Result
게시물 키워드""에 대한 9480개의 검색결과를 찾았습니다.
맥신, 그린 수소 생산에서 활용처 찾았다.
- KIST 연구진이 개발한 원소 제어 맥신, 수전해 촉매 담지체 응용 가능 - 몰리브데넘 기반 맥신 지지체 활용 시, 그린 수소 생산 비용 절감 효과 전 세계 137개국은 2050년까지 화석 연료 사용을 중단하고 탄소 배출을 제로로 만드는 '넷제로(Net-Zero)' 기후 변화 협약을 체결했다. 수소는 에너지원으로 활용될 때 물과 산소만을 배출하므로 친환경적인 차세대 에너지원으로 각광받고 있다. 수소 생산 방식은 사용 에너지원과 탄소 배출 유무에 따라 그레이 수소, 블루 수소, 그린 수소로 나뉜다. 그 중 그린 수소 생산 방법은 친환경 에너지를 사용해 물을 전기 분해하여 탄소 배출 없이 수소를 생산하는 가장 친환경적인 방법이다. 한국과학기술연구원(KIST, 원장 오상록) 전자파솔루션융합연구단 이성수 박사 연구팀은 전자파 차폐 및 흡수 특성을 가진 산화 안정형 몰리브데넘계 맥신을 개발했다고 밝혔다. 산화 반응에 대해 안정성을 가지고 있어 이를 수전해 촉매의 담지체로 응용할 경우, 그린 수소 생산의 산소 발생 전극으로 활용해 그린 수소 생산 비용을 절감시킬 수 있다. 물을 수소 분자와 산소 분자로 분해하려면 많은 에너지가 필요하다. 에너지를 줄이기 위해 촉매가 사용되며, 나노 단위의 작은 입자들로 이루어진 촉매가 작을수록 표면적이 넓어져 반응이 잘 일어난다. 하지만 시간이 지나면서 작은 촉매 입자들이 뭉치는 현상이 발생해 표면적이 줄어들고 수소 생산 효율이 떨어진다. 이를 방지하기 위해 촉매와 지지체를 함께 사용하는데 수소가 생성되는 양극에 주로 사용되는 탄소가 있지만, 음극에서는 산화 반응으로 탄소가 사용되면 이산화탄소로 산화되어 내산화성이 높은 지지체가 필요하다. 이때 지지체로 사용될 수 있는 물질이 바로 맥신이다. 맥신은 Ti, Mo, Hf, Ta 등의 금속 원자와 탄소 또는 질소 원자로 이루어진 나노 물질로, 전기가 잘 통하고 촉매 지지체로 적합한 구조를 지녀 수소 생산에 유리하다. 특히 티타늄(Titanium) 기반의 맥신이 가장 많이 연구됐다. 하지만 이 경우 물에 쉽게 산화된다는 티타늄의 원자적 특성으로 인해 촉매가 높은 전기전도도를 유지할 수 없다는 고질적인 단점이 있었다. 이를 보완하기 위해 연구팀은 몰리브데넘을 적용한 맥신을 지지체로 사용하는 음극 촉매를 새롭게 설계했다. 다른 원자를 사용하기 때문에 티타늄의 산화 안정성 취약 부분을 완전히 극복할 수 있는 시도로 주목을 받고 있다. 몰리브데넘 기반의 맥신을 지지체로 활용하였을 때, 맥신의 표면을 구성하고 있는 몰리브데넘 원자와 촉매 코발트 사이에 강한 화학 결합이 만들어진다. 이렇게 생성된 화학 결합을 통해 수소 생산 효율 또한 약 2.45배 증가했다. 특히, 최근 티타늄 계열의 맥신을 활용한 단위 전지 셀 내구성이 40시간이 채 되지 않았던 결과에 대비해 10배 이상의 내구성 향상 효과를 확인했다. 이를 통해 그린 수소 생산 비용 절감 효과를 기대할 수 있으며, 향후 대규모 수소 생산 발전소 및 대량 그린 수소 발전 스테이션 분야 활용에도 적용할 예정이다. KIST 이성수 박사는 “맥신을 구성하는 원소를 제어해 그린 수소 생산 환경에 적합한 후보군을 찾을 수 있었고, 이를 통해 산화 환경에서 안정성 있는 맥신 지지체를 확보했다”라며 “향후 수소 생산 효율과 내구성을 지닌 산소 발생 전극 촉매 개발로 수소 기반 생태계 활성화에 기여할 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업과 기초과학연구사업(2021M3H4A1A03047327)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Applied Catalysis B: Environment and Energy(IF: 20.2, JCR 분야 상위 0.6%)」 최신 호에 게재됐다. [그림 1] 맥신을 지지체로 활용한 촉매 디자인 및 이를 음이온 기반 수소 발생 장치 전극 활용/실증 확인 전체 개념도 [그림 2] 몰리브데넘 맥신/티타늄 맥신 지지체를 활용한 촉매에 따른 수전해 장치 성능(a, 전류-전압 그래프)
맥신, 그린 수소 생산에서 활용처 찾았다.
