Result
게시물 키워드""에 대한 9487개의 검색결과를 찾았습니다.
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작 - KIST, 레이저공정을 이용한 나노표면으로 세포의 부착, 이동방향 조절 - 생체재료 표면에서의 세포 반응 규명, 차세대 기능성 인체이식 의료기기 개발에 적용 생체이식 소재연구는 몸속에서 안전하고, 생체에 안정적으로 이식이 가능해야하며, 주변 조직에 기능적으로 어떤 영향을 미치는 지가 중요한 이슈이다. 국제 연구진이 특수 레이저를 이용하여 생체이식 소재의 표면을 조절해 기능성을 강화할 수 있는 세포 조절 나노패터닝 기술을 개발했다. 기능성 생체재료는 인체에서 분해되는 금속이나 고분자, 약물 전달을 위한 고분자 코팅 등에 한정되어 사용할 수 있는 소재가 제한적이다. 생체 이식용으로 가장 많이 활용되고 있는 타이타늄과 같은 소재는 우수한 기계적 강도를 갖고 있지만, 인체 조직의 활성과는 관련이 없는 소재이다. 연구진이 개발한 레이저 패터닝 기술을 활용하면 다양한 생체재료 소재의 표면을 기능화하여, 인체에 활성을 가지지 않는 소재들도 생체기능성 소재로서 활용할 수 있을 것으로 기대된다. 개발기술을 활용하면 생체재료의 부작용을 최소화하는 인공수정체와 혈관스텐트, 부러진 뼈를 고정할 뿐 아니라 뼈재생까지 촉진하는 임플란트 등의 개발이 한층 앞당겨질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 의공학연구소 생체재료연구단 전호정 박사는 미국 버클리 캘리포니아 주립대(UC Berkeley) 기계공학과 코스타스 그리고로폴러스(Costas Grigoropoulos) 교수와 재료공학과 케빈 힐리(Kevin Healy) 교수팀과의 공동연구를 통해 펨토초 레이저를 이용하여 만든 1마이크로미터(백만분의 1미터) 미만의 나노구멍 패턴을 이용하여 재료 표면에서의 세포 성장과 운동을 조절하는 메커니즘을 규명하는데 성공했다고 밝혔다. 우리 몸을 구성하는 기본 단위인 세포는 혈액 속에 떠다니는 혈관 세포를 제외하고는 대부분 이웃하고 있는 세포나 세포주변을 감싸고 있는 조직의 표면에 부착하여 생존하거나 기능을 발현하게 된다. 임플란트와 같은 생체재료를 이식했을때도 마찬가지로 세포가 와서 붙게 된다. 이때 세포는 사람의 발과 비슷한 역할을 하는 초점 접착역(Focal Adhesion)의 형태를 통해 생체재료 표면에 부착되고 이를 통하여 외부의 물리, 화학적 신호를 받아들인다. 연구진은 생체 재료 표면에 나노구멍을 만들고 그 크기와 간격을 바꾸어 실험한 결과 나노구멍이 세포의 초점접착역에 영향을 미칠 수 있다는 점을 발견했다. 연구진은 단일 레이저 펄스의 폭이 100 펨토초(10-15초)인 레이저를 이용하여 직경이 500에서 1000 나노미터이면서 깊이가 500 나노미터인 나노구멍으로 이루어진 표면을 제작하였다. 나노구멍 간격을 조정하면 세포가 붙지 않는 표면을 만들거나, 세포를 특정한 장소로 몰아서 세포들이 띠모양, 원모양 등으로 그룹을 형성하도록 유도할 수 있다. 이러한 재료표면 제어를 통해 임플란트 표면에 세포가 붙지 않게 하거나 선택적으로 세포를 붙게 할 수 있다. 또한 패턴으로 인한 물리적 자극으로 임플란트 주변조직의 재생을 억제하거나 촉진시킬 수가 있다. 세포는 살아있는 생명체로서 주변 환경에 반응하여 스스로 살기에 더 적합한 환경 혹은 자신의 역할이 필요한 곳으로 이동하는 경향을 보인다. 세포는 일반적으로 초점접착역의 부착에 관여하는 단백질의 농도가 높고, 부착한 표면이 더 단단한 곳으로 이동한다고 알려져 있다. 연구진이 개발한 방법은 기존에 알려져 있는 세포 이동 조절인자 외에 레이저로 나노구멍을 만들어 세포의 이동 방향을 조절하는 기술로, 기존 기술과 달리 실제 인체에 삽입하는 임플란트 표면에 적용하기가 용이하여 기능성 임플란트의 상용화에 쉽게 적용될 수 있다. 또한, 연구진이 개발한 나노구멍 패터닝 기술은 펄스폭이 아주 작은 특수한 펨토초 레이저를 사용하기 때문에 고분자, 세라믹, 금속 표면에 모두 적용이 가능하며, 유해한 화학물질 사용없이 나노구멍의 크기를 조절해 인체에서 안정적이라는 장점이 있다. 인공수정체나 혈관스텐트와 같이 세포의 과다 증식으로 후속 질환이 발생하는 소재에 적용하여 세포 증식을 억제하는 기능성 생체재료를 만들 수 있고, 뼈 고정용 임플란트 표면에 활용하여 뼈 재생을 촉진시킬 수 있는 기능화된 의료기기 제작도 가능하다. 공동 제 1저자인 KIST 전호정 박사는 “개발한 기술로 다양한 차세대 기능성 인체이식 의료기기 개발이 가능할 것으로 보인다”며, “세포의 부착 특성은 세포의 분화 및 증식과도 연관이 높기 때문에 후속연구를 통해 줄기세포의 분화능력은 유지한 채, 세포의 양을 늘리는 배양 기술이 필요한 줄기세포 치료제 등의 생산에도 활용이 가능하다.”고 밝혔다. 본 연구는 미국 NIH(National Institute of Health, 국립보건원) 지원으로 수행되었으며, 연구결과는 네이처 머티어리얼즈 (Nature Materials)에 7월 27(월)일자 온라인판에 게재되었다. *(논문명) Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces - (공동 제1저자) (한국과학기술연구원) 전호정 박사, (UC Berkeley) 구상모 박사과정 - (공동 교신저자) (UC Berkeley) Costas Grigoropoulos 교수, (UC Berkeley) Kevin Healy 교수 <그림자료> <그림1> 펨토초 레이저 공정을 이용하여 만든 나노구멍. (a) 렌즈 선택에 따른 다양한 종횡비를 가지는 나노구멍을 보여주며, (b) 나노구멍 패턴을 보여주는 SEM 이미지 및 (c, d) 레이저의 펄스 에너지에 따른 나노구멍 크기를 보여준다. <그림 2> (a) 간격 구배를 갖는 나노구멍 패턴 디자인과 (b-f) 패턴 위에 세포를 배양했을 때 처음에는 표면 전체에 붙는 듯 하지만, 배양 시작후 5시간 뒤부터는 세포가 이동성을 보이기 시작하여 15시간 이후에는 확연하게 세포가 붙은 영역과 붙지 않는 영역을 보여준다. 나노구멍 간격이 촘촘한 영역에 붙어있던 세포들은 간격이 넓은 영역으로 경향을 띄면서 이동하는 모습을 보인다. <그림 3> (a) 간격 구배를 갖는 나노구멍 패턴 위에 붙어있는 세포의 모습 (b) 패턴 위에서 자라는 세포는 그림a의 가로축을 기준으로 45도 방향으로 이동하는 방향성을 보이지만, (c) 패턴이 없는 곳의 세포는 이동에 경향성을 보이지 않는다. (d) 패턴 위의 세포를 형광 염색해서 현미경으로 관찰하였을 때, (e) 나노구멍 위에 붙어있는 세포의 초점접착역은 안정화되지 못하고 나노구멍을 피해서 작은 크기로 형성되는 반면, (f) 패턴이 없는 곳의 세포는 길쭉한 형태의 안정된 초점접착역을 보여준다. <그림 4> 나노구멍 패턴을 이용하여 세포들을 (a) 띠 형태, 혹은 (b) 원형으로 패터닝 할 수 있다.
