Result
게시물 키워드""에 대한 9490개의 검색결과를 찾았습니다.
화학구조 제어를 통한 탄소섬유 고강도화 기술 개발
화학구조 제어를 통한 탄소섬유 고강도화 기술 개발 - 화학적 구조 규명을 통한 고강도 탄소섬유 제조 원천기술 개발 - 기존의 탄소섬유 성능을 뛰어넘는 새로운 모델 제시 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재 연구센터 이성호 박사팀은 일본 신슈대학의 Endo 교수팀, 전북대학교 김환철 교수팀과 화학적 구조규명을 통한 고강도 탄소섬유 제조 원천 기술을 개발하였다. 탄소섬유는 가벼우면서 높은 기계적 강도를 갖는 구조용 복합소재의 강화소재로 각광 받고 있다. 고분자 섬유의 열처리를 통하여 탄소함량이 90% 이상인 탄소섬유가 제조되며 원료물질과 공정이 모두 섬유 강도에 큰 영향을 미친다. 탄소섬유의 기계적 물성은 물리적 결함에 따라 좌우되는데 이러한 결함을 마이크로 크기에서 나노 크기로 조절하여 물성을 극대화하는 방식으로 연구가 진행되어 왔다. 이성호 박사팀은 일반적으로 알려진 물리적 특성이 아닌 화학적 특성을 조절하여 탄소섬유의 강도를 증가시키는 방식으로 연구를 진행하였다. 열처리 조건을 조절하여 특정 결합을 갖는 질소원소의 함량과 sp3(*용어설명) 구조의 함량을 증가시켜 탄소섬유에서 50% 이상의 기계적 물성 증가를 발견하였다. 따라서 물리적 구조 조절뿐만 아니라 화학적 구조를 함께 고려한다면 기존 탄소섬유의 물성을 뛰어 넘는 초고강도 탄소섬유 연구가 가능할 것으로 기대하고 있다. 현재까지 탄소섬유는 내부 및 외부에 존재하는 물리적 구조 결함에 따라 기계적 물성이 좌우 된다는 이론을 바탕으로 연구개발이 진행되어 왔다. 고분자 섬유의 열처리를 통하여 탄소섬유가 제조될 때 화학반응에 의하여 고분자 섬유 일부가 가스로 배출되며 섬유가 수축되고 내부에 기공이 생성된다. 추가적인 열처리에도 섬유에 존재하는 결함이 완전히 제거되지 않으며 이러한 결함이 탄소섬유의 강도에 영향을 미친다는 이론이다. 따라서 탄소섬유의 결함을 마이크로 크기에서 나노 크기로 줄이거나 결함의 함량을 줄이는 방향으로 탄소섬유 강도를 증가시키는 연구를 진행해 왔다. 본 연구에서는 탄소섬유의 화학적 구조에 중점을 두어 기계적 물성에 미치는 영향을 보고하였다. 열처리 조건에 따라 특정 결합을 갖는 질소원소와 sp3 구조 함량의 조절이 가능하며 특정 질소원소와 sp3 구조 함량 증가로 탄소섬유의 강도가 50% 향상되는 실험결과를 얻었다. 이러한 결과는 전산모사를 통하여 새로운 탄소섬유의 화학적 구조가 제시되었고 탄소섬유 강도 제어가 가능하다는 결과를 도출하였다. 기존에는 질소원소는 불순물로 여겨져 가능한 많이 제거하여 탄소섬유의 강도를 높이고자 하였으며 sp3 구조보다 sp2 구조가 탄소섬유 물성에 영향을 많이 주는 인자로 알려져 왔다. 1970년대부터 생산되어 온 탄소섬유는 가벼우면서 높은 기계적 강도를 나타내는 특징을 가지고 있어 항공기용 복합소재의 강화소재로 사용되면서 미래 소재로 각광을 받고 있다. 특히 자동차용 복합소재의 강화소재로 사용될 경우 차체 중량감소로 연비증가 및 이산화탄소 배출 감소 등 친환경에 부응할 것으로 기대된다. 연구를 주도한 KIST 이성호 박사는 “기존의 물리적 구조제어 연구와 함께 탄소나노섬유의 화학적 구조를 조절하여 기계적 강도를 극대화 할 수 있을 것으로 보이며, 향후 다양한 산업분야로 확대가 가능할 것으로 예상한다”고 밝혔다. 이번 연구는 미래창조과학부(장관, 최양희) 지원으로 KIST 기관고유연구사업과 산업부 탄소밸리 연구사업에서 지원되었으며, 연구 결과는 영국 네이처 출판 그룹(Nature publishing group: NPG)에서 주간으로 발행하는 과학전문저널인 Scientific Reports에 2016년 3월 23일자로 게재되었다. * (논문명) "Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization" - (제1저자) 한국과학기술연구원 김민아 연구원 - (공동교신저자) 일본 신슈대학 Morinobu Endo 교수 - (공동교신저자) 한국과학기술연구원 전북분원 이성호 박사 <그림자료> <그림 1> 탄소구조 중앙에 질소원자가 위치하거나 layer와 layer 사이에 탄소원자가 위치하여 layer를 연결된 탄소섬유의 미세구조를 나타내고 있으며 이는 본 연구를 통하여 제시된 모식도임.