- KIST 연구진이 개발한 원소 제어 맥신, 수전해 촉매 담지체 응용 가능 - 몰리브데넘 기반 맥신 지지체 활용 시, 그린 수소 생산 비용 절감 효과 전 세계 137개국은 2050년까지 화석 연료 사용을 중단하고 탄소 배출을 제로로 만드는 '넷제로(Net-Zero)' 기후 변화 협약을 체결했다. 수소는 에너지원으로 활용될 때 물과 산소만을 배출하므로 친환경적인 차세대 에너지원으로 각광받고 있다. 수소 생산 방식은 사용 에너지원과 탄소 배출 유무에 따라 그레이 수소, 블루 수소, 그린 수소로 나뉜다. 그 중 그린 수소 생산 방법은 친환경 에너지를 사용해 물을 전기 분해하여 탄소 배출 없이 수소를 생산하는 가장 친환경적인 방법이다. 한국과학기술연구원(KIST, 원장 오상록) 전자파솔루션융합연구단 이성수 박사 연구팀은 전자파 차폐 및 흡수 특성을 가진 산화 안정형 몰리브데넘계 맥신을 개발했다고 밝혔다. 산화 반응에 대해 안정성을 가지고 있어 이를 수전해 촉매의 담지체로 응용할 경우, 그린 수소 생산의 산소 발생 전극으로 활용해 그린 수소 생산 비용을 절감시킬 수 있다. 물을 수소 분자와 산소 분자로 분해하려면 많은 에너지가 필요하다. 에너지를 줄이기 위해 촉매가 사용되며, 나노 단위의 작은 입자들로 이루어진 촉매가 작을수록 표면적이 넓어져 반응이 잘 일어난다. 하지만 시간이 지나면서 작은 촉매 입자들이 뭉치는 현상이 발생해 표면적이 줄어들고 수소 생산 효율이 떨어진다. 이를 방지하기 위해 촉매와 지지체를 함께 사용하는데 수소가 생성되는 양극에 주로 사용되는 탄소가 있지만, 음극에서는 산화 반응으로 탄소가 사용되면 이산화탄소로 산화되어 내산화성이 높은 지지체가 필요하다. 이때 지지체로 사용될 수 있는 물질이 바로 맥신이다. 맥신은 Ti, Mo, Hf, Ta 등의 금속 원자와 탄소 또는 질소 원자로 이루어진 나노 물질로, 전기가 잘 통하고 촉매 지지체로 적합한 구조를 지녀 수소 생산에 유리하다. 특히 티타늄(Titanium) 기반의 맥신이 가장 많이 연구됐다. 하지만 이 경우 물에 쉽게 산화된다는 티타늄의 원자적 특성으로 인해 촉매가 높은 전기전도도를 유지할 수 없다는 고질적인 단점이 있었다. 이를 보완하기 위해 연구팀은 몰리브데넘을 적용한 맥신을 지지체로 사용하는 음극 촉매를 새롭게 설계했다. 다른 원자를 사용하기 때문에 티타늄의 산화 안정성 취약 부분을 완전히 극복할 수 있는 시도로 주목을 받고 있다. 몰리브데넘 기반의 맥신을 지지체로 활용하였을 때, 맥신의 표면을 구성하고 있는 몰리브데넘 원자와 촉매 코발트 사이에 강한 화학 결합이 만들어진다. 이렇게 생성된 화학 결합을 통해 수소 생산 효율 또한 약 2.45배 증가했다. 특히, 최근 티타늄 계열의 맥신을 활용한 단위 전지 셀 내구성이 40시간이 채 되지 않았던 결과에 대비해 10배 이상의 내구성 향상 효과를 확인했다. 이를 통해 그린 수소 생산 비용 절감 효과를 기대할 수 있으며, 향후 대규모 수소 생산 발전소 및 대량 그린 수소 발전 스테이션 분야 활용에도 적용할 예정이다. KIST 이성수 박사는 “맥신을 구성하는 원소를 제어해 그린 수소 생산 환경에 적합한 후보군을 찾을 수 있었고, 이를 통해 산화 환경에서 안정성 있는 맥신 지지체를 확보했다”라며 “향후 수소 생산 효율과 내구성을 지닌 산소 발생 전극 촉매 개발로 수소 기반 생태계 활성화에 기여할 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업과 기초과학연구사업(2021M3H4A1A03047327)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Applied Catalysis B: Environment and Energy(IF: 20.2, JCR 분야 상위 0.6%)」 최신 호에 게재됐다. [그림 1] 맥신을 지지체로 활용한 촉매 디자인 및 이를 음이온 기반 수소 발생 장치 전극 활용/실증 확인 전체 개념도 [그림 2] 몰리브데넘 맥신/티타늄 맥신 지지체를 활용한 촉매에 따른 수전해 장치 성능(a, 전류-전압 그래프)
맥신, 그린 수소 생산에서 활용처 찾았다.