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작 - KIST, 레이저공정을 이용한 나노표면으로 세포의 부착, 이동방향 조절 - 생체재료 표면에서의 세포 반응 규명, 차세대 기능성 인체이식 의료기기 개발에 적용 생체이식 소재연구는 몸속에서 안전하고, 생체에 안정적으로 이식이 가능해야하며, 주변 조직에 기능적으로 어떤 영향을 미치는 지가 중요한 이슈이다. 국제 연구진이 특수 레이저를 이용하여 생체이식 소재의 표면을 조절해 기능성을 강화할 수 있는 세포 조절 나노패터닝 기술을 개발했다. 기능성 생체재료는 인체에서 분해되는 금속이나 고분자, 약물 전달을 위한 고분자 코팅 등에 한정되어 사용할 수 있는 소재가 제한적이다. 생체 이식용으로 가장 많이 활용되고 있는 타이타늄과 같은 소재는 우수한 기계적 강도를 갖고 있지만, 인체 조직의 활성과는 관련이 없는 소재이다. 연구진이 개발한 레이저 패터닝 기술을 활용하면 다양한 생체재료 소재의 표면을 기능화하여, 인체에 활성을 가지지 않는 소재들도 생체기능성 소재로서 활용할 수 있을 것으로 기대된다. 개발기술을 활용하면 생체재료의 부작용을 최소화하는 인공수정체와 혈관스텐트, 부러진 뼈를 고정할 뿐 아니라 뼈재생까지 촉진하는 임플란트 등의 개발이 한층 앞당겨질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 의공학연구소 생체재료연구단 전호정 박사는 미국 버클리 캘리포니아 주립대(UC Berkeley) 기계공학과 코스타스 그리고로폴러스(Costas Grigoropoulos) 교수와 재료공학과 케빈 힐리(Kevin Healy) 교수팀과의 공동연구를 통해 펨토초 레이저를 이용하여 만든 1마이크로미터(백만분의 1미터) 미만의 나노구멍 패턴을 이용하여 재료 표면에서의 세포 성장과 운동을 조절하는 메커니즘을 규명하는데 성공했다고 밝혔다. 우리 몸을 구성하는 기본 단위인 세포는 혈액 속에 떠다니는 혈관 세포를 제외하고는 대부분 이웃하고 있는 세포나 세포주변을 감싸고 있는 조직의 표면에 부착하여 생존하거나 기능을 발현하게 된다. 임플란트와 같은 생체재료를 이식했을때도 마찬가지로 세포가 와서 붙게 된다. 이때 세포는 사람의 발과 비슷한 역할을 하는 초점 접착역(Focal Adhesion)의 형태를 통해 생체재료 표면에 부착되고 이를 통하여 외부의 물리, 화학적 신호를 받아들인다. 연구진은 생체 재료 표면에 나노구멍을 만들고 그 크기와 간격을 바꾸어 실험한 결과 나노구멍이 세포의 초점접착역에 영향을 미칠 수 있다는 점을 발견했다. 연구진은 단일 레이저 펄스의 폭이 100 펨토초(10-15초)인 레이저를 이용하여 직경이 500에서 1000 나노미터이면서 깊이가 500 나노미터인 나노구멍으로 이루어진 표면을 제작하였다. 나노구멍 간격을 조정하면 세포가 붙지 않는 표면을 만들거나, 세포를 특정한 장소로 몰아서 세포들이 띠모양, 원모양 등으로 그룹을 형성하도록 유도할 수 있다. 이러한 재료표면 제어를 통해 임플란트 표면에 세포가 붙지 않게 하거나 선택적으로 세포를 붙게 할 수 있다. 또한 패턴으로 인한 물리적 자극으로 임플란트 주변조직의 재생을 억제하거나 촉진시킬 수가 있다. 세포는 살아있는 생명체로서 주변 환경에 반응하여 스스로 살기에 더 적합한 환경 혹은 자신의 역할이 필요한 곳으로 이동하는 경향을 보인다. 세포는 일반적으로 초점접착역의 부착에 관여하는 단백질의 농도가 높고, 부착한 표면이 더 단단한 곳으로 이동한다고 알려져 있다. 연구진이 개발한 방법은 기존에 알려져 있는 세포 이동 조절인자 외에 레이저로 나노구멍을 만들어 세포의 이동 방향을 조절하는 기술로, 기존 기술과 달리 실제 인체에 삽입하는 임플란트 표면에 적용하기가 용이하여 기능성 임플란트의 상용화에 쉽게 적용될 수 있다. 또한, 연구진이 개발한 나노구멍 패터닝 기술은 펄스폭이 아주 작은 특수한 펨토초 레이저를 사용하기 때문에 고분자, 세라믹, 금속 표면에 모두 적용이 가능하며, 유해한 화학물질 사용없이 나노구멍의 크기를 조절해 인체에서 안정적이라는 장점이 있다. 인공수정체나 혈관스텐트와 같이 세포의 과다 증식으로 후속 질환이 발생하는 소재에 적용하여 세포 증식을 억제하는 기능성 생체재료를 만들 수 있고, 뼈 고정용 임플란트 표면에 활용하여 뼈 재생을 촉진시킬 수 있는 기능화된 의료기기 제작도 가능하다. 공동 제 1저자인 KIST 전호정 박사는 “개발한 기술로 다양한 차세대 기능성 인체이식 의료기기 개발이 가능할 것으로 보인다”며, “세포의 부착 특성은 세포의 분화 및 증식과도 연관이 높기 때문에 후속연구를 통해 줄기세포의 분화능력은 유지한 채, 세포의 양을 늘리는 배양 기술이 필요한 줄기세포 치료제 등의 생산에도 활용이 가능하다.”고 밝혔다. 본 연구는 미국 NIH(National Institute of Health, 국립보건원) 지원으로 수행되었으며, 연구결과는 네이처 머티어리얼즈 (Nature Materials)에 7월 27(월)일자 온라인판에 게재되었다. *(논문명) Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces - (공동 제1저자) (한국과학기술연구원) 전호정 박사, (UC Berkeley) 구상모 박사과정 - (공동 교신저자) (UC Berkeley) Costas Grigoropoulos 교수, (UC Berkeley) Kevin Healy 교수 <그림자료> <그림1> 펨토초 레이저 공정을 이용하여 만든 나노구멍. (a) 렌즈 선택에 따른 다양한 종횡비를 가지는 나노구멍을 보여주며, (b) 나노구멍 패턴을 보여주는 SEM 이미지 및 (c, d) 레이저의 펄스 에너지에 따른 나노구멍 크기를 보여준다. <그림 2> (a) 간격 구배를 갖는 나노구멍 패턴 디자인과 (b-f) 패턴 위에 세포를 배양했을 때 처음에는 표면 전체에 붙는 듯 하지만, 배양 시작후 5시간 뒤부터는 세포가 이동성을 보이기 시작하여 15시간 이후에는 확연하게 세포가 붙은 영역과 붙지 않는 영역을 보여준다. 나노구멍 간격이 촘촘한 영역에 붙어있던 세포들은 간격이 넓은 영역으로 경향을 띄면서 이동하는 모습을 보인다. <그림 3> (a) 간격 구배를 갖는 나노구멍 패턴 위에 붙어있는 세포의 모습 (b) 패턴 위에서 자라는 세포는 그림a의 가로축을 기준으로 45도 방향으로 이동하는 방향성을 보이지만, (c) 패턴이 없는 곳의 세포는 이동에 경향성을 보이지 않는다. (d) 패턴 위의 세포를 형광 염색해서 현미경으로 관찰하였을 때, (e) 나노구멍 위에 붙어있는 세포의 초점접착역은 안정화되지 못하고 나노구멍을 피해서 작은 크기로 형성되는 반면, (f) 패턴이 없는 곳의 세포는 길쭉한 형태의 안정된 초점접착역을 보여준다. <그림 4> 나노구멍 패턴을 이용하여 세포들을 (a) 띠 형태, 혹은 (b) 원형으로 패터닝 할 수 있다.