화학구조 제어를 통한 탄소섬유 고강도화 기술 개발
화학구조 제어를 통한 탄소섬유 고강도화 기술 개발 - 화학적 구조 규명을 통한 고강도 탄소섬유 제조 원천기술 개발 - 기존의 탄소섬유 성능을 뛰어넘는 새로운 모델 제시 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재 연구센터 이성호 박사팀은 일본 신슈대학의 Endo 교수팀, 전북대학교 김환철 교수팀과 화학적 구조규명을 통한 고강도 탄소섬유 제조 원천 기술을 개발하였다. 탄소섬유는 가벼우면서 높은 기계적 강도를 갖는 구조용 복합소재의 강화소재로 각광 받고 있다. 고분자 섬유의 열처리를 통하여 탄소함량이 90% 이상인 탄소섬유가 제조되며 원료물질과 공정이 모두 섬유 강도에 큰 영향을 미친다. 탄소섬유의 기계적 물성은 물리적 결함에 따라 좌우되는데 이러한 결함을 마이크로 크기에서 나노 크기로 조절하여 물성을 극대화하는 방식으로 연구가 진행되어 왔다. 이성호 박사팀은 일반적으로 알려진 물리적 특성이 아닌 화학적 특성을 조절하여 탄소섬유의 강도를 증가시키는 방식으로 연구를 진행하였다. 열처리 조건을 조절하여 특정 결합을 갖는 질소원소의 함량과 sp3(*용어설명) 구조의 함량을 증가시켜 탄소섬유에서 50% 이상의 기계적 물성 증가를 발견하였다. 따라서 물리적 구조 조절뿐만 아니라 화학적 구조를 함께 고려한다면 기존 탄소섬유의 물성을 뛰어 넘는 초고강도 탄소섬유 연구가 가능할 것으로 기대하고 있다. 현재까지 탄소섬유는 내부 및 외부에 존재하는 물리적 구조 결함에 따라 기계적 물성이 좌우 된다는 이론을 바탕으로 연구개발이 진행되어 왔다. 고분자 섬유의 열처리를 통하여 탄소섬유가 제조될 때 화학반응에 의하여 고분자 섬유 일부가 가스로 배출되며 섬유가 수축되고 내부에 기공이 생성된다. 추가적인 열처리에도 섬유에 존재하는 결함이 완전히 제거되지 않으며 이러한 결함이 탄소섬유의 강도에 영향을 미친다는 이론이다. 따라서 탄소섬유의 결함을 마이크로 크기에서 나노 크기로 줄이거나 결함의 함량을 줄이는 방향으로 탄소섬유 강도를 증가시키는 연구를 진행해 왔다. 본 연구에서는 탄소섬유의 화학적 구조에 중점을 두어 기계적 물성에 미치는 영향을 보고하였다. 열처리 조건에 따라 특정 결합을 갖는 질소원소와 sp3 구조 함량의 조절이 가능하며 특정 질소원소와 sp3 구조 함량 증가로 탄소섬유의 강도가 50% 향상되는 실험결과를 얻었다. 이러한 결과는 전산모사를 통하여 새로운 탄소섬유의 화학적 구조가 제시되었고 탄소섬유 강도 제어가 가능하다는 결과를 도출하였다. 기존에는 질소원소는 불순물로 여겨져 가능한 많이 제거하여 탄소섬유의 강도를 높이고자 하였으며 sp3 구조보다 sp2 구조가 탄소섬유 물성에 영향을 많이 주는 인자로 알려져 왔다. 1970년대부터 생산되어 온 탄소섬유는 가벼우면서 높은 기계적 강도를 나타내는 특징을 가지고 있어 항공기용 복합소재의 강화소재로 사용되면서 미래 소재로 각광을 받고 있다. 특히 자동차용 복합소재의 강화소재로 사용될 경우 차체 중량감소로 연비증가 및 이산화탄소 배출 감소 등 친환경에 부응할 것으로 기대된다. 