- KIST 연구진이 개발한 원소 제어 맥신, 수전해 촉매 담지체 응용 가능 - 몰리브데넘 기반 맥신 지지체 활용 시, 그린 수소 생산 비용 절감 효과 전 세계 137개국은 2050년까지 화석 연료 사용을 중단하고 탄소 배출을 제로로 만드는 '넷제로(Net-Zero)' 기후 변화 협약을 체결했다. 수소는 에너지원으로 활용될 때 물과 산소만을 배출하므로 친환경적인 차세대 에너지원으로 각광받고 있다. 수소 생산 방식은 사용 에너지원과 탄소 배출 유무에 따라 그레이 수소, 블루 수소, 그린 수소로 나뉜다. 그 중 그린 수소 생산 방법은 친환경 에너지를 사용해 물을 전기 분해하여 탄소 배출 없이 수소를 생산하는 가장 친환경적인 방법이다. 한국과학기술연구원(KIST, 원장 오상록) 전자파솔루션융합연구단 이성수 박사 연구팀은 전자파 차폐 및 흡수 특성을 가진 산화 안정형 몰리브데넘계 맥신을 개발했다고 밝혔다. 산화 반응에 대해 안정성을 가지고 있어 이를 수전해 촉매의 담지체로 응용할 경우, 그린 수소 생산의 산소 발생 전극으로 활용해 그린 수소 생산 비용을 절감시킬 수 있다. 물을 수소 분자와 산소 분자로 분해하려면 많은 에너지가 필요하다. 에너지를 줄이기 위해 촉매가 사용되며, 나노 단위의 작은 입자들로 이루어진 촉매가 작을수록 표면적이 넓어져 반응이 잘 일어난다. 하지만 시간이 지나면서 작은 촉매 입자들이 뭉치는 현상이 발생해 표면적이 줄어들고 수소 생산 효율이 떨어진다. 이를 방지하기 위해 촉매와 지지체를 함께 사용하는데 수소가 생성되는 양극에 주로 사용되는 탄소가 있지만, 음극에서는 산화 반응으로 탄소가 사용되면 이산화탄소로 산화되어 내산화성이 높은 지지체가 필요하다. 이때 지지체로 사용될 수 있는 물질이 바로 맥신이다. 맥신은 Ti, Mo, Hf, Ta 등의 금속 원자와 탄소 또는 질소 원자로 이루어진 나노 물질로, 전기가 잘 통하고 촉매 지지체로 적합한 구조를 지녀 수소 생산에 유리하다. 특히 티타늄(Titanium) 기반의 맥신이 가장 많이 연구됐다. 하지만 이 경우 물에 쉽게 산화된다는 티타늄의 원자적 특성으로 인해 촉매가 높은 전기전도도를 유지할 수 없다는 고질적인 단점이 있었다. 이를 보완하기 위해 연구팀은 몰리브데넘을 적용한 맥신을 지지체로 사용하는 음극 촉매를 새롭게 설계했다. 다른 원자를 사용하기 때문에 티타늄의 산화 안정성 취약 부분을 완전히 극복할 수 있는 시도로 주목을 받고 있다. 몰리브데넘 기반의 맥신을 지지체로 활용하였을 때, 맥신의 표면을 구성하고 있는 몰리브데넘 원자와 촉매 코발트 사이에 강한 화학 결합이 만들어진다. 이렇게 생성된 화학 결합을 통해 수소 생산 효율 또한 약 2.45배 증가했다. 특히, 최근 티타늄 계열의 맥신을 활용한 단위 전지 셀 내구성이 40시간이 채 되지 않았던 결과에 대비해 10배 이상의 내구성 향상 효과를 확인했다. 이를 통해 그린 수소 생산 비용 절감 효과를 기대할 수 있으며, 향후 대규모 수소 생산 발전소 및 대량 그린 수소 발전 스테이션 분야 활용에도 적용할 예정이다. KIST 이성수 박사는 “맥신을 구성하는 원소를 제어해 그린 수소 생산 환경에 적합한 후보군을 찾을 수 있었고, 이를 통해 산화 환경에서 안정성 있는 맥신 지지체를 확보했다”라며 “향후 수소 생산 효율과 내구성을 지닌 산소 발생 전극 촉매 개발로 수소 기반 생태계 활성화에 기여할 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업과 기초과학연구사업(2021M3H4A1A03047327)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Applied Catalysis B: Environment and Energy(IF: 20.2, JCR 분야 상위 0.6%)」 최신 호에 게재됐다. [그림 1] 맥신을 지지체로 활용한 촉매 디자인 및 이를 음이온 기반 수소 발생 장치 전극 활용/실증 확인 전체 개념도 [그림 2] 몰리브데넘 맥신/티타늄 맥신 지지체를 활용한 촉매에 따른 수전해 장치 성능(a, 전류-전압 그래프)
견학문의드립니다.
안녕하십니까 3사관학교에 근무하는 박승진대위입니다. 기계공학과에서 kist로 견학을 고민중입니다. 관련하여 324seung@gmail.com으로 아내해주시면 감사하겠습니다.