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작 - KIST, 레이저공정을 이용한 나노표면으로 세포의 부착, 이동방향 조절 - 생체재료 표면에서의 세포 반응 규명, 차세대 기능성 인체이식 의료기기 개발에 적용 생체이식 소재연구는 몸속에서 안전하고, 생체에 안정적으로 이식이 가능해야하며, 주변 조직에 기능적으로 어떤 영향을 미치는 지가 중요한 이슈이다. 국제 연구진이 특수 레이저를 이용하여 생체이식 소재의 표면을 조절해 기능성을 강화할 수 있는 세포 조절 나노패터닝 기술을 개발했다. 기능성 생체재료는 인체에서 분해되는 금속이나 고분자, 약물 전달을 위한 고분자 코팅 등에 한정되어 사용할 수 있는 소재가 제한적이다. 생체 이식용으로 가장 많이 활용되고 있는 타이타늄과 같은 소재는 우수한 기계적 강도를 갖고 있지만, 인체 조직의 활성과는 관련이 없는 소재이다. 연구진이 개발한 레이저 패터닝 기술을 활용하면 다양한 생체재료 소재의 표면을 기능화하여, 인체에 활성을 가지지 않는 소재들도 생체기능성 소재로서 활용할 수 있을 것으로 기대된다. 개발기술을 활용하면 생체재료의 부작용을 최소화하는 인공수정체와 혈관스텐트, 부러진 뼈를 고정할 뿐 아니라 뼈재생까지 촉진하는 임플란트 등의 개발이 한층 앞당겨질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 의공학연구소 생체재료연구단 전호정 박사는 미국 버클리 캘리포니아 주립대(UC Berkeley) 기계공학과 코스타스 그리고로폴러스(Costas Grigoropoulos) 교수와 재료공학과 케빈 힐리(Kevin Healy) 교수팀과의 공동연구를 통해 펨토초 레이저를 이용하여 만든 1마이크로미터(백만분의 1미터) 미만의 나노구멍 패턴을 이용하여 재료 표면에서의 세포 성장과 운동을 조절하는 메커니즘을 규명하는데 성공했다고 밝혔다. 우리 몸을 구성하는 기본 단위인 세포는 혈액 속에 떠다니는 혈관 세포를 제외하고는 대부분 이웃하고 있는 세포나 세포주변을 감싸고 있는 조직의 표면에 부착하여 생존하거나 기능을 발현하게 된다. 임플란트와 같은 생체재료를 이식했을때도 마찬가지로 세포가 와서 붙게 된다. 이때 세포는 사람의 발과 비슷한 역할을 하는 초점 접착역(Focal Adhesion)의 형태를 통해 생체재료 표면에 부착되고 이를 통하여 외부의 물리, 화학적 신호를 받아들인다. 연구진은 생체 재료 표면에 나노구멍을 만들고 그 크기와 간격을 바꾸어 실험한 결과 나노구멍이 세포의 초점접착역에 영향을 미칠 수 있다는 점을 발견했다. 연구진은 단일 레이저 펄스의 폭이 100 펨토초(10-15초)인 레이저를 이용하여 직경이 500에서 1000 나노미터이면서 깊이가 500 나노미터인 나노구멍으로 이루어진 표면을 제작하였다. 나노구멍 간격을 조정하면 세포가 붙지 않는 표면을 만들거나, 세포를 특정한 장소로 몰아서 세포들이 띠모양, 원모양 등으로 그룹을 형성하도록 유도할 수 있다. 이러한 재료표면 제어를 통해 임플란트 표면에 세포가 붙지 않게 하거나 선택적으로 세포를 붙게 할 수 있다. 또한 패턴으로 인한 물리적 자극으로 임플란트 주변조직의 재생을 억제하거나 촉진시킬 수가 있다. 세포는 살아있는 생명체로서 주변 환경에 반응하여 스스로 살기에 더 적합한 환경 혹은 자신의 역할이 필요한 곳으로 이동하는 경향을 보인다. 세포는 일반적으로 초점접착역의 부착에 관여하는 단백질의 농도가 높고, 부착한 표면이 더 단단한 곳으로 이동한다고 알려져 있다. 연구진이 개발한 방법은 기존에 알려져 있는 세포 이동 조절인자 외에 레이저로 나노구멍을 만들어 세포의 이동 방향을 조절하는 기술로, 기존 기술과 달리 실제 인체에 삽입하는 임플란트 표면에 적용하기가 용이하여 기능성 임플란트의 상용화에 쉽게 적용될 수 있다. 또한, 연구진이 개발한 나노구멍 패터닝 기술은 펄스폭이 아주 작은 특수한 펨토초 레이저를 사용하기 때문에 고분자, 세라믹, 금속 표면에 모두 적용이 가능하며, 유해한 화학물질 사용없이 나노구멍의 크기를 조절해 인체에서 안정적이라는 장점이 있다. 인공수정체나 혈관스텐트와 같이 세포의 과다 증식으로 후속 질환이 발생하는 소재에 적용하여 세포 증식을 억제하는 기능성 생체재료를 만들 수 있고, 뼈 고정용 임플란트 표면에 활용하여 뼈 재생을 촉진시킬 수 있는 기능화된 의료기기 제작도 가능하다. 공동 제 1저자인 KIST 전호정 박사는 “개발한 기술로 다양한 차세대 기능성 인체이식 의료기기 개발이 가능할 것으로 보인다”며, “세포의 부착 특성은 세포의 분화 및 증식과도 연관이 높기 때문에 후속연구를 통해 줄기세포의 분화능력은 유지한 채, 세포의 양을 늘리는 배양 기술이 필요한 줄기세포 치료제 등의 생산에도 활용이 가능하다.”고 밝혔다. 본 연구는 미국 NIH(National Institute of Health, 국립보건원) 지원으로 수행되었으며, 연구결과는 네이처 머티어리얼즈 (Nature Materials)에 7월 27(월)일자 온라인판에 게재되었다. *(논문명) Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces - (공동 제1저자) (한국과학기술연구원) 전호정 박사, (UC Berkeley) 구상모 박사과정 - (공동 교신저자) (UC Berkeley) Costas Grigoropoulos 교수, (UC Berkeley) Kevin Healy 교수 <그림자료> <그림1> 펨토초 레이저 공정을 이용하여 만든 나노구멍. (a) 렌즈 선택에 따른 다양한 종횡비를 가지는 나노구멍을 보여주며, (b) 나노구멍 패턴을 보여주는 SEM 이미지 및 (c, d) 레이저의 펄스 에너지에 따른 나노구멍 크기를 보여준다. <그림 2> (a) 간격 구배를 갖는 나노구멍 패턴 디자인과 (b-f) 패턴 위에 세포를 배양했을 때 처음에는 표면 전체에 붙는 듯 하지만, 배양 시작후 5시간 뒤부터는 세포가 이동성을 보이기 시작하여 15시간 이후에는 확연하게 세포가 붙은 영역과 붙지 않는 영역을 보여준다. 나노구멍 간격이 촘촘한 영역에 붙어있던 세포들은 간격이 넓은 영역으로 경향을 띄면서 이동하는 모습을 보인다. <그림 3> (a) 간격 구배를 갖는 나노구멍 패턴 위에 붙어있는 세포의 모습 (b) 패턴 위에서 자라는 세포는 그림a의 가로축을 기준으로 45도 방향으로 이동하는 방향성을 보이지만, (c) 패턴이 없는 곳의 세포는 이동에 경향성을 보이지 않는다. (d) 패턴 위의 세포를 형광 염색해서 현미경으로 관찰하였을 때, (e) 나노구멍 위에 붙어있는 세포의 초점접착역은 안정화되지 못하고 나노구멍을 피해서 작은 크기로 형성되는 반면, (f) 패턴이 없는 곳의 세포는 길쭉한 형태의 안정된 초점접착역을 보여준다. <그림 4> 나노구멍 패턴을 이용하여 세포들을 (a) 띠 형태, 혹은 (b) 원형으로 패터닝 할 수 있다.