연구를 주도한 KIST 이성호 박사는 “기존의 물리적 구조제어 연구와 함께 탄소나노섬유의 화학적 구조를 조절하여 기계적 강도를 극대화 할 수 있을 것으로 보이며, 향후 다양한 산업분야로 확대가 가능할 것으로 예상한다”고 밝혔다. 이번 연구는 미래창조과학부(장관, 최양희) 지원으로 KIST 기관고유연구사업과 산업부 탄소밸리 연구사업에서 지원되었으며, 연구 결과는 영국 네이처 출판 그룹(Nature publishing group: NPG)에서 주간으로 발행하는 과학전문저널인 Scientific Reports에 2016년 3월 23일자로 게재되었다. * (논문명) "Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization" - (제1저자) 한국과학기술연구원 김민아 연구원 - (공동교신저자) 일본 신슈대학 Morinobu Endo 교수 - (공동교신저자) 한국과학기술연구원 전북분원 이성호 박사 <그림자료> <그림 1> 탄소구조 중앙에 질소원자가 위치하거나 layer와 layer 사이에 탄소원자가 위치하여 layer를 연결된 탄소섬유의 미세구조를 나타내고 있으며 이는 본 연구를 통하여 제시된 모식도임.
화학구조 제어를 통한 탄소섬유 고강도화 기술 개발
화학구조 제어를 통한 탄소섬유 고강도화 기술 개발 - 화학적 구조 규명을 통한 고강도 탄소섬유 제조 원천기술 개발 - 기존의 탄소섬유 성능을 뛰어넘는 새로운 모델 제시 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재 연구센터 이성호 박사팀은 일본 신슈대학의 Endo 교수팀, 전북대학교 김환철 교수팀과 화학적 구조규명을 통한 고강도 탄소섬유 제조 원천 기술을 개발하였다. 탄소섬유는 가벼우면서 높은 기계적 강도를 갖는 구조용 복합소재의 강화소재로 각광 받고 있다. 고분자 섬유의 열처리를 통하여 탄소함량이 90% 이상인 탄소섬유가 제조되며 원료물질과 공정이 모두 섬유 강도에 큰 영향을 미친다. 탄소섬유의 기계적 물성은 물리적 결함에 따라 좌우되는데 이러한 결함을 마이크로 크기에서 나노 크기로 조절하여 물성을 극대화하는 방식으로 연구가 진행되어 왔다. 이성호 박사팀은 일반적으로 알려진 물리적 특성이 아닌 화학적 특성을 조절하여 탄소섬유의 강도를 증가시키는 방식으로 연구를 진행하였다. 열처리 조건을 조절하여 특정 결합을 갖는 질소원소의 함량과 sp3(*용어설명) 구조의 함량을 증가시켜 탄소섬유에서 50% 이상의 기계적 물성 증가를 발견하였다. 따라서 물리적 구조 조절뿐만 아니라 화학적 구조를 함께 고려한다면 기존 탄소섬유의 물성을 뛰어 넘는 초고강도 탄소섬유 연구가 가능할 것으로 기대하고 있다. 현재까지 탄소섬유는 내부 및 외부에 존재하는 물리적 구조 결함에 따라 기계적 물성이 좌우 된다는 이론을 바탕으로 연구개발이 진행되어 왔다. 고분자 섬유의 열처리를 통하여 탄소섬유가 제조될 때 화학반응에 의하여 고분자 섬유 일부가 가스로 배출되며 섬유가 수축되고 내부에 기공이 생성된다. 추가적인 열처리에도 섬유에 존재하는 결함이 완전히 제거되지 않으며 이러한 결함이 탄소섬유의 강도에 영향을 미친다는 이론이다. 따라서 탄소섬유의 결함을 마이크로 크기에서 나노 크기로 줄이거나 결함의 함량을 줄이는 방향으로 탄소섬유 강도를 증가시키는 연구를 진행해 왔다. 