KIST(한국과학기술연구원) 인사발령
- KIST(한국과학기술연구원) 인사발령 <승진> ▲ 한국과학기술연구원 스마트팜융합연구센터장 김상민 ▲ 한국과학기술연구원 탄소융합소재연구센터장 김승민 ▲ 한국과학기술연구원 수소에너지소재연구단장 윤경중 ▲ 한국과학기술연구원 청정에너지연구센터장 오형석 ▲ 한국과학기술연구원 차세대태양전지연구센터장 이필립 ▲ 한국과학기술연구원 에너지저장연구센터장 정훈기 ▲ 한국과학기술연구원 소프트융합소재연구센터장 손정곤 ▲ 한국과학기술연구원 기후대기정책팀장 이영혜 <전보> ▲ 한국과학기술연구원 지속가능미래기술연구본부장 정경윤 ▲ 한국과학기술연구원 반도체기술연구단장 이수연 ▲ 한국과학기술연구원 양자기술연구단장 한상욱 ▲ 한국과학기술연구원 차세대반도체연구소 연구지원실장 최종상 ▲ 한국과학기술연구원 강릉분원 혁신기업협력센터장 강대신 ▲ 한국과학기술연구원 휴머노이드연구단장 이종원 ▲ 한국과학기술연구원 AI·로봇연구소 연구지원실장 이삼규 ▲ 한국과학기술연구원 수소·연료전지연구단장 장종현 ▲ 한국과학기술연구원 청정수소융합연구소 연구지원실장 윤승 2024.7.1. 부. 끝.
공기 중 이산화탄소로 지구 살리는 친환경 플라스틱 생산한다
- 이산화탄소로부터 친환경 바이오플라스틱을 직접 생산하는 생물-전기 융합시스템 개발 - 세계 최고 수준의 미생물 유래 친환경 바이오플라스틱(PHA) 생산성 달성 기후변화와 환경오염 문제를 동시에 해결할 수 있는 이산화탄소에서 바로 바이오플라스틱을 만들어 내는 기술이 주목받고 있다. CCU(Carbon Capture and Utilization) 기술로 생산되는 화합물은 생분해성인 경우가 적고 복잡한 화학반응 단계를 거쳐야 한다. 반면, 미생물을 이용해 이산화탄소로부터 친환경 생분해성 플라스틱을 생성하는 기술은 플라스틱 폐기물 문제를 해결할 수 있으며 이산화탄소를 플라스틱으로 전환하기 위한 추가적인 에너지 투입이 적어 차세대 이산화탄소 전환 기술로 평가받고 있다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 고자경·이동기 박사 연구팀은 전기화학 시스템과 미생물 배양 시스템을 결합해 공기 중 이산화탄소에서 친환경 바이오플라스틱인 폴리하이드록시알카노에이트(PHA, Polyhydroxyalkanoate)를 효율적으로 생성할 수 있는 생물-전기 융합기술을 개발했다고 밝혔다. PHA는 미생물에 의해 합성되는 천연 고분자로 토양뿐 아니라 해양 환경에서도 생분해되며 식품 포장재, 의료용품 등에 사용된다. 연구팀은 이산화탄소를 먹고 PHA를 만드는 능력을 지닌 수소 산화 박테리아에 주목했다. 이 미생물의 배양을 위해 물을 전기 분해해 실시간으로 생산된 수소를 에너지원으로 공급하고 이를 통해 이산화탄소로부터 바이오플라스틱을 생산할 수 있는 생물-전기 융합시스템을 개발했다. 그러나 물을 전기 분해하는 과정에서 독성물질인 활성산소와 금속이온이 부산물로 생성돼 미생물의 성장을 저해하는 문제가 있었다. 이를 해결하기 위해 미생물에 대한 독성이 매우 낮고 쉽게 금속으로 돌아갈 수 있는 특성을 가진 구리가 첨가된 촉매를 개발했다. 또한, 연구팀은 개발된 촉매의 표면에 코팅된 구리가 미생물 배양액에 녹았다가 다시 전극으로 돌아가는 순환과정에서 활성산소를 빠르게 분해하는 독성물질 자가 해독 메커니즘을 규명하는 데 성공했다. 그 결과, 기존 촉매를 활용할 때보다 수소 생산성 및 활성산소 제거 속도가 높아졌을 뿐만 아니라 활성산소 생산량이 감소해 300mg/L이었던 미생물 유래 PHA 생산성을 세계 최고 수준인 487mg/L으로 높였다. 연구팀은 이산화탄소로부터 생성되는 PHA의 대량생산을 위해 생물-전기 반응조 대용량화 및 반응 조건 최적화 연구를 수행할 예정이다. 이를 통해 석유 기반 플라스틱이나 다른 바이오플라스틱보다 2~5배 높은 생산 단가를 낮춤으로써 미생물 유래 PHA가 비닐, 플라스틱 용기 등 다양한 시장에서 탄소중립을 동시에 실현할 수 있는 차세대 친환경 플라스틱으로 자리매김할 것으로 기대된다. KIST 고자경 박사는 “이번 연구 성과는 생물공학과 전기화학 분야의 융합 원천 기술로 전기에너지로 이산화탄소를 복잡한 고분자 물질로 바로 변환할 수 있음을 보여주는 좋은 사례”라며 “대기 중 이산화탄소를 직접적으로 감축할 수 있는 탄소중립을 위한 핵심 기술로 많은 발전과 활용이 기대된다”라고 밝혔다. 