프로그램에 공동 참여하고 기술교류를 확대하는 등 R&D성과 확산과 상용화 기술개발을 위한 노력을 강화하기로 하였다. KIST 이병권 원장은 “ATC협회와의 적극적인 협력을 통해 기업이 필요로 하는 R&D 인재 양성으로 두 기관이 상생하는 새로운 산·연 협력모델을 만들어 창조경제의 확산에 기여하겠다”고 밝혔다.
KIST-고려대 공동연구팀, 현존 최고의 인장강도를 지닌 금속 나노선 개발
KIST-고려대 공동연구팀, 현존 최고의 인장강도를 지닌 금속 나노선 개발 - 기존 금속 소재의 인장강도를 상회하는 니켈/니켈-금 다층나노선 구조 개발 - 미세합금화와 나노구조 제어에 따른 금속소재의 초고강도화의 돌파구 마련 한국과학기술연구원(KIST, 원장 이병권) 미래융합기술연구본부 고온에너지재료연구센터 최인석 박사 연구팀과 고려대학교(총장 염재호) 공과대학 신소재공학부 김영근 교수 연구팀은 기존의 금속소재의 인장강도 수치를 훨씬 상회하는 현존 최고의 인장강도를 지닌 다층나노선을 개발했다. 연구팀이 개발한 지름 200 nm크기의 니켈(Ni)/니켈-금(Ni-Au) 다층나노선 구조의 인장강도는(*용어설명) 현존 최고치인 7.4(GPa:인장강도 단위)로 측정되었으며, 이는 동일 직경의 니켈(Ni) 나노선(*용어설명) 대비 약 5배 수준의 수치일 뿐만 아니라, 통상 알려진 금속소재의 인장강도 값 대비 약 10배 이상으로 니켈이 이론적으로 가질 수 있는 최고 인장강도치를 구현했다. 본 연구팀은 나노틀을 이용하여 한 개의 전기 도금조에 니켈과 금의 이온을 동시에 녹인 뒤, 펄스도금법(*용어설명)을 사용하여 니켈과 니켈-금 합금 층을 순차적으로 제조하였다. 이후 다층구조나노선 다발에서 1개의 나노선을 분리하여 집속이온빔 장치 내에 장착된 고정밀 인장시험기로 실시간 인장실험을 진행하였다. 나노선의 미세구조, 원소분포를 측정하였으며, 절단면의 형태를 파악하여 강도 증강의 원인을 규명하였다. 이번에 개발된 다층나노선구조의 경우 금속변형의 원인이 되는 전위의 움직임(dislocation)을 효과적으로 제어하기 위해 니켈 층과 니켈-금 층(금 15%)의 두께를 각각 10 nm 까지 조절하여, 기존 나노선에 비해 인장강도를 크게 증가시킬 수 있었다. 이번 연구를 통해 기존 연구에서 다층구조를 갖는 나노선의 경우 인장특성이 좋지 않다는 통념을 깨고, 미세합금화, 다층화 등 재료과학적 지식에 기반하여 금속의 강도를 크게 증강시킬 수 있었다. 이러한 연구결과는 향후 금속소재의 초고강도화에 새로운 방향을 제시하였다는 데 그 의의가 있다. 본 연구는 KIST 기관고유사업, 미래창조과학부 중견연구자지원사업 (도약, 융합)의 일환으로 추진되었으며, 나노분야에서 세계적으로 권위 있는 과학지인 ‘Nano Letters’ 2016년 5월 9일자 온라인판에 게재되었다. * (논문명) Ultrahigh Tensile Strength Nanowires with a Ni/Ni?Au Multilayer Nanocrystalline Structure’ - (제1저자) 고려대학교(현, Masdar Institute, UAE) 안부현 박사 - (교신저자) 한국과학기술연구원 최인석 박사 (교신저자) 고려대학교 김영근 교수 <그림자료> <그림 1> 니켈(Ni)/니켈-금(Ni-Au) 다층나노선의 합성방법 개요도(상) 단일 금속 나노선과 다층나노선의 인장파괴 시 절단면 비교(좌하) 다층나노선의 층간 두께에 따른 인장강도(우하) <그림 2> 3차원원자탐침 단층 촬영기를 이용한 니켈(Ni)/니켈-금(Ni-Au) 다층나노선의 단위부피당 조성 분포(좌)와 나노선 길이 방향에 따른 니켈과 금의 조성분포도(우)