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작 - KIST, 레이저공정을 이용한 나노표면으로 세포의 부착, 이동방향 조절 - 생체재료 표면에서의 세포 반응 규명, 차세대 기능성 인체이식 의료기기 개발에 적용 생체이식 소재연구는 몸속에서 안전하고, 생체에 안정적으로 이식이 가능해야하며, 주변 조직에 기능적으로 어떤 영향을 미치는 지가 중요한 이슈이다. 국제 연구진이 특수 레이저를 이용하여 생체이식 소재의 표면을 조절해 기능성을 강화할 수 있는 세포 조절 나노패터닝 기술을 개발했다. 기능성 생체재료는 인체에서 분해되는 금속이나 고분자, 약물 전달을 위한 고분자 코팅 등에 한정되어 사용할 수 있는 소재가 제한적이다. 생체 이식용으로 가장 많이 활용되고 있는 타이타늄과 같은 소재는 우수한 기계적 강도를 갖고 있지만, 인체 조직의 활성과는 관련이 없는 소재이다. 연구진이 개발한 레이저 패터닝 기술을 활용하면 다양한 생체재료 소재의 표면을 기능화하여, 인체에 활성을 가지지 않는 소재들도 생체기능성 소재로서 활용할 수 있을 것으로 기대된다. 개발기술을 활용하면 생체재료의 부작용을 최소화하는 인공수정체와 혈관스텐트, 부러진 뼈를 고정할 뿐 아니라 뼈재생까지 촉진하는 임플란트 등의 개발이 한층 앞당겨질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 의공학연구소 생체재료연구단 전호정 박사는 미국 버클리 캘리포니아 주립대(UC Berkeley) 기계공학과 코스타스 그리고로폴러스(Costas Grigoropoulos) 교수와 재료공학과 케빈 힐리(Kevin Healy) 교수팀과의 공동연구를 통해 펨토초 레이저를 이용하여 만든 1마이크로미터(백만분의 1미터) 미만의 나노구멍 패턴을 이용하여 재료 표면에서의 세포 성장과 운동을 조절하는 메커니즘을 규명하는데 성공했다고 밝혔다. 우리 몸을 구성하는 기본 단위인 세포는 혈액 속에 떠다니는 혈관 세포를 제외하고는 대부분 이웃하고 있는 세포나 세포주변을 감싸고 있는 조직의 표면에 부착하여 생존하거나 기능을 발현하게 된다. 임플란트와 같은 생체재료를 이식했을때도 마찬가지로 세포가 와서 붙게 된다. 이때 세포는 사람의 발과 비슷한 역할을 하는 초점 접착역(Focal Adhesion)의 형태를 통해 생체재료 표면에 부착되고 이를 통하여 외부의 물리, 화학적 신호를 받아들인다. 연구진은 생체 재료 표면에 나노구멍을 만들고 그 크기와 간격을 바꾸어 실험한 결과 나노구멍이 세포의 초점접착역에 영향을 미칠 수 있다는 점을 발견했다. 연구진은 단일 레이저 펄스의 폭이 100 펨토초(10-15초)인 레이저를 이용하여 직경이 500에서 1000 나노미터이면서 깊이가 500 나노미터인 나노구멍으로 이루어진 표면을 제작하였다. 나노구멍 간격을 조정하면 세포가 붙지 않는 표면을 만들거나, 세포를 특정한 장소로 몰아서 세포들이 띠모양, 원모양 등으로 그룹을 형성하도록 유도할 수 있다. 이러한 재료표면 제어를 통해 임플란트 표면에 세포가 붙지 않게 하거나 선택적으로 세포를 붙게 할 수 있다. 또한 패턴으로 인한 물리적 자극으로 임플란트 주변조직의 재생을 억제하거나 촉진시킬 수가 있다. 세포는 살아있는 생명체로서 주변 환경에 반응하여 스스로 살기에 더 적합한 환경 혹은 자신의 역할이 필요한 곳으로 이동하는 경향을 보인다. 세포는 일반적으로 초점접착역의 부착에 관여하는 단백질의 농도가 높고, 부착한 표면이 더 단단한 곳으로 이동한다고 알려져 있다. 연구진이 개발한 방법은 기존에 알려져 있는 세포 이동 조절인자 외에 레이저로 나노구멍을 만들어 세포의 이동 방향을 조절하는 기술로, 기존 기술과 달리 실제 인체에 삽입하는 임플란트 표면에 적용하기가 용이하여 기능성 임플란트의 상용화에 쉽게 적용될 수 있다. 또한, 연구진이 개발한 나노구멍 패터닝 기술은 펄스폭이 아주 작은 특수한 펨토초 레이저를 사용하기 때문에 고분자, 세라믹, 금속 표면에 모두 적용이 가능하며, 유해한 화학물질 사용없이 나노구멍의 크기를 조절해 인체에서 안정적이라는 장점이 있다. 인공수정체나 혈관스텐트와 같이 세포의 과다 증식으로 후속 질환이 발생하는 소재에 적용하여 세포 증식을 억제하는 기능성 생체재료를 만들 수 있고, 뼈 고정용 임플란트 표면에 활용하여 뼈 재생을 촉진시킬 수 있는 기능화된 의료기기 제작도 가능하다. 공동 제 1저자인 KIST 전호정 박사는 “개발한 기술로 다양한 차세대 기능성 인체이식 의료기기 개발이 가능할 것으로 보인다”며, “세포의 부착 특성은 세포의 분화 및 증식과도 연관이 높기 때문에 후속연구를 통해 줄기세포의 분화능력은 유지한 채, 세포의 양을 늘리는 배양 기술이 필요한 줄기세포 치료제 등의 생산에도 활용이 가능하다.”고 밝혔다. 본 연구는 미국 NIH(National Institute of Health, 국립보건원) 지원으로 수행되었으며, 연구결과는 네이처 머티어리얼즈 (Nature Materials)에 7월 27(월)일자 온라인판에 게재되었다. *(논문명) Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces - (공동 제1저자) (한국과학기술연구원) 전호정 박사, (UC Berkeley) 구상모 박사과정 - (공동 교신저자) (UC Berkeley) Costas Grigoropoulos 교수, (UC Berkeley) Kevin Healy 교수 <그림자료> <그림1> 펨토초 레이저 공정을 이용하여 만든 나노구멍. (a) 렌즈 선택에 따른 다양한 종횡비를 가지는 나노구멍을 보여주며, (b) 나노구멍 패턴을 보여주는 SEM 이미지 및 (c, d) 레이저의 펄스 에너지에 따른 나노구멍 크기를 보여준다. <그림 2> (a) 간격 구배를 갖는 나노구멍 패턴 디자인과 (b-f) 패턴 위에 세포를 배양했을 때 처음에는 표면 전체에 붙는 듯 하지만, 배양 시작후 5시간 뒤부터는 세포가 이동성을 보이기 시작하여 15시간 이후에는 확연하게 세포가 붙은 영역과 붙지 않는 영역을 보여준다. 나노구멍 간격이 촘촘한 영역에 붙어있던 세포들은 간격이 넓은 영역으로 경향을 띄면서 이동하는 모습을 보인다. <그림 3> (a) 간격 구배를 갖는 나노구멍 패턴 위에 붙어있는 세포의 모습 (b) 패턴 위에서 자라는 세포는 그림a의 가로축을 기준으로 45도 방향으로 이동하는 방향성을 보이지만, (c) 패턴이 없는 곳의 세포는 이동에 경향성을 보이지 않는다. (d) 패턴 위의 세포를 형광 염색해서 현미경으로 관찰하였을 때, (e) 나노구멍 위에 붙어있는 세포의 초점접착역은 안정화되지 못하고 나노구멍을 피해서 작은 크기로 형성되는 반면, (f) 패턴이 없는 곳의 세포는 길쭉한 형태의 안정된 초점접착역을 보여준다. <그림 4> 나노구멍 패턴을 이용하여 세포들을 (a) 띠 형태, 혹은 (b) 원형으로 패터닝 할 수 있다.