본 연구는 과학기술정보통신부 (장관 이종호)의 지원을 받아 KIST 주요사업과 바이오의료기술개발사업(2022M3A9F3082336), 원자력연구개발사업(RS-2022-00156236)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Advanced Science」(IF 14.3, JCR 분야 상위 6.5%) 최신호에 게재됐으며, ‘Hot Topic: Carbon Dioxide’에 소개됐다. * (논문명) Biocompatible Cu/NiMo Composite Electrocatalyst for Hydrogen Evolution Reaction In Microbial Electrosynthesis; Unveiling the Self-Detoxification Effect of Cu [그림 1] 이산화탄소, 물, 미생물, 전기를 이용한 생분해성 바이오플라스틱 생산 [그림 2] 생물-전기합성 반응에서 구리의 자가해독 반응
공기 중 이산화탄소로 지구 살리는 친환경 플라스틱 생산한다
- 이산화탄소로부터 친환경 바이오플라스틱을 직접 생산하는 생물-전기 융합시스템 개발 - 세계 최고 수준의 미생물 유래 친환경 바이오플라스틱(PHA) 생산성 달성 기후변화와 환경오염 문제를 동시에 해결할 수 있는 이산화탄소에서 바로 바이오플라스틱을 만들어 내는 기술이 주목받고 있다. CCU(Carbon Capture and Utilization) 기술로 생산되는 화합물은 생분해성인 경우가 적고 복잡한 화학반응 단계를 거쳐야 한다. 반면, 미생물을 이용해 이산화탄소로부터 친환경 생분해성 플라스틱을 생성하는 기술은 플라스틱 폐기물 문제를 해결할 수 있으며 이산화탄소를 플라스틱으로 전환하기 위한 추가적인 에너지 투입이 적어 차세대 이산화탄소 전환 기술로 평가받고 있다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 고자경·이동기 박사 연구팀은 전기화학 시스템과 미생물 배양 시스템을 결합해 공기 중 이산화탄소에서 친환경 바이오플라스틱인 폴리하이드록시알카노에이트(PHA, Polyhydroxyalkanoate)를 효율적으로 생성할 수 있는 생물-전기 융합기술을 개발했다고 밝혔다. PHA는 미생물에 의해 합성되는 천연 고분자로 토양뿐 아니라 해양 환경에서도 생분해되며 식품 포장재, 의료용품 등에 사용된다. 연구팀은 이산화탄소를 먹고 PHA를 만드는 능력을 지닌 수소 산화 박테리아에 주목했다. 이 미생물의 배양을 위해 물을 전기 분해해 실시간으로 생산된 수소를 에너지원으로 공급하고 이를 통해 이산화탄소로부터 바이오플라스틱을 생산할 수 있는 생물-전기 융합시스템을 개발했다. 그러나 물을 전기 분해하는 과정에서 독성물질인 활성산소와 금속이온이 부산물로 생성돼 미생물의 성장을 저해하는 문제가 있었다. 이를 해결하기 위해 미생물에 대한 독성이 매우 낮고 쉽게 금속으로 돌아갈 수 있는 특성을 가진 구리가 첨가된 촉매를 개발했다. 또한, 연구팀은 개발된 촉매의 표면에 코팅된 구리가 미생물 배양액에 녹았다가 다시 전극으로 돌아가는 순환과정에서 활성산소를 빠르게 분해하는 독성물질 자가 해독 메커니즘을 규명하는 데 성공했다. 그 결과, 기존 촉매를 활용할 때보다 수소 생산성 및 활성산소 제거 속도가 높아졌을 뿐만 아니라 활성산소 생산량이 감소해 300mg/L이었던 미생물 유래 PHA 생산성을 세계 최고 수준인 487mg/L으로 높였다. 연구팀은 이산화탄소로부터 생성되는 PHA의 대량생산을 위해 생물-전기 반응조 대용량화 및 반응 조건 최적화 연구를 수행할 예정이다. 이를 통해 석유 기반 플라스틱이나 다른 바이오플라스틱보다 2~5배 높은 생산 단가를 낮춤으로써 미생물 유래 PHA가 비닐, 플라스틱 용기 등 다양한 시장에서 탄소중립을 동시에 실현할 수 있는 차세대 친환경 플라스틱으로 자리매김할 것으로 기대된다. KIST 고자경 박사는 “이번 연구 성과는 생물공학과 전기화학 분야의 융합 원천 기술로 전기에너지로 이산화탄소를 복잡한 고분자 물질로 바로 변환할 수 있음을 보여주는 좋은 사례”라며 “대기 중 이산화탄소를 직접적으로 감축할 수 있는 탄소중립을 위한 핵심 기술로 많은 발전과 활용이 기대된다”라고 밝혔다. 