KIST-고려대 공동연구팀, 현존 최고의 인장강도를 지닌 금속 나노선 개발
KIST-고려대 공동연구팀, 현존 최고의 인장강도를 지닌 금속 나노선 개발 - 기존 금속 소재의 인장강도를 상회하는 니켈/니켈-금 다층나노선 구조 개발 - 미세합금화와 나노구조 제어에 따른 금속소재의 초고강도화의 돌파구 마련 한국과학기술연구원(KIST, 원장 이병권) 미래융합기술연구본부 고온에너지재료연구센터 최인석 박사 연구팀과 고려대학교(총장 염재호) 공과대학 신소재공학부 김영근 교수 연구팀은 기존의 금속소재의 인장강도 수치를 훨씬 상회하는 현존 최고의 인장강도를 지닌 다층나노선을 개발했다. 연구팀이 개발한 지름 200 nm크기의 니켈(Ni)/니켈-금(Ni-Au) 다층나노선 구조의 인장강도는(*용어설명) 현존 최고치인 7.4(GPa:인장강도 단위)로 측정되었으며, 이는 동일 직경의 니켈(Ni) 나노선(*용어설명) 대비 약 5배 수준의 수치일 뿐만 아니라, 통상 알려진 금속소재의 인장강도 값 대비 약 10배 이상으로 니켈이 이론적으로 가질 수 있는 최고 인장강도치를 구현했다. 본 연구팀은 나노틀을 이용하여 한 개의 전기 도금조에 니켈과 금의 이온을 동시에 녹인 뒤, 펄스도금법(*용어설명)을 사용하여 니켈과 니켈-금 합금 층을 순차적으로 제조하였다. 이후 다층구조나노선 다발에서 1개의 나노선을 분리하여 집속이온빔 장치 내에 장착된 고정밀 인장시험기로 실시간 인장실험을 진행하였다. 나노선의 미세구조, 원소분포를 측정하였으며, 절단면의 형태를 파악하여 강도 증강의 원인을 규명하였다. 이번에 개발된 다층나노선구조의 경우 금속변형의 원인이 되는 전위의 움직임(dislocation)을 효과적으로 제어하기 위해 니켈 층과 니켈-금 층(금 15%)의 두께를 각각 10 nm 까지 조절하여, 기존 나노선에 비해 인장강도를 크게 증가시킬 수 있었다. 이번 연구를 통해 기존 연구에서 다층구조를 갖는 나노선의 경우 인장특성이 좋지 않다는 통념을 깨고, 미세합금화, 다층화 등 재료과학적 지식에 기반하여 금속의 강도를 크게 증강시킬 수 있었다. 이러한 연구결과는 향후 금속소재의 초고강도화에 새로운 방향을 제시하였다는 데 그 의의가 있다. 본 연구는 KIST 기관고유사업, 미래창조과학부 중견연구자지원사업 (도약, 융합)의 일환으로 추진되었으며, 나노분야에서 세계적으로 권위 있는 과학지인 ‘Nano Letters’ 2016년 5월 9일자 온라인판에 게재되었다. * (논문명) Ultrahigh Tensile Strength Nanowires with a Ni/Ni?Au Multilayer Nanocrystalline Structure’ - (제1저자) 고려대학교(현, Masdar Institute, UAE) 안부현 박사 - (교신저자) 한국과학기술연구원 최인석 박사 (교신저자) 고려대학교 김영근 교수 <그림자료> <그림 1> 니켈(Ni)/니켈-금(Ni-Au) 다층나노선의 합성방법 개요도(상) 단일 금속 나노선과 다층나노선의 인장파괴 시 절단면 비교(좌하) 다층나노선의 층간 두께에 따른 인장강도(우하) <그림 2> 3차원원자탐침 단층 촬영기를 이용한 니켈(Ni)/니켈-금(Ni-Au) 다층나노선의 단위부피당 조성 분포(좌)와 나노선 길이 방향에 따른 니켈과 금의 조성분포도(우)