본 연구에서는 탄소섬유의 화학적 구조에 중점을 두어 기계적 물성에 미치는 영향을 보고하였다. 열처리 조건에 따라 특정 결합을 갖는 질소원소와 sp3 구조 함량의 조절이 가능하며 특정 질소원소와 sp3 구조 함량 증가로 탄소섬유의 강도가 50% 향상되는 실험결과를 얻었다. 이러한 결과는 전산모사를 통하여 새로운 탄소섬유의 화학적 구조가 제시되었고 탄소섬유 강도 제어가 가능하다는 결과를 도출하였다. 기존에는 질소원소는 불순물로 여겨져 가능한 많이 제거하여 탄소섬유의 강도를 높이고자 하였으며 sp3 구조보다 sp2 구조가 탄소섬유 물성에 영향을 많이 주는 인자로 알려져 왔다. 1970년대부터 생산되어 온 탄소섬유는 가벼우면서 높은 기계적 강도를 나타내는 특징을 가지고 있어 항공기용 복합소재의 강화소재로 사용되면서 미래 소재로 각광을 받고 있다. 특히 자동차용 복합소재의 강화소재로 사용될 경우 차체 중량감소로 연비증가 및 이산화탄소 배출 감소 등 친환경에 부응할 것으로 기대된다. 연구를 주도한 KIST 이성호 박사는 “기존의 물리적 구조제어 연구와 함께 탄소나노섬유의 화학적 구조를 조절하여 기계적 강도를 극대화 할 수 있을 것으로 보이며, 향후 다양한 산업분야로 확대가 가능할 것으로 예상한다”고 밝혔다. 이번 연구는 미래창조과학부(장관, 최양희) 지원으로 KIST 기관고유연구사업과 산업부 탄소밸리 연구사업에서 지원되었으며, 연구 결과는 영국 네이처 출판 그룹(Nature publishing group: NPG)에서 주간으로 발행하는 과학전문저널인 Scientific Reports에 2016년 3월 23일자로 게재되었다. * (논문명) "Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization" - (제1저자) 한국과학기술연구원 김민아 연구원 - (공동교신저자) 일본 신슈대학 Morinobu Endo 교수 - (공동교신저자) 한국과학기술연구원 전북분원 이성호 박사 <그림자료> <그림 1> 탄소구조 중앙에 질소원자가 위치하거나 layer와 layer 사이에 탄소원자가 위치하여 layer를 연결된 탄소섬유의 미세구조를 나타내고 있으며 이는 본 연구를 통하여 제시된 모식도임.
화학구조 제어를 통한 탄소섬유 고강도화 기술 개발
화학구조 제어를 통한 탄소섬유 고강도화 기술 개발 - 화학적 구조 규명을 통한 고강도 탄소섬유 제조 원천기술 개발 - 기존의 탄소섬유 성능을 뛰어넘는 새로운 모델 제시 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재 연구센터 이성호 박사팀은 일본 신슈대학의 Endo 교수팀, 전북대학교 김환철 교수팀과 화학적 구조규명을 통한 고강도 탄소섬유 제조 원천 기술을 개발하였다. 탄소섬유는 가벼우면서 높은 기계적 강도를 갖는 구조용 복합소재의 강화소재로 각광 받고 있다. 고분자 섬유의 열처리를 통하여 탄소함량이 90% 이상인 탄소섬유가 제조되며 원료물질과 공정이 모두 섬유 강도에 큰 영향을 미친다. 탄소섬유의 기계적 물성은 물리적 결함에 따라 좌우되는데 이러한 결함을 마이크로 크기에서 나노 크기로 조절하여 물성을 극대화하는 방식으로 연구가 진행되어 왔다. 이성호 박사팀은 일반적으로 알려진 물리적 특성이 아닌 화학적 특성을 조절하여 탄소섬유의 강도를 증가시키는 방식으로 연구를 진행하였다. 