본 연구는 과학기술정보통신부 (장관 이종호)의 지원을 받아 KIST 주요사업과 바이오의료기술개발사업(2022M3A9F3082336), 원자력연구개발사업(RS-2022-00156236)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Advanced Science」(IF 14.3, JCR 분야 상위 6.5%) 최신호에 게재됐으며, ‘Hot Topic: Carbon Dioxide’에 소개됐다. * (논문명) Biocompatible Cu/NiMo Composite Electrocatalyst for Hydrogen Evolution Reaction In Microbial Electrosynthesis; Unveiling the Self-Detoxification Effect of Cu [그림 1] 이산화탄소, 물, 미생물, 전기를 이용한 생분해성 바이오플라스틱 생산 [그림 2] 생물-전기합성 반응에서 구리의 자가해독 반응
공기 중 이산화탄소로 지구 살리는 친환경 플라스틱 생산한다
- 이산화탄소로부터 친환경 바이오플라스틱을 직접 생산하는 생물-전기 융합시스템 개발 - 세계 최고 수준의 미생물 유래 친환경 바이오플라스틱(PHA) 생산성 달성 기후변화와 환경오염 문제를 동시에 해결할 수 있는 이산화탄소에서 바로 바이오플라스틱을 만들어 내는 기술이 주목받고 있다. CCU(Carbon Capture and Utilization) 기술로 생산되는 화합물은 생분해성인 경우가 적고 복잡한 화학반응 단계를 거쳐야 한다. 반면, 미생물을 이용해 이산화탄소로부터 친환경 생분해성 플라스틱을 생성하는 기술은 플라스틱 폐기물 문제를 해결할 수 있으며 이산화탄소를 플라스틱으로 전환하기 위한 추가적인 에너지 투입이 적어 차세대 이산화탄소 전환 기술로 평가받고 있다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 고자경·이동기 박사 연구팀은 전기화학 시스템과 미생물 배양 시스템을 결합해 공기 중 이산화탄소에서 친환경 바이오플라스틱인 폴리하이드록시알카노에이트(PHA, Polyhydroxyalkanoate)를 효율적으로 생성할 수 있는 생물-전기 융합기술을 개발했다고 밝혔다. PHA는 미생물에 의해 합성되는 천연 고분자로 토양뿐 아니라 해양 환경에서도 생분해되며 식품 포장재, 의료용품 등에 사용된다. 연구팀은 이산화탄소를 먹고 PHA를 만드는 능력을 지닌 수소 산화 박테리아에 주목했다. 이 미생물의 배양을 위해 물을 전기 분해해 실시간으로 생산된 수소를 에너지원으로 공급하고 이를 통해 이산화탄소로부터 바이오플라스틱을 생산할 수 있는 생물-전기 융합시스템을 개발했다. 그러나 물을 전기 분해하는 과정에서 독성물질인 활성산소와 금속이온이 부산물로 생성돼 미생물의 성장을 저해하는 문제가 있었다. 이를 해결하기 위해 미생물에 대한 독성이 매우 낮고 쉽게 금속으로 돌아갈 수 있는 특성을 가진 구리가 첨가된 촉매를 개발했다. 또한, 연구팀은 개발된 촉매의 표면에 코팅된 구리가 미생물 배양액에 녹았다가 다시 전극으로 돌아가는 순환과정에서 활성산소를 빠르게 분해하는 독성물질 자가 해독 메커니즘을 규명하는 데 성공했다. 그 결과, 기존 촉매를 활용할 때보다 수소 생산성 및 활성산소 제거 속도가 높아졌을 뿐만 아니라 활성산소 생산량이 감소해 300mg/L이었던 미생물 유래 PHA 생산성을 세계 최고 수준인 487mg/L으로 높였다. 연구팀은 이산화탄소로부터 생성되는 PHA의 대량생산을 위해 생물-전기 반응조 대용량화 및 반응 조건 최적화 연구를 수행할 예정이다. 이를 통해 석유 기반 플라스틱이나 다른 바이오플라스틱보다 2~5배 높은 생산 단가를 낮춤으로써 미생물 유래 PHA가 비닐, 플라스틱 용기 등 다양한 시장에서 탄소중립을 동시에 실현할 수 있는 차세대 친환경 플라스틱으로 자리매김할 것으로 기대된다. KIST 고자경 박사는 “이번 연구 성과는 생물공학과 전기화학 분야의 융합 원천 기술로 전기에너지로 이산화탄소를 복잡한 고분자 물질로 바로 변환할 수 있음을 보여주는 좋은 사례”라며 “대기 중 이산화탄소를 직접적으로 감축할 수 있는 탄소중립을 위한 핵심 기술로 많은 발전과 활용이 기대된다”라고 밝혔다. 본 연구는 과학기술정보통신부 (장관 이종호)의 지원을 받아 KIST 주요사업과 바이오의료기술개발사업(2022M3A9F3082336), 원자력연구개발사업(RS-2022-00156236)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Advanced Science」(IF 14.3, JCR 분야 상위 6.5%) 최신호에 게재됐으며, ‘Hot Topic: Carbon Dioxide’에 소개됐다. * (논문명) Biocompatible Cu/NiMo Composite Electrocatalyst for Hydrogen Evolution Reaction In Microbial Electrosynthesis; Unveiling the Self-Detoxification Effect of Cu [그림 1] 이산화탄소, 물, 미생물, 전기를 이용한 생분해성 바이오플라스틱 생산 [그림 2] 생물-전기합성 반응에서 구리의 자가해독 반응