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작 - KIST, 레이저공정을 이용한 나노표면으로 세포의 부착, 이동방향 조절 - 생체재료 표면에서의 세포 반응 규명, 차세대 기능성 인체이식 의료기기 개발에 적용 생체이식 소재연구는 몸속에서 안전하고, 생체에 안정적으로 이식이 가능해야하며, 주변 조직에 기능적으로 어떤 영향을 미치는 지가 중요한 이슈이다. 국제 연구진이 특수 레이저를 이용하여 생체이식 소재의 표면을 조절해 기능성을 강화할 수 있는 세포 조절 나노패터닝 기술을 개발했다. 기능성 생체재료는 인체에서 분해되는 금속이나 고분자, 약물 전달을 위한 고분자 코팅 등에 한정되어 사용할 수 있는 소재가 제한적이다. 생체 이식용으로 가장 많이 활용되고 있는 타이타늄과 같은 소재는 우수한 기계적 강도를 갖고 있지만, 인체 조직의 활성과는 관련이 없는 소재이다. 연구진이 개발한 레이저 패터닝 기술을 활용하면 다양한 생체재료 소재의 표면을 기능화하여, 인체에 활성을 가지지 않는 소재들도 생체기능성 소재로서 활용할 수 있을 것으로 기대된다. 개발기술을 활용하면 생체재료의 부작용을 최소화하는 인공수정체와 혈관스텐트, 부러진 뼈를 고정할 뿐 아니라 뼈재생까지 촉진하는 임플란트 등의 개발이 한층 앞당겨질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 의공학연구소 생체재료연구단 전호정 박사는 미국 버클리 캘리포니아 주립대(UC Berkeley) 기계공학과 코스타스 그리고로폴러스(Costas Grigoropoulos) 교수와 재료공학과 케빈 힐리(Kevin Healy) 교수팀과의 공동연구를 통해 펨토초 레이저를 이용하여 만든 1마이크로미터(백만분의 1미터) 미만의 나노구멍 패턴을 이용하여 재료 표면에서의 세포 성장과 운동을 조절하는 메커니즘을 규명하는데 성공했다고 밝혔다. 우리 몸을 구성하는 기본 단위인 세포는 혈액 속에 떠다니는 혈관 세포를 제외하고는 대부분 이웃하고 있는 세포나 세포주변을 감싸고 있는 조직의 표면에 부착하여 생존하거나 기능을 발현하게 된다. 임플란트와 같은 생체재료를 이식했을때도 마찬가지로 세포가 와서 붙게 된다. 이때 세포는 사람의 발과 비슷한 역할을 하는 초점 접착역(Focal Adhesion)의 형태를 통해 생체재료 표면에 부착되고 이를 통하여 외부의 물리, 화학적 신호를 받아들인다. 연구진은 생체 재료 표면에 나노구멍을 만들고 그 크기와 간격을 바꾸어 실험한 결과 나노구멍이 세포의 초점접착역에 영향을 미칠 수 있다는 점을 발견했다. 연구진은 단일 레이저 펄스의 폭이 100 펨토초(10-15초)인 레이저를 이용하여 직경이 500에서 1000 나노미터이면서 깊이가 500 나노미터인 나노구멍으로 이루어진 표면을 제작하였다. 나노구멍 간격을 조정하면 세포가 붙지 않는 표면을 만들거나, 세포를 특정한 장소로 몰아서 세포들이 띠모양, 원모양 등으로 그룹을 형성하도록 유도할 수 있다. 이러한 재료표면 제어를 통해 임플란트 표면에 세포가 붙지 않게 하거나 선택적으로 세포를 붙게 할 수 있다. 또한 패턴으로 인한 물리적 자극으로 임플란트 주변조직의 재생을 억제하거나 촉진시킬 수가 있다. 세포는 살아있는 생명체로서 주변 환경에 반응하여 스스로 살기에 더 적합한 환경 혹은 자신의 역할이 필요한 곳으로 이동하는 경향을 보인다. 세포는 일반적으로 초점접착역의 부착에 관여하는 단백질의 농도가 높고, 부착한 표면이 더 단단한 곳으로 이동한다고 알려져 있다. 연구진이 개발한 방법은 기존에 알려져 있는 세포 이동 조절인자 외에 레이저로 나노구멍을 만들어 세포의 이동 방향을 조절하는 기술로, 기존 기술과 달리 실제 인체에 삽입하는 임플란트 표면에 적용하기가 용이하여 기능성 임플란트의 상용화에 쉽게 적용될 수 있다. 또한, 연구진이 개발한 나노구멍 패터닝 기술은 펄스폭이 아주 작은 특수한 펨토초 레이저를 사용하기 때문에 고분자, 세라믹, 금속 표면에 모두 적용이 가능하며, 유해한 화학물질 사용없이 나노구멍의 크기를 조절해 인체에서 안정적이라는 장점이 있다. 인공수정체나 혈관스텐트와 같이 세포의 과다 증식으로 후속 질환이 발생하는 소재에 적용하여 세포 증식을 억제하는 기능성 생체재료를 만들 수 있고, 뼈 고정용 임플란트 표면에 활용하여 뼈 재생을 촉진시킬 수 있는 기능화된 의료기기 제작도 가능하다. 공동 제 1저자인 KIST 전호정 박사는 “개발한 기술로 다양한 차세대 기능성 인체이식 의료기기 개발이 가능할 것으로 보인다”며, “세포의 부착 특성은 세포의 분화 및 증식과도 연관이 높기 때문에 후속연구를 통해 줄기세포의 분화능력은 유지한 채, 세포의 양을 늘리는 배양 기술이 필요한 줄기세포 치료제 등의 생산에도 활용이 가능하다.”고 밝혔다. 본 연구는 미국 NIH(National Institute of Health, 국립보건원) 지원으로 수행되었으며, 연구결과는 네이처 머티어리얼즈 (Nature Materials)에 7월 27(월)일자 온라인판에 게재되었다. *(논문명) Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces - (공동 제1저자) (한국과학기술연구원) 전호정 박사, (UC Berkeley) 구상모 박사과정 - (공동 교신저자) (UC Berkeley) Costas Grigoropoulos 교수, (UC Berkeley) Kevin Healy 교수 <그림자료> <그림1> 펨토초 레이저 공정을 이용하여 만든 나노구멍. (a) 렌즈 선택에 따른 다양한 종횡비를 가지는 나노구멍을 보여주며, (b) 나노구멍 패턴을 보여주는 SEM 이미지 및 (c, d) 레이저의 펄스 에너지에 따른 나노구멍 크기를 보여준다. <그림 2> (a) 간격 구배를 갖는 나노구멍 패턴 디자인과 (b-f) 패턴 위에 세포를 배양했을 때 처음에는 표면 전체에 붙는 듯 하지만, 배양 시작후 5시간 뒤부터는 세포가 이동성을 보이기 시작하여 15시간 이후에는 확연하게 세포가 붙은 영역과 붙지 않는 영역을 보여준다. 나노구멍 간격이 촘촘한 영역에 붙어있던 세포들은 간격이 넓은 영역으로 경향을 띄면서 이동하는 모습을 보인다. <그림 3> (a) 간격 구배를 갖는 나노구멍 패턴 위에 붙어있는 세포의 모습 (b) 패턴 위에서 자라는 세포는 그림a의 가로축을 기준으로 45도 방향으로 이동하는 방향성을 보이지만, (c) 패턴이 없는 곳의 세포는 이동에 경향성을 보이지 않는다. (d) 패턴 위의 세포를 형광 염색해서 현미경으로 관찰하였을 때, (e) 나노구멍 위에 붙어있는 세포의 초점접착역은 안정화되지 못하고 나노구멍을 피해서 작은 크기로 형성되는 반면, (f) 패턴이 없는 곳의 세포는 길쭉한 형태의 안정된 초점접착역을 보여준다. <그림 4> 나노구멍 패턴을 이용하여 세포들을 (a) 띠 형태, 혹은 (b) 원형으로 패터닝 할 수 있다.