열처리 조건을 조절하여 특정 결합을 갖는 질소원소의 함량과 sp3(*용어설명) 구조의 함량을 증가시켜 탄소섬유에서 50% 이상의 기계적 물성 증가를 발견하였다. 따라서 물리적 구조 조절뿐만 아니라 화학적 구조를 함께 고려한다면 기존 탄소섬유의 물성을 뛰어 넘는 초고강도 탄소섬유 연구가 가능할 것으로 기대하고 있다. 현재까지 탄소섬유는 내부 및 외부에 존재하는 물리적 구조 결함에 따라 기계적 물성이 좌우 된다는 이론을 바탕으로 연구개발이 진행되어 왔다. 고분자 섬유의 열처리를 통하여 탄소섬유가 제조될 때 화학반응에 의하여 고분자 섬유 일부가 가스로 배출되며 섬유가 수축되고 내부에 기공이 생성된다. 추가적인 열처리에도 섬유에 존재하는 결함이 완전히 제거되지 않으며 이러한 결함이 탄소섬유의 강도에 영향을 미친다는 이론이다. 따라서 탄소섬유의 결함을 마이크로 크기에서 나노 크기로 줄이거나 결함의 함량을 줄이는 방향으로 탄소섬유 강도를 증가시키는 연구를 진행해 왔다. 본 연구에서는 탄소섬유의 화학적 구조에 중점을 두어 기계적 물성에 미치는 영향을 보고하였다. 열처리 조건에 따라 특정 결합을 갖는 질소원소와 sp3 구조 함량의 조절이 가능하며 특정 질소원소와 sp3 구조 함량 증가로 탄소섬유의 강도가 50% 향상되는 실험결과를 얻었다. 이러한 결과는 전산모사를 통하여 새로운 탄소섬유의 화학적 구조가 제시되었고 탄소섬유 강도 제어가 가능하다는 결과를 도출하였다. 기존에는 질소원소는 불순물로 여겨져 가능한 많이 제거하여 탄소섬유의 강도를 높이고자 하였으며 sp3 구조보다 sp2 구조가 탄소섬유 물성에 영향을 많이 주는 인자로 알려져 왔다. 1970년대부터 생산되어 온 탄소섬유는 가벼우면서 높은 기계적 강도를 나타내는 특징을 가지고 있어 항공기용 복합소재의 강화소재로 사용되면서 미래 소재로 각광을 받고 있다. 특히 자동차용 복합소재의 강화소재로 사용될 경우 차체 중량감소로 연비증가 및 이산화탄소 배출 감소 등 친환경에 부응할 것으로 기대된다. 연구를 주도한 KIST 이성호 박사는 “기존의 물리적 구조제어 연구와 함께 탄소나노섬유의 화학적 구조를 조절하여 기계적 강도를 극대화 할 수 있을 것으로 보이며, 향후 다양한 산업분야로 확대가 가능할 것으로 예상한다”고 밝혔다. 이번 연구는 미래창조과학부(장관, 최양희) 지원으로 KIST 기관고유연구사업과 산업부 탄소밸리 연구사업에서 지원되었으며, 연구 결과는 영국 네이처 출판 그룹(Nature publishing group: NPG)에서 주간으로 발행하는 과학전문저널인 Scientific Reports에 2016년 3월 23일자로 게재되었다. * (논문명) "Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization" - (제1저자) 한국과학기술연구원 김민아 연구원 - (공동교신저자) 일본 신슈대학 Morinobu Endo 교수 - (공동교신저자) 한국과학기술연구원 전북분원 이성호 박사 <그림자료> <그림 1> 탄소구조 중앙에 질소원자가 위치하거나 layer와 layer 사이에 탄소원자가 위치하여 layer를 연결된 탄소섬유의 미세구조를 나타내고 있으며 이는 본 연구를 통하여 제시된 모식도임.
