Result
게시물 키워드""에 대한 9495개의 검색결과를 찾았습니다.
전기자동차, 드론에 사용될 급속충전용 고용량 · 장수명 전지 나온다
- 전기화학적 한계 극복한 급속충전 고용량 리튬이차전지 음극 신소재 개발 - 전기자동차 및 드론, 근력증강 로봇 등 차세대 디바이스 접목 기대 리튬이온전지(lithium ion battery)는 밀도가 높아 무게가 가볍고 고용량의 전지를 만드는데 유리해 전기자동차용 전원으로 개발되고 있으나 주유시간에 비해 상대적으로 매우 긴 충전시간, 그리고 반복되는 충·방전 과정을 거치면 원래 지니고 있는 성능이 현격하게 감소되는 문제가 있다. 따라서 산업계에서는 급속충전이 가능하고 오랫동안 성능저하 없이 사용될 수 있는 우수한 효율의 소재 개발이 요구되어져왔다. 최근 국내 연구진이 고속충전이 가능하면서도 장시간 사용해도 고용량, 고출력을 유지하는 리튬이온전지용 음극 신소재를 개발하여 주목을 받고 있다. 한국과학기술연구원(KIST, 원장 이병권) 에너지저장연구단 이중기 박사팀은 이차전지 소재 설계에 있어서 반도체 접합 구조 계면*을 형성하여 급속 충·방전 조건하에서도 고용량, 장수명이 가능한 신개념 리튬이차전지 음극 소재를 개발하였다. *반도체 접합 구조 계면 : 단결정 안에서 서로 다른 특성의 반도체가 접해 있는 구조. 즉, 비정상 반도체(P형)와 정상 반도체(N형)가 접해 있는 P-N 접합구조(P-N junction) KIST 연구진은 우선 열 증발·증착 장치를 사용하여 아주 우수한 탄성을 지니는 플라즈마 중합 탄소구조체를 제조하고, 이와 동시에 화학증착방법을 이용하여 수 나노크기로 주석입자를 균일하게 분산시켰다. 연구진은 위와 같이 두 개의 상이하게 다른 복합공정을 이용하여 새로운 개념의 이차전지 소재를 제조하였다. 이 소재는 우수한 탄성을 지녀 충·방전 시 발생되는 부피팽창을 극복할 수 있고, 나노 분산된 주석 입자 주위에 형성된 산화주석막과 플라즈마 중합된 탄소구조체 사이에 형성된 반도체 접합 구조 계면은 전극 내에 전하가 걸려있을 때 이동되는 리튬이온과 전자의 이동속도를 가속시켜 고출력, 고용량이 가능하게 할 수 있다. 이 원리를 전지에 적용하면 충?방전 시 단위시간 당 이동되는 리튬이온의 속도를 증가시키면서도 계면저항을 최소화시킴으로서 급속충전 상태에서도 장시간 고용량 상태를 유지시킬 수 있다. 실제로 본 연구를 통해 개발된 리튬이온전지용 음극재는 충·방전 시간 50분으로 약 5000회를 반복하여도 97.18%의 성능(기존 이차전지 대비 약 3배)을 유지했다. 또한 급속 충·방전 시간인 4분으로 실험했을 때, 기존 이차전지 대비 1.5배의 성능을 보였고, 충·방전 350회의 반복에도 99% 이상의 성능 유지를 나타내는 현상을 실험적으로 확인하였다. KIST 이중기 박사는 “본 연구에서 개발된 반도체 접합 구조 계면특성을 가진 리튬이차전지 음극재 합성 기법 및 개선 방안은 차세대 급속 충전용 전기자동차 및 무선이동원인 드론, 근력증강 로봇 등의 전원설계에 응용 가능하고, 다른 무선 이동원의 핵심 디바이스 설계에도 새로운 접근방법을 제시할 것으로 전망된다.