공기 중 이산화탄소로 지구 살리는 친환경 플라스틱 생산한다
- 이산화탄소로부터 친환경 바이오플라스틱을 직접 생산하는 생물-전기 융합시스템 개발 - 세계 최고 수준의 미생물 유래 친환경 바이오플라스틱(PHA) 생산성 달성 기후변화와 환경오염 문제를 동시에 해결할 수 있는 이산화탄소에서 바로 바이오플라스틱을 만들어 내는 기술이 주목받고 있다. CCU(Carbon Capture and Utilization) 기술로 생산되는 화합물은 생분해성인 경우가 적고 복잡한 화학반응 단계를 거쳐야 한다. 반면, 미생물을 이용해 이산화탄소로부터 친환경 생분해성 플라스틱을 생성하는 기술은 플라스틱 폐기물 문제를 해결할 수 있으며 이산화탄소를 플라스틱으로 전환하기 위한 추가적인 에너지 투입이 적어 차세대 이산화탄소 전환 기술로 평가받고 있다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 고자경·이동기 박사 연구팀은 전기화학 시스템과 미생물 배양 시스템을 결합해 공기 중 이산화탄소에서 친환경 바이오플라스틱인 폴리하이드록시알카노에이트(PHA, Polyhydroxyalkanoate)를 효율적으로 생성할 수 있는 생물-전기 융합기술을 개발했다고 밝혔다. PHA는 미생물에 의해 합성되는 천연 고분자로 토양뿐 아니라 해양 환경에서도 생분해되며 식품 포장재, 의료용품 등에 사용된다. 연구팀은 이산화탄소를 먹고 PHA를 만드는 능력을 지닌 수소 산화 박테리아에 주목했다. 이 미생물의 배양을 위해 물을 전기 분해해 실시간으로 생산된 수소를 에너지원으로 공급하고 이를 통해 이산화탄소로부터 바이오플라스틱을 생산할 수 있는 생물-전기 융합시스템을 개발했다. 그러나 물을 전기 분해하는 과정에서 독성물질인 활성산소와 금속이온이 부산물로 생성돼 미생물의 성장을 저해하는 문제가 있었다. 이를 해결하기 위해 미생물에 대한 독성이 매우 낮고 쉽게 금속으로 돌아갈 수 있는 특성을 가진 구리가 첨가된 촉매를 개발했다. 또한, 연구팀은 개발된 촉매의 표면에 코팅된 구리가 미생물 배양액에 녹았다가 다시 전극으로 돌아가는 순환과정에서 활성산소를 빠르게 분해하는 독성물질 자가 해독 메커니즘을 규명하는 데 성공했다. 그 결과, 기존 촉매를 활용할 때보다 수소 생산성 및 활성산소 제거 속도가 높아졌을 뿐만 아니라 활성산소 생산량이 감소해 300mg/L이었던 미생물 유래 PHA 생산성을 세계 최고 수준인 487mg/L으로 높였다. 연구팀은 이산화탄소로부터 생성되는 PHA의 대량생산을 위해 생물-전기 반응조 대용량화 및 반응 조건 최적화 연구를 수행할 예정이다. 이를 통해 석유 기반 플라스틱이나 다른 바이오플라스틱보다 2~5배 높은 생산 단가를 낮춤으로써 미생물 유래 PHA가 비닐, 플라스틱 용기 등 다양한 시장에서 탄소중립을 동시에 실현할 수 있는 차세대 친환경 플라스틱으로 자리매김할 것으로 기대된다. KIST 고자경 박사는 “이번 연구 성과는 생물공학과 전기화학 분야의 융합 원천 기술로 전기에너지로 이산화탄소를 복잡한 고분자 물질로 바로 변환할 수 있음을 보여주는 좋은 사례”라며 “대기 중 이산화탄소를 직접적으로 감축할 수 있는 탄소중립을 위한 핵심 기술로 많은 발전과 활용이 기대된다”라고 밝혔다. 본 연구는 과학기술정보통신부 (장관 이종호)의 지원을 받아 KIST 주요사업과 바이오의료기술개발사업(2022M3A9F3082336), 원자력연구개발사업(RS-2022-00156236)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Advanced Science」(IF 14.3, JCR 분야 상위 6.5%) 최신호에 게재됐으며, ‘Hot Topic: Carbon Dioxide’에 소개됐다. * (논문명) Biocompatible Cu/NiMo Composite Electrocatalyst for Hydrogen Evolution Reaction In Microbial Electrosynthesis; Unveiling the Self-Detoxification Effect of Cu [그림 1] 이산화탄소, 물, 미생물, 전기를 이용한 생분해성 바이오플라스틱 생산 [그림 2] 생물-전기합성 반응에서 구리의 자가해독 반응