화학구조 제어를 통한 탄소섬유 고강도화 기술 개발
화학구조 제어를 통한 탄소섬유 고강도화 기술 개발 - 화학적 구조 규명을 통한 고강도 탄소섬유 제조 원천기술 개발 - 기존의 탄소섬유 성능을 뛰어넘는 새로운 모델 제시 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재 연구센터 이성호 박사팀은 일본 신슈대학의 Endo 교수팀, 전북대학교 김환철 교수팀과 화학적 구조규명을 통한 고강도 탄소섬유 제조 원천 기술을 개발하였다. 탄소섬유는 가벼우면서 높은 기계적 강도를 갖는 구조용 복합소재의 강화소재로 각광 받고 있다. 고분자 섬유의 열처리를 통하여 탄소함량이 90% 이상인 탄소섬유가 제조되며 원료물질과 공정이 모두 섬유 강도에 큰 영향을 미친다. 탄소섬유의 기계적 물성은 물리적 결함에 따라 좌우되는데 이러한 결함을 마이크로 크기에서 나노 크기로 조절하여 물성을 극대화하는 방식으로 연구가 진행되어 왔다. 이성호 박사팀은 일반적으로 알려진 물리적 특성이 아닌 화학적 특성을 조절하여 탄소섬유의 강도를 증가시키는 방식으로 연구를 진행하였다. 열처리 조건을 조절하여 특정 결합을 갖는 질소원소의 함량과 sp3(*용어설명) 구조의 함량을 증가시켜 탄소섬유에서 50% 이상의 기계적 물성 증가를 발견하였다. 따라서 물리적 구조 조절뿐만 아니라 화학적 구조를 함께 고려한다면 기존 탄소섬유의 물성을 뛰어 넘는 초고강도 탄소섬유 연구가 가능할 것으로 기대하고 있다. 현재까지 탄소섬유는 내부 및 외부에 존재하는 물리적 구조 결함에 따라 기계적 물성이 좌우 된다는 이론을 바탕으로 연구개발이 진행되어 왔다. 고분자 섬유의 열처리를 통하여 탄소섬유가 제조될 때 화학반응에 의하여 고분자 섬유 일부가 가스로 배출되며 섬유가 수축되고 내부에 기공이 생성된다. 추가적인 열처리에도 섬유에 존재하는 결함이 완전히 제거되지 않으며 이러한 결함이 탄소섬유의 강도에 영향을 미친다는 이론이다. 따라서 탄소섬유의 결함을 마이크로 크기에서 나노 크기로 줄이거나 결함의 함량을 줄이는 방향으로 탄소섬유 강도를 증가시키는 연구를 진행해 왔다. 본 연구에서는 탄소섬유의 화학적 구조에 중점을 두어 기계적 물성에 미치는 영향을 보고하였다. 열처리 조건에 따라 특정 결합을 갖는 질소원소와 sp3 구조 함량의 조절이 가능하며 특정 질소원소와 sp3 구조 함량 증가로 탄소섬유의 강도가 50% 향상되는 실험결과를 얻었다. 이러한 결과는 전산모사를 통하여 새로운 탄소섬유의 화학적 구조가 제시되었고 탄소섬유 강도 제어가 가능하다는 결과를 도출하였다. 기존에는 질소원소는 불순물로 여겨져 가능한 많이 제거하여 탄소섬유의 강도를 높이고자 하였으며 sp3 구조보다 sp2 구조가 탄소섬유 물성에 영향을 많이 주는 인자로 알려져 왔다. 1970년대부터 생산되어 온 탄소섬유는 가벼우면서 높은 기계적 강도를 나타내는 특징을 가지고 있어 항공기용 복합소재의 강화소재로 사용되면서 미래 소재로 각광을 받고 있다. 특히 자동차용 복합소재의 강화소재로 사용될 경우 차체 중량감소로 연비증가 및 이산화탄소 배출 감소 등 친환경에 부응할 것으로 기대된다. 연구를 주도한 KIST 이성호 박사는 “기존의 물리적 구조제어 연구와 함께 탄소나노섬유의 화학적 구조를 조절하여 기계적 강도를 극대화 할 수 있을 것으로 보이며, 향후 다양한 산업분야로 확대가 가능할 것으로 예상한다”고 밝혔다. 이번 연구는 미래창조과학부(장관, 최양희) 지원으로 KIST 기관고유연구사업과 산업부 탄소밸리 연구사업에서 지원되었으며, 연구 결과는 영국 네이처 출판 그룹(Nature publishing group: NPG)에서 주간으로 발행하는 과학전문저널인 Scientific Reports에 2016년 3월 23일자로 게재되었다. * (논문명) "Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization" - (제1저자) 한국과학기술연구원 김민아 연구원 - (공동교신저자) 일본 신슈대학 Morinobu Endo 교수 - (공동교신저자) 한국과학기술연구원 전북분원 이성호 박사 <그림자료> <그림 1> 탄소구조 중앙에 질소원자가 위치하거나 layer와 layer 사이에 탄소원자가 위치하여 layer를 연결된 탄소섬유의 미세구조를 나타내고 있으며 이는 본 연구를 통하여 제시된 모식도임.