KIST-고려대 공동연구팀, 현존 최고의 인장강도를 지닌 금속 나노선 개발
KIST-고려대 공동연구팀, 현존 최고의 인장강도를 지닌 금속 나노선 개발 - 기존 금속 소재의 인장강도를 상회하는 니켈/니켈-금 다층나노선 구조 개발 - 미세합금화와 나노구조 제어에 따른 금속소재의 초고강도화의 돌파구 마련 한국과학기술연구원(KIST, 원장 이병권) 미래융합기술연구본부 고온에너지재료연구센터 최인석 박사 연구팀과 고려대학교(총장 염재호) 공과대학 신소재공학부 김영근 교수 연구팀은 기존의 금속소재의 인장강도 수치를 훨씬 상회하는 현존 최고의 인장강도를 지닌 다층나노선을 개발했다. 연구팀이 개발한 지름 200 nm크기의 니켈(Ni)/니켈-금(Ni-Au) 다층나노선 구조의 인장강도는(*용어설명) 현존 최고치인 7.4(GPa:인장강도 단위)로 측정되었으며, 이는 동일 직경의 니켈(Ni) 나노선(*용어설명) 대비 약 5배 수준의 수치일 뿐만 아니라, 통상 알려진 금속소재의 인장강도 값 대비 약 10배 이상으로 니켈이 이론적으로 가질 수 있는 최고 인장강도치를 구현했다. 본 연구팀은 나노틀을 이용하여 한 개의 전기 도금조에 니켈과 금의 이온을 동시에 녹인 뒤, 펄스도금법(*용어설명)을 사용하여 니켈과 니켈-금 합금 층을 순차적으로 제조하였다. 이후 다층구조나노선 다발에서 1개의 나노선을 분리하여 집속이온빔 장치 내에 장착된 고정밀 인장시험기로 실시간 인장실험을 진행하였다. 나노선의 미세구조, 원소분포를 측정하였으며, 절단면의 형태를 파악하여 강도 증강의 원인을 규명하였다. 이번에 개발된 다층나노선구조의 경우 금속변형의 원인이 되는 전위의 움직임(dislocation)을 효과적으로 제어하기 위해 니켈 층과 니켈-금 층(금 15%)의 두께를 각각 10 nm 까지 조절하여, 기존 나노선에 비해 인장강도를 크게 증가시킬 수 있었다. 이번 연구를 통해 기존 연구에서 다층구조를 갖는 나노선의 경우 인장특성이 좋지 않다는 통념을 깨고, 미세합금화, 다층화 등 재료과학적 지식에 기반하여 금속의 강도를 크게 증강시킬 수 있었다. 이러한 연구결과는 향후 금속소재의 초고강도화에 새로운 방향을 제시하였다는 데 그 의의가 있다. 본 연구는 KIST 기관고유사업, 미래창조과학부 중견연구자지원사업 (도약, 융합)의 일환으로 추진되었으며, 나노분야에서 세계적으로 권위 있는 과학지인 ‘Nano Letters’ 2016년 5월 9일자 온라인판에 게재되었다. * (논문명) Ultrahigh Tensile Strength Nanowires with a Ni/Ni?Au Multilayer Nanocrystalline Structure’ - (제1저자) 고려대학교(현, Masdar Institute, UAE) 안부현 박사 - (교신저자) 한국과학기술연구원 최인석 박사 (교신저자) 고려대학교 김영근 교수 <그림자료> <그림 1> 니켈(Ni)/니켈-금(Ni-Au) 다층나노선의 합성방법 개요도(상) 단일 금속 나노선과 다층나노선의 인장파괴 시 절단면 비교(좌하) 다층나노선의 층간 두께에 따른 인장강도(우하) <그림 2> 3차원원자탐침 단층 촬영기를 이용한 니켈(Ni)/니켈-금(Ni-Au) 다층나노선의 단위부피당 조성 분포(좌)와 나노선 길이 방향에 따른 니켈과 금의 조성분포도(우)