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작 - KIST, 레이저공정을 이용한 나노표면으로 세포의 부착, 이동방향 조절 - 생체재료 표면에서의 세포 반응 규명, 차세대 기능성 인체이식 의료기기 개발에 적용 생체이식 소재연구는 몸속에서 안전하고, 생체에 안정적으로 이식이 가능해야하며, 주변 조직에 기능적으로 어떤 영향을 미치는 지가 중요한 이슈이다. 국제 연구진이 특수 레이저를 이용하여 생체이식 소재의 표면을 조절해 기능성을 강화할 수 있는 세포 조절 나노패터닝 기술을 개발했다. 기능성 생체재료는 인체에서 분해되는 금속이나 고분자, 약물 전달을 위한 고분자 코팅 등에 한정되어 사용할 수 있는 소재가 제한적이다. 생체 이식용으로 가장 많이 활용되고 있는 타이타늄과 같은 소재는 우수한 기계적 강도를 갖고 있지만, 인체 조직의 활성과는 관련이 없는 소재이다. 연구진이 개발한 레이저 패터닝 기술을 활용하면 다양한 생체재료 소재의 표면을 기능화하여, 인체에 활성을 가지지 않는 소재들도 생체기능성 소재로서 활용할 수 있을 것으로 기대된다. 개발기술을 활용하면 생체재료의 부작용을 최소화하는 인공수정체와 혈관스텐트, 부러진 뼈를 고정할 뿐 아니라 뼈재생까지 촉진하는 임플란트 등의 개발이 한층 앞당겨질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 의공학연구소 생체재료연구단 전호정 박사는 미국 버클리 캘리포니아 주립대(UC Berkeley) 기계공학과 코스타스 그리고로폴러스(Costas Grigoropoulos) 교수와 재료공학과 케빈 힐리(Kevin Healy) 교수팀과의 공동연구를 통해 펨토초 레이저를 이용하여 만든 1마이크로미터(백만분의 1미터) 미만의 나노구멍 패턴을 이용하여 재료 표면에서의 세포 성장과 운동을 조절하는 메커니즘을 규명하는데 성공했다고 밝혔다. 우리 몸을 구성하는 기본 단위인 세포는 혈액 속에 떠다니는 혈관 세포를 제외하고는 대부분 이웃하고 있는 세포나 세포주변을 감싸고 있는 조직의 표면에 부착하여 생존하거나 기능을 발현하게 된다. 임플란트와 같은 생체재료를 이식했을때도 마찬가지로 세포가 와서 붙게 된다. 이때 세포는 사람의 발과 비슷한 역할을 하는 초점 접착역(Focal Adhesion)의 형태를 통해 생체재료 표면에 부착되고 이를 통하여 외부의 물리, 화학적 신호를 받아들인다. 연구진은 생체 재료 표면에 나노구멍을 만들고 그 크기와 간격을 바꾸어 실험한 결과 나노구멍이 세포의 초점접착역에 영향을 미칠 수 있다는 점을 발견했다. 연구진은 단일 레이저 펄스의 폭이 100 펨토초(10-15초)인 레이저를 이용하여 직경이 500에서 1000 나노미터이면서 깊이가 500 나노미터인 나노구멍으로 이루어진 표면을 제작하였다. 나노구멍 간격을 조정하면 세포가 붙지 않는 표면을 만들거나, 세포를 특정한 장소로 몰아서 세포들이 띠모양, 원모양 등으로 그룹을 형성하도록 유도할 수 있다. 이러한 재료표면 제어를 통해 임플란트 표면에 세포가 붙지 않게 하거나 선택적으로 세포를 붙게 할 수 있다. 또한 패턴으로 인한 물리적 자극으로 임플란트 주변조직의 재생을 억제하거나 촉진시킬 수가 있다. 세포는 살아있는 생명체로서 주변 환경에 반응하여 스스로 살기에 더 적합한 환경 혹은 자신의 역할이 필요한 곳으로 이동하는 경향을 보인다. 세포는 일반적으로 초점접착역의 부착에 관여하는 단백질의 농도가 높고, 부착한 표면이 더 단단한 곳으로 이동한다고 알려져 있다. 연구진이 개발한 방법은 기존에 알려져 있는 세포 이동 조절인자 외에 레이저로 나노구멍을 만들어 세포의 이동 방향을 조절하는 기술로, 기존 기술과 달리 실제 인체에 삽입하는 임플란트 표면에 적용하기가 용이하여 기능성 임플란트의 상용화에 쉽게 적용될 수 있다. 또한, 연구진이 개발한 나노구멍 패터닝 기술은 펄스폭이 아주 작은 특수한 펨토초 레이저를 사용하기 때문에 고분자, 세라믹, 금속 표면에 모두 적용이 가능하며, 유해한 화학물질 사용없이 나노구멍의 크기를 조절해 인체에서 안정적이라는 장점이 있다. 인공수정체나 혈관스텐트와 같이 세포의 과다 증식으로 후속 질환이 발생하는 소재에 적용하여 세포 증식을 억제하는 기능성 생체재료를 만들 수 있고, 뼈 고정용 임플란트 표면에 활용하여 뼈 재생을 촉진시킬 수 있는 기능화된 의료기기 제작도 가능하다. 공동 제 1저자인 KIST 전호정 박사는 “개발한 기술로 다양한 차세대 기능성 인체이식 의료기기 개발이 가능할 것으로 보인다”며, “세포의 부착 특성은 세포의 분화 및 증식과도 연관이 높기 때문에 후속연구를 통해 줄기세포의 분화능력은 유지한 채, 세포의 양을 늘리는 배양 기술이 필요한 줄기세포 치료제 등의 생산에도 활용이 가능하다.”고 밝혔다. 본 연구는 미국 NIH(National Institute of Health, 국립보건원) 지원으로 수행되었으며, 연구결과는 네이처 머티어리얼즈 (Nature Materials)에 7월 27(월)일자 온라인판에 게재되었다. *(논문명) Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces - (공동 제1저자) (한국과학기술연구원) 전호정 박사, (UC Berkeley) 구상모 박사과정 - (공동 교신저자) (UC Berkeley) Costas Grigoropoulos 교수, (UC Berkeley) Kevin Healy 교수 <그림자료> <그림1> 펨토초 레이저 공정을 이용하여 만든 나노구멍. (a) 렌즈 선택에 따른 다양한 종횡비를 가지는 나노구멍을 보여주며, (b) 나노구멍 패턴을 보여주는 SEM 이미지 및 (c, d) 레이저의 펄스 에너지에 따른 나노구멍 크기를 보여준다. <그림 2> (a) 간격 구배를 갖는 나노구멍 패턴 디자인과 (b-f) 패턴 위에 세포를 배양했을 때 처음에는 표면 전체에 붙는 듯 하지만, 배양 시작후 5시간 뒤부터는 세포가 이동성을 보이기 시작하여 15시간 이후에는 확연하게 세포가 붙은 영역과 붙지 않는 영역을 보여준다. 나노구멍 간격이 촘촘한 영역에 붙어있던 세포들은 간격이 넓은 영역으로 경향을 띄면서 이동하는 모습을 보인다. <그림 3> (a) 간격 구배를 갖는 나노구멍 패턴 위에 붙어있는 세포의 모습 (b) 패턴 위에서 자라는 세포는 그림a의 가로축을 기준으로 45도 방향으로 이동하는 방향성을 보이지만, (c) 패턴이 없는 곳의 세포는 이동에 경향성을 보이지 않는다. (d) 패턴 위의 세포를 형광 염색해서 현미경으로 관찰하였을 때, (e) 나노구멍 위에 붙어있는 세포의 초점접착역은 안정화되지 못하고 나노구멍을 피해서 작은 크기로 형성되는 반면, (f) 패턴이 없는 곳의 세포는 길쭉한 형태의 안정된 초점접착역을 보여준다. <그림 4> 나노구멍 패턴을 이용하여 세포들을 (a) 띠 형태, 혹은 (b) 원형으로 패터닝 할 수 있다.