화학구조 제어를 통한 탄소섬유 고강도화 기술 개발
화학구조 제어를 통한 탄소섬유 고강도화 기술 개발 - 화학적 구조 규명을 통한 고강도 탄소섬유 제조 원천기술 개발 - 기존의 탄소섬유 성능을 뛰어넘는 새로운 모델 제시 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재 연구센터 이성호 박사팀은 일본 신슈대학의 Endo 교수팀, 전북대학교 김환철 교수팀과 화학적 구조규명을 통한 고강도 탄소섬유 제조 원천 기술을 개발하였다. 탄소섬유는 가벼우면서 높은 기계적 강도를 갖는 구조용 복합소재의 강화소재로 각광 받고 있다. 고분자 섬유의 열처리를 통하여 탄소함량이 90% 이상인 탄소섬유가 제조되며 원료물질과 공정이 모두 섬유 강도에 큰 영향을 미친다. 탄소섬유의 기계적 물성은 물리적 결함에 따라 좌우되는데 이러한 결함을 마이크로 크기에서 나노 크기로 조절하여 물성을 극대화하는 방식으로 연구가 진행되어 왔다. 이성호 박사팀은 일반적으로 알려진 물리적 특성이 아닌 화학적 특성을 조절하여 탄소섬유의 강도를 증가시키는 방식으로 연구를 진행하였다. 열처리 조건을 조절하여 특정 결합을 갖는 질소원소의 함량과 sp3(*용어설명) 구조의 함량을 증가시켜 탄소섬유에서 50% 이상의 기계적 물성 증가를 발견하였다. 따라서 물리적 구조 조절뿐만 아니라 화학적 구조를 함께 고려한다면 기존 탄소섬유의 물성을 뛰어 넘는 초고강도 탄소섬유 연구가 가능할 것으로 기대하고 있다. 현재까지 탄소섬유는 내부 및 외부에 존재하는 물리적 구조 결함에 따라 기계적 물성이 좌우 된다는 이론을 바탕으로 연구개발이 진행되어 왔다. 고분자 섬유의 열처리를 통하여 탄소섬유가 제조될 때 화학반응에 의하여 고분자 섬유 일부가 가스로 배출되며 섬유가 수축되고 내부에 기공이 생성된다. 추가적인 열처리에도 섬유에 존재하는 결함이 완전히 제거되지 않으며 이러한 결함이 탄소섬유의 강도에 영향을 미친다는 이론이다. 따라서 탄소섬유의 결함을 마이크로 크기에서 나노 크기로 줄이거나 결함의 함량을 줄이는 방향으로 탄소섬유 강도를 증가시키는 연구를 진행해 왔다. 본 연구에서는 탄소섬유의 화학적 구조에 중점을 두어 기계적 물성에 미치는 영향을 보고하였다. 열처리 조건에 따라 특정 결합을 갖는 질소원소와 sp3 구조 함량의 조절이 가능하며 특정 질소원소와 sp3 구조 함량 증가로 탄소섬유의 강도가 50% 향상되는 실험결과를 얻었다. 이러한 결과는 전산모사를 통하여 새로운 탄소섬유의 화학적 구조가 제시되었고 탄소섬유 강도 제어가 가능하다는 결과를 도출하였다. 기존에는 질소원소는 불순물로 여겨져 가능한 많이 제거하여 탄소섬유의 강도를 높이고자 하였으며 sp3 구조보다 sp2 구조가 탄소섬유 물성에 영향을 많이 주는 인자로 알려져 왔다. 1970년대부터 생산되어 온 탄소섬유는 가벼우면서 높은 기계적 강도를 나타내는 특징을 가지고 있어 항공기용 복합소재의 강화소재로 사용되면서 미래 소재로 각광을 받고 있다. 특히 자동차용 복합소재의 강화소재로 사용될 경우 차체 중량감소로 연비증가 및 이산화탄소 배출 감소 등 친환경에 부응할 것으로 기대된다. 연구를 주도한 KIST 이성호 박사는 “기존의 물리적 구조제어 연구와 함께 탄소나노섬유의 화학적 구조를 조절하여 기계적 강도를 극대화 할 수 있을 것으로 보이며, 향후 다양한 산업분야로 확대가 가능할 것으로 예상한다”고 밝혔다. 이번 연구는 미래창조과학부(장관, 최양희) 지원으로 KIST 기관고유연구사업과 산업부 탄소밸리 연구사업에서 지원되었으며, 연구 결과는 영국 네이처 출판 그룹(Nature publishing group: NPG)에서 주간으로 발행하는 과학전문저널인 Scientific Reports에 2016년 3월 23일자로 게재되었다. * (논문명) "Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization" - (제1저자) 한국과학기술연구원 김민아 연구원 - (공동교신저자) 일본 신슈대학 Morinobu Endo 교수 - (공동교신저자) 한국과학기술연구원 전북분원 이성호 박사 <그림자료> <그림 1> 탄소구조 중앙에 질소원자가 위치하거나 layer와 layer 사이에 탄소원자가 위치하여 layer를 연결된 탄소섬유의 미세구조를 나타내고 있으며 이는 본 연구를 통하여 제시된 모식도임.