KIST-고려대 공동연구팀, 현존 최고의 인장강도를 지닌 금속 나노선 개발
KIST-고려대 공동연구팀, 현존 최고의 인장강도를 지닌 금속 나노선 개발 - 기존 금속 소재의 인장강도를 상회하는 니켈/니켈-금 다층나노선 구조 개발 - 미세합금화와 나노구조 제어에 따른 금속소재의 초고강도화의 돌파구 마련 한국과학기술연구원(KIST, 원장 이병권) 미래융합기술연구본부 고온에너지재료연구센터 최인석 박사 연구팀과 고려대학교(총장 염재호) 공과대학 신소재공학부 김영근 교수 연구팀은 기존의 금속소재의 인장강도 수치를 훨씬 상회하는 현존 최고의 인장강도를 지닌 다층나노선을 개발했다. 연구팀이 개발한 지름 200 nm크기의 니켈(Ni)/니켈-금(Ni-Au) 다층나노선 구조의 인장강도는(*용어설명) 현존 최고치인 7.4(GPa:인장강도 단위)로 측정되었으며, 이는 동일 직경의 니켈(Ni) 나노선(*용어설명) 대비 약 5배 수준의 수치일 뿐만 아니라, 통상 알려진 금속소재의 인장강도 값 대비 약 10배 이상으로 니켈이 이론적으로 가질 수 있는 최고 인장강도치를 구현했다. 본 연구팀은 나노틀을 이용하여 한 개의 전기 도금조에 니켈과 금의 이온을 동시에 녹인 뒤, 펄스도금법(*용어설명)을 사용하여 니켈과 니켈-금 합금 층을 순차적으로 제조하였다. 이후 다층구조나노선 다발에서 1개의 나노선을 분리하여 집속이온빔 장치 내에 장착된 고정밀 인장시험기로 실시간 인장실험을 진행하였다. 나노선의 미세구조, 원소분포를 측정하였으며, 절단면의 형태를 파악하여 강도 증강의 원인을 규명하였다. 이번에 개발된 다층나노선구조의 경우 금속변형의 원인이 되는 전위의 움직임(dislocation)을 효과적으로 제어하기 위해 니켈 층과 니켈-금 층(금 15%)의 두께를 각각 10 nm 까지 조절하여, 기존 나노선에 비해 인장강도를 크게 증가시킬 수 있었다. 이번 연구를 통해 기존 연구에서 다층구조를 갖는 나노선의 경우 인장특성이 좋지 않다는 통념을 깨고, 미세합금화, 다층화 등 재료과학적 지식에 기반하여 금속의 강도를 크게 증강시킬 수 있었다. 이러한 연구결과는 향후 금속소재의 초고강도화에 새로운 방향을 제시하였다는 데 그 의의가 있다. 본 연구는 KIST 기관고유사업, 미래창조과학부 중견연구자지원사업 (도약, 융합)의 일환으로 추진되었으며, 나노분야에서 세계적으로 권위 있는 과학지인 ‘Nano Letters’ 2016년 5월 9일자 온라인판에 게재되었다. * (논문명) Ultrahigh Tensile Strength Nanowires with a Ni/Ni?Au Multilayer Nanocrystalline Structure’ - (제1저자) 고려대학교(현, Masdar Institute, UAE) 안부현 박사 - (교신저자) 한국과학기술연구원 최인석 박사 (교신저자) 고려대학교 김영근 교수 <그림자료> <그림 1> 니켈(Ni)/니켈-금(Ni-Au) 다층나노선의 합성방법 개요도(상) 단일 금속 나노선과 다층나노선의 인장파괴 시 절단면 비교(좌하) 다층나노선의 층간 두께에 따른 인장강도(우하) <그림 2> 3차원원자탐침 단층 촬영기를 이용한 니켈(Ni)/니켈-금(Ni-Au) 다층나노선의 단위부피당 조성 분포(좌)와 나노선 길이 방향에 따른 니켈과 금의 조성분포도(우)