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작 - KIST, 레이저공정을 이용한 나노표면으로 세포의 부착, 이동방향 조절 - 생체재료 표면에서의 세포 반응 규명, 차세대 기능성 인체이식 의료기기 개발에 적용 생체이식 소재연구는 몸속에서 안전하고, 생체에 안정적으로 이식이 가능해야하며, 주변 조직에 기능적으로 어떤 영향을 미치는 지가 중요한 이슈이다. 국제 연구진이 특수 레이저를 이용하여 생체이식 소재의 표면을 조절해 기능성을 강화할 수 있는 세포 조절 나노패터닝 기술을 개발했다. 기능성 생체재료는 인체에서 분해되는 금속이나 고분자, 약물 전달을 위한 고분자 코팅 등에 한정되어 사용할 수 있는 소재가 제한적이다. 생체 이식용으로 가장 많이 활용되고 있는 타이타늄과 같은 소재는 우수한 기계적 강도를 갖고 있지만, 인체 조직의 활성과는 관련이 없는 소재이다. 연구진이 개발한 레이저 패터닝 기술을 활용하면 다양한 생체재료 소재의 표면을 기능화하여, 인체에 활성을 가지지 않는 소재들도 생체기능성 소재로서 활용할 수 있을 것으로 기대된다. 개발기술을 활용하면 생체재료의 부작용을 최소화하는 인공수정체와 혈관스텐트, 부러진 뼈를 고정할 뿐 아니라 뼈재생까지 촉진하는 임플란트 등의 개발이 한층 앞당겨질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 의공학연구소 생체재료연구단 전호정 박사는 미국 버클리 캘리포니아 주립대(UC Berkeley) 기계공학과 코스타스 그리고로폴러스(Costas Grigoropoulos) 교수와 재료공학과 케빈 힐리(Kevin Healy) 교수팀과의 공동연구를 통해 펨토초 레이저를 이용하여 만든 1마이크로미터(백만분의 1미터) 미만의 나노구멍 패턴을 이용하여 재료 표면에서의 세포 성장과 운동을 조절하는 메커니즘을 규명하는데 성공했다고 밝혔다. 우리 몸을 구성하는 기본 단위인 세포는 혈액 속에 떠다니는 혈관 세포를 제외하고는 대부분 이웃하고 있는 세포나 세포주변을 감싸고 있는 조직의 표면에 부착하여 생존하거나 기능을 발현하게 된다. 임플란트와 같은 생체재료를 이식했을때도 마찬가지로 세포가 와서 붙게 된다. 이때 세포는 사람의 발과 비슷한 역할을 하는 초점 접착역(Focal Adhesion)의 형태를 통해 생체재료 표면에 부착되고 이를 통하여 외부의 물리, 화학적 신호를 받아들인다. 연구진은 생체 재료 표면에 나노구멍을 만들고 그 크기와 간격을 바꾸어 실험한 결과 나노구멍이 세포의 초점접착역에 영향을 미칠 수 있다는 점을 발견했다. 연구진은 단일 레이저 펄스의 폭이 100 펨토초(10-15초)인 레이저를 이용하여 직경이 500에서 1000 나노미터이면서 깊이가 500 나노미터인 나노구멍으로 이루어진 표면을 제작하였다. 나노구멍 간격을 조정하면 세포가 붙지 않는 표면을 만들거나, 세포를 특정한 장소로 몰아서 세포들이 띠모양, 원모양 등으로 그룹을 형성하도록 유도할 수 있다. 이러한 재료표면 제어를 통해 임플란트 표면에 세포가 붙지 않게 하거나 선택적으로 세포를 붙게 할 수 있다. 또한 패턴으로 인한 물리적 자극으로 임플란트 주변조직의 재생을 억제하거나 촉진시킬 수가 있다. 세포는 살아있는 생명체로서 주변 환경에 반응하여 스스로 살기에 더 적합한 환경 혹은 자신의 역할이 필요한 곳으로 이동하는 경향을 보인다. 세포는 일반적으로 초점접착역의 부착에 관여하는 단백질의 농도가 높고, 부착한 표면이 더 단단한 곳으로 이동한다고 알려져 있다. 연구진이 개발한 방법은 기존에 알려져 있는 세포 이동 조절인자 외에 레이저로 나노구멍을 만들어 세포의 이동 방향을 조절하는 기술로, 기존 기술과 달리 실제 인체에 삽입하는 임플란트 표면에 적용하기가 용이하여 기능성 임플란트의 상용화에 쉽게 적용될 수 있다. 또한, 연구진이 개발한 나노구멍 패터닝 기술은 펄스폭이 아주 작은 특수한 펨토초 레이저를 사용하기 때문에 고분자, 세라믹, 금속 표면에 모두 적용이 가능하며, 유해한 화학물질 사용없이 나노구멍의 크기를 조절해 인체에서 안정적이라는 장점이 있다. 인공수정체나 혈관스텐트와 같이 세포의 과다 증식으로 후속 질환이 발생하는 소재에 적용하여 세포 증식을 억제하는 기능성 생체재료를 만들 수 있고, 뼈 고정용 임플란트 표면에 활용하여 뼈 재생을 촉진시킬 수 있는 기능화된 의료기기 제작도 가능하다. 공동 제 1저자인 KIST 전호정 박사는 “개발한 기술로 다양한 차세대 기능성 인체이식 의료기기 개발이 가능할 것으로 보인다”며, “세포의 부착 특성은 세포의 분화 및 증식과도 연관이 높기 때문에 후속연구를 통해 줄기세포의 분화능력은 유지한 채, 세포의 양을 늘리는 배양 기술이 필요한 줄기세포 치료제 등의 생산에도 활용이 가능하다.”고 밝혔다. 본 연구는 미국 NIH(National Institute of Health, 국립보건원) 지원으로 수행되었으며, 연구결과는 네이처 머티어리얼즈 (Nature Materials)에 7월 27(월)일자 온라인판에 게재되었다. *(논문명) Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces - (공동 제1저자) (한국과학기술연구원) 전호정 박사, (UC Berkeley) 구상모 박사과정 - (공동 교신저자) (UC Berkeley) Costas Grigoropoulos 교수, (UC Berkeley) Kevin Healy 교수 <그림자료> <그림1> 펨토초 레이저 공정을 이용하여 만든 나노구멍. (a) 렌즈 선택에 따른 다양한 종횡비를 가지는 나노구멍을 보여주며, (b) 나노구멍 패턴을 보여주는 SEM 이미지 및 (c, d) 레이저의 펄스 에너지에 따른 나노구멍 크기를 보여준다. <그림 2> (a) 간격 구배를 갖는 나노구멍 패턴 디자인과 (b-f) 패턴 위에 세포를 배양했을 때 처음에는 표면 전체에 붙는 듯 하지만, 배양 시작후 5시간 뒤부터는 세포가 이동성을 보이기 시작하여 15시간 이후에는 확연하게 세포가 붙은 영역과 붙지 않는 영역을 보여준다. 나노구멍 간격이 촘촘한 영역에 붙어있던 세포들은 간격이 넓은 영역으로 경향을 띄면서 이동하는 모습을 보인다. <그림 3> (a) 간격 구배를 갖는 나노구멍 패턴 위에 붙어있는 세포의 모습 (b) 패턴 위에서 자라는 세포는 그림a의 가로축을 기준으로 45도 방향으로 이동하는 방향성을 보이지만, (c) 패턴이 없는 곳의 세포는 이동에 경향성을 보이지 않는다. (d) 패턴 위의 세포를 형광 염색해서 현미경으로 관찰하였을 때, (e) 나노구멍 위에 붙어있는 세포의 초점접착역은 안정화되지 못하고 나노구멍을 피해서 작은 크기로 형성되는 반면, (f) 패턴이 없는 곳의 세포는 길쭉한 형태의 안정된 초점접착역을 보여준다. <그림 4> 나노구멍 패턴을 이용하여 세포들을 (a) 띠 형태, 혹은 (b) 원형으로 패터닝 할 수 있다.