공기 중 이산화탄소로 지구 살리는 친환경 플라스틱 생산한다
- 이산화탄소로부터 친환경 바이오플라스틱을 직접 생산하는 생물-전기 융합시스템 개발 - 세계 최고 수준의 미생물 유래 친환경 바이오플라스틱(PHA) 생산성 달성 기후변화와 환경오염 문제를 동시에 해결할 수 있는 이산화탄소에서 바로 바이오플라스틱을 만들어 내는 기술이 주목받고 있다. CCU(Carbon Capture and Utilization) 기술로 생산되는 화합물은 생분해성인 경우가 적고 복잡한 화학반응 단계를 거쳐야 한다. 반면, 미생물을 이용해 이산화탄소로부터 친환경 생분해성 플라스틱을 생성하는 기술은 플라스틱 폐기물 문제를 해결할 수 있으며 이산화탄소를 플라스틱으로 전환하기 위한 추가적인 에너지 투입이 적어 차세대 이산화탄소 전환 기술로 평가받고 있다. 한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 고자경·이동기 박사 연구팀은 전기화학 시스템과 미생물 배양 시스템을 결합해 공기 중 이산화탄소에서 친환경 바이오플라스틱인 폴리하이드록시알카노에이트(PHA, Polyhydroxyalkanoate)를 효율적으로 생성할 수 있는 생물-전기 융합기술을 개발했다고 밝혔다. PHA는 미생물에 의해 합성되는 천연 고분자로 토양뿐 아니라 해양 환경에서도 생분해되며 식품 포장재, 의료용품 등에 사용된다. 연구팀은 이산화탄소를 먹고 PHA를 만드는 능력을 지닌 수소 산화 박테리아에 주목했다. 이 미생물의 배양을 위해 물을 전기 분해해 실시간으로 생산된 수소를 에너지원으로 공급하고 이를 통해 이산화탄소로부터 바이오플라스틱을 생산할 수 있는 생물-전기 융합시스템을 개발했다. 그러나 물을 전기 분해하는 과정에서 독성물질인 활성산소와 금속이온이 부산물로 생성돼 미생물의 성장을 저해하는 문제가 있었다. 이를 해결하기 위해 미생물에 대한 독성이 매우 낮고 쉽게 금속으로 돌아갈 수 있는 특성을 가진 구리가 첨가된 촉매를 개발했다. 또한, 연구팀은 개발된 촉매의 표면에 코팅된 구리가 미생물 배양액에 녹았다가 다시 전극으로 돌아가는 순환과정에서 활성산소를 빠르게 분해하는 독성물질 자가 해독 메커니즘을 규명하는 데 성공했다. 그 결과, 기존 촉매를 활용할 때보다 수소 생산성 및 활성산소 제거 속도가 높아졌을 뿐만 아니라 활성산소 생산량이 감소해 300mg/L이었던 미생물 유래 PHA 생산성을 세계 최고 수준인 487mg/L으로 높였다. 연구팀은 이산화탄소로부터 생성되는 PHA의 대량생산을 위해 생물-전기 반응조 대용량화 및 반응 조건 최적화 연구를 수행할 예정이다. 이를 통해 석유 기반 플라스틱이나 다른 바이오플라스틱보다 2~5배 높은 생산 단가를 낮춤으로써 미생물 유래 PHA가 비닐, 플라스틱 용기 등 다양한 시장에서 탄소중립을 동시에 실현할 수 있는 차세대 친환경 플라스틱으로 자리매김할 것으로 기대된다. KIST 고자경 박사는 “이번 연구 성과는 생물공학과 전기화학 분야의 융합 원천 기술로 전기에너지로 이산화탄소를 복잡한 고분자 물질로 바로 변환할 수 있음을 보여주는 좋은 사례”라며 “대기 중 이산화탄소를 직접적으로 감축할 수 있는 탄소중립을 위한 핵심 기술로 많은 발전과 활용이 기대된다”라고 밝혔다. 본 연구는 과학기술정보통신부 (장관 이종호)의 지원을 받아 KIST 주요사업과 바이오의료기술개발사업(2022M3A9F3082336), 원자력연구개발사업(RS-2022-00156236)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Advanced Science」(IF 14.3, JCR 분야 상위 6.5%) 최신호에 게재됐으며, ‘Hot Topic: Carbon Dioxide’에 소개됐다. * (논문명) Biocompatible Cu/NiMo Composite Electrocatalyst for Hydrogen Evolution Reaction In Microbial Electrosynthesis; Unveiling the Self-Detoxification Effect of Cu [그림 1] 이산화탄소, 물, 미생물, 전기를 이용한 생분해성 바이오플라스틱 생산 [그림 2] 생물-전기합성 반응에서 구리의 자가해독 반응