KIST 유럽연구소, 창립 20주년 기념식 개최
KIST 유럽연구소, 창립 20주년 기념식 개최 - 새로운 20년을 위한 비전 선포 및 유럽진출의 현지 거점 역할 강화 한국과학기술연구원(KIST, 원장 이병권) 유럽연구소(KIST 유럽, 소장 최귀원)는 창립 20주년(창립일 1996년 5월 8일)을 맞이하여 5월 6일(금) 오전 10시(현지시간), 독일 자브뤼켄에 위치한 KIST 유럽에서 이경수 주한독일대사, 크람프-카렌바우어 잘란트 주지사, 이상천 국가과학기술연구회 이사장, 이병권 KIST 원장을 비롯한 주요 외빈과 임직원 등 약 200여명이 참석한 가운데 창립 20주년 기념식을 개최했다. 크람프-카렌바우어 잘란트 주지사는 축사에서 KIST 유럽의 다양한 연구협력 활동과 네트워킹이 잘란트주의 경제 및 연구단지를 국제적으로 부양시키는 데 크게 기여했다고 언급하며 앞으로의 무궁한 발전을 기원했다. 이상천 국가과학기술연구회 이사장은 축사를 통해 KIST 유럽의 지난 20년 동안의 노력과 성과를 높이 평가하고 이제는 KIST 유럽이 유럽 과학기술계의 중요한 역할을 수행하게 될 것임을 강조했다. 창립 20주년 기념식에 이어 KIST 유럽 정관 및 이춘식 초대 소장의 부조 제막식이 진행되었다. KIST 유럽 초대 소장을 역임한 이춘식 박사(재임기간 : 1996. 5. 15 ~ 2001. 7 .31)는 연구소 운영의 초석을 다지고 한독과학기술협력 활성화에 큰 공로를 세웠으며 이를 인정받아 지난 2007년 독일연방정부가 수여하는 십자공로훈장을 받았다. 1996년 5월 8일 한국 유일의 해외 현지 출연연구기관으로 설립된 KIST 유럽은 지난 20년간 독일 및 EU 현지의 첨단?원천 기술 획득, EU 국가와의 기술 교류 및 공동연구를 위한 거점 확보와 한국 기업들의 EU 진출 지원 역할을 수행해 왔다. 앞으로는 현지 거점의 강점을 살려 유럽 내 연구기관으로서의 입지를 강화하고 다양한 분야에서 공동 연구를 확대해 나갈 계획이다. KIST 유럽은 개방형 연구확대를 위해 롯데정밀화학, 잘란트대학, 우수기술연구센터협회(ATCA), 한국표준과학연구원(KRISS) 등과 공동랩을 운영하고 있다. 특히 개원 20주년을 맞이하여 기념식에서는 헬름홀츠질병연구소(HZI)와 공동 연구소 설립을 위한 의향서를 체결하였고 한국화학연구원(KRICT)과는 공동연구실 운영을 위한 업무협약 및 개소식을 개최하였다. 최귀원 KIST 유럽연구소장은 창립 20주년을 맞아 비전 선포식을 통해 ‘출연(연) 및 산업계의 EU 진출을 지원하는 개방형 연구거점기관’이라는 슬로건을 발표하고, 연구소만의 강점을 더욱 부각시키는 개방형 연구와 산업계 지원 전략을 통해 “독일 내 한국 연구소로서의 입지를 강화하겠다”는 의지를 밝혔다. KIST 창립20주년 기념식 후에는 국내외 저명한 연구자 및 관계자들이 초청연사로 참여한 BiKiE(범유럽 한인 생명과학 전문가 네트워크, 6일 ~ 8일) Symposium, 환경안전기술 심포지움(Environmental Safety Technology Symposium, 6일), 에너지 워크숍(Energy Workshop, 6일)등 다채로운 학술행사가 함께 개최되었다. ○ 문의 - KIST 유럽연구소 이규영 행정실장 (49-(0)681-9382-207, kylee@kist-europe.de) - KIST 글로벌협력팀 임지영 (02-958-6883, 010-3937-7822, hijiyoung@kist.re.kr)