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작
나노구멍으로 세포 조절, 기능성 강화된 생체재료 제작 - KIST, 레이저공정을 이용한 나노표면으로 세포의 부착, 이동방향 조절 - 생체재료 표면에서의 세포 반응 규명, 차세대 기능성 인체이식 의료기기 개발에 적용 생체이식 소재연구는 몸속에서 안전하고, 생체에 안정적으로 이식이 가능해야하며, 주변 조직에 기능적으로 어떤 영향을 미치는 지가 중요한 이슈이다. 국제 연구진이 특수 레이저를 이용하여 생체이식 소재의 표면을 조절해 기능성을 강화할 수 있는 세포 조절 나노패터닝 기술을 개발했다. 기능성 생체재료는 인체에서 분해되는 금속이나 고분자, 약물 전달을 위한 고분자 코팅 등에 한정되어 사용할 수 있는 소재가 제한적이다. 생체 이식용으로 가장 많이 활용되고 있는 타이타늄과 같은 소재는 우수한 기계적 강도를 갖고 있지만, 인체 조직의 활성과는 관련이 없는 소재이다. 연구진이 개발한 레이저 패터닝 기술을 활용하면 다양한 생체재료 소재의 표면을 기능화하여, 인체에 활성을 가지지 않는 소재들도 생체기능성 소재로서 활용할 수 있을 것으로 기대된다. 개발기술을 활용하면 생체재료의 부작용을 최소화하는 인공수정체와 혈관스텐트, 부러진 뼈를 고정할 뿐 아니라 뼈재생까지 촉진하는 임플란트 등의 개발이 한층 앞당겨질 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 의공학연구소 생체재료연구단 전호정 박사는 미국 버클리 캘리포니아 주립대(UC Berkeley) 기계공학과 코스타스 그리고로폴러스(Costas Grigoropoulos) 교수와 재료공학과 케빈 힐리(Kevin Healy) 교수팀과의 공동연구를 통해 펨토초 레이저를 이용하여 만든 1마이크로미터(백만분의 1미터) 미만의 나노구멍 패턴을 이용하여 재료 표면에서의 세포 성장과 운동을 조절하는 메커니즘을 규명하는데 성공했다고 밝혔다. 우리 몸을 구성하는 기본 단위인 세포는 혈액 속에 떠다니는 혈관 세포를 제외하고는 대부분 이웃하고 있는 세포나 세포주변을 감싸고 있는 조직의 표면에 부착하여 생존하거나 기능을 발현하게 된다. 임플란트와 같은 생체재료를 이식했을때도 마찬가지로 세포가 와서 붙게 된다. 이때 세포는 사람의 발과 비슷한 역할을 하는 초점 접착역(Focal Adhesion)의 형태를 통해 생체재료 표면에 부착되고 이를 통하여 외부의 물리, 화학적 신호를 받아들인다. 연구진은 생체 재료 표면에 나노구멍을 만들고 그 크기와 간격을 바꾸어 실험한 결과 나노구멍이 세포의 초점접착역에 영향을 미칠 수 있다는 점을 발견했다. 연구진은 단일 레이저 펄스의 폭이 100 펨토초(10-15초)인 레이저를 이용하여 직경이 500에서 1000 나노미터이면서 깊이가 500 나노미터인 나노구멍으로 이루어진 표면을 제작하였다. 나노구멍 간격을 조정하면 세포가 붙지 않는 표면을 만들거나, 세포를 특정한 장소로 몰아서 세포들이 띠모양, 원모양 등으로 그룹을 형성하도록 유도할 수 있다. 이러한 재료표면 제어를 통해 임플란트 표면에 세포가 붙지 않게 하거나 선택적으로 세포를 붙게 할 수 있다. 또한 패턴으로 인한 물리적 자극으로 임플란트 주변조직의 재생을 억제하거나 촉진시킬 수가 있다. 세포는 살아있는 생명체로서 주변 환경에 반응하여 스스로 살기에 더 적합한 환경 혹은 자신의 역할이 필요한 곳으로 이동하는 경향을 보인다. 세포는 일반적으로 초점접착역의 부착에 관여하는 단백질의 농도가 높고, 부착한 표면이 더 단단한 곳으로 이동한다고 알려져 있다. 연구진이 개발한 방법은 기존에 알려져 있는 세포 이동 조절인자 외에 레이저로 나노구멍을 만들어 세포의 이동 방향을 조절하는 기술로, 기존 기술과 달리 실제 인체에 삽입하는 임플란트 표면에 적용하기가 용이하여 기능성 임플란트의 상용화에 쉽게 적용될 수 있다. 또한, 연구진이 개발한 나노구멍 패터닝 기술은 펄스폭이 아주 작은 특수한 펨토초 레이저를 사용하기 때문에 고분자, 세라믹, 금속 표면에 모두 적용이 가능하며, 유해한 화학물질 사용없이 나노구멍의 크기를 조절해 인체에서 안정적이라는 장점이 있다. 인공수정체나 혈관스텐트와 같이 세포의 과다 증식으로 후속 질환이 발생하는 소재에 적용하여 세포 증식을 억제하는 기능성 생체재료를 만들 수 있고, 뼈 고정용 임플란트 표면에 활용하여 뼈 재생을 촉진시킬 수 있는 기능화된 의료기기 제작도 가능하다. 공동 제 1저자인 KIST 전호정 박사는 “개발한 기술로 다양한 차세대 기능성 인체이식 의료기기 개발이 가능할 것으로 보인다”며, “세포의 부착 특성은 세포의 분화 및 증식과도 연관이 높기 때문에 후속연구를 통해 줄기세포의 분화능력은 유지한 채, 세포의 양을 늘리는 배양 기술이 필요한 줄기세포 치료제 등의 생산에도 활용이 가능하다.”고 밝혔다. 본 연구는 미국 NIH(National Institute of Health, 국립보건원) 지원으로 수행되었으며, 연구결과는 네이처 머티어리얼즈 (Nature Materials)에 7월 27(월)일자 온라인판에 게재되었다. *(논문명) Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces - (공동 제1저자) (한국과학기술연구원) 전호정 박사, (UC Berkeley) 구상모 박사과정 - (공동 교신저자) (UC Berkeley) Costas Grigoropoulos 교수, (UC Berkeley) Kevin Healy 교수 <그림자료> <그림1> 펨토초 레이저 공정을 이용하여 만든 나노구멍. (a) 렌즈 선택에 따른 다양한 종횡비를 가지는 나노구멍을 보여주며, (b) 나노구멍 패턴을 보여주는 SEM 이미지 및 (c, d) 레이저의 펄스 에너지에 따른 나노구멍 크기를 보여준다. <그림 2> (a) 간격 구배를 갖는 나노구멍 패턴 디자인과 (b-f) 패턴 위에 세포를 배양했을 때 처음에는 표면 전체에 붙는 듯 하지만, 배양 시작후 5시간 뒤부터는 세포가 이동성을 보이기 시작하여 15시간 이후에는 확연하게 세포가 붙은 영역과 붙지 않는 영역을 보여준다. 나노구멍 간격이 촘촘한 영역에 붙어있던 세포들은 간격이 넓은 영역으로 경향을 띄면서 이동하는 모습을 보인다. <그림 3> (a) 간격 구배를 갖는 나노구멍 패턴 위에 붙어있는 세포의 모습 (b) 패턴 위에서 자라는 세포는 그림a의 가로축을 기준으로 45도 방향으로 이동하는 방향성을 보이지만, (c) 패턴이 없는 곳의 세포는 이동에 경향성을 보이지 않는다. (d) 패턴 위의 세포를 형광 염색해서 현미경으로 관찰하였을 때, (e) 나노구멍 위에 붙어있는 세포의 초점접착역은 안정화되지 못하고 나노구멍을 피해서 작은 크기로 형성되는 반면, (f) 패턴이 없는 곳의 세포는 길쭉한 형태의 안정된 초점접착역을 보여준다. <그림 4> 나노구멍 패턴을 이용하여 세포들을 (a) 띠 형태, 혹은 (b) 원형으로 패터닝 할 수 있다.