“고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 KIST 기관고유사업, 한국연구재단 중견연구자사업을 통해 수행되었으며, 연구 결과는 국제 학술지인 ‘ACS Nano’ (IF: 13.942, JCR 분야 상위 3.082%) 최신호에 온라인 게재되었다. * (논문명) Self-Relaxant Super-Elastic Matrix Derived from C60 Incorporated Sn Nanoparticles for Ultra-High-Performance Li-Ion Batteries - (제 1저자) 한국과학기술연구원 Ryanda Enggar Anugrah Ardhi - (교신저자) 한국과학기술연구원 이중기 박사 <그림설명> <그림 1> (a) Sn-PC60전극의 구조 및 자가완화특성에 대한 모식도 (b) 충?방전과정 중 금속/n-type반도체(a-SnO2)/p-type반도체(PC60)구조에서의 전자이동에 대한 모식도 및 에너지도표 ● EVac Vacuum energy level ● EF Fermi energy level ● Eg Band-gap energy ● CBM Conduction-band minimum ● VBM Valence-band maximum ● W Space charge region(SCR)
전기자동차, 드론에 사용될 급속충전용 고용량 · 장수명 전지 나온다
- 전기화학적 한계 극복한 급속충전 고용량 리튬이차전지 음극 신소재 개발 - 전기자동차 및 드론, 근력증강 로봇 등 차세대 디바이스 접목 기대 리튬이온전지(lithium ion battery)는 밀도가 높아 무게가 가볍고 고용량의 전지를 만드는데 유리해 전기자동차용 전원으로 개발되고 있으나 주유시간에 비해 상대적으로 매우 긴 충전시간, 그리고 반복되는 충·방전 과정을 거치면 원래 지니고 있는 성능이 현격하게 감소되는 문제가 있다. 따라서 산업계에서는 급속충전이 가능하고 오랫동안 성능저하 없이 사용될 수 있는 우수한 효율의 소재 개발이 요구되어져왔다. 최근 국내 연구진이 고속충전이 가능하면서도 장시간 사용해도 고용량, 고출력을 유지하는 리튬이온전지용 음극 신소재를 개발하여 주목을 받고 있다. 한국과학기술연구원(KIST, 원장 이병권) 에너지저장연구단 이중기 박사팀은 이차전지 소재 설계에 있어서 반도체 접합 구조 계면*을 형성하여 급속 충·방전 조건하에서도 고용량, 장수명이 가능한 신개념 리튬이차전지 음극 소재를 개발하였다. *반도체 접합 구조 계면 : 단결정 안에서 서로 다른 특성의 반도체가 접해 있는 구조. 즉, 비정상 반도체(P형)와 정상 반도체(N형)가 접해 있는 P-N 접합구조(P-N junction) KIST 연구진은 우선 열 증발·증착 장치를 사용하여 아주 우수한 탄성을 지니는 플라즈마 중합 탄소구조체를 제조하고, 이와 동시에 화학증착방법을 이용하여 수 나노크기로 주석입자를 균일하게 분산시켰다. 연구진은 위와 같이 두 개의 상이하게 다른 복합공정을 이용하여 새로운 개념의 이차전지 소재를 제조하였다. 이 소재는 우수한 탄성을 지녀 충·방전 시 발생되는 부피팽창을 극복할 수 있고, 나노 분산된 주석 입자 주위에 형성된 산화주석막과 플라즈마 중합된 탄소구조체 사이에 형성된 반도체 접합 구조 계면은 전극 내에 전하가 걸려있을 때 이동되는 리튬이온과 전자의 이동속도를 가속시켜 고출력, 고용량이 가능하게 할 수 있다. 이 원리를 전지에 적용하면 충?방전 시 단위시간 당 이동되는 리튬이온의 속도를 증가시키면서도 계면저항을 최소화시킴으로서 급속충전 상태에서도 장시간 고용량 상태를 유지시킬 수 있다. 실제로 본 연구를 통해 개발된 리튬이온전지용 음극재는 충·방전 시간 50분으로 약 5000회를 반복하여도 97.18%의 성능(기존 이차전지 대비 약 3배)을 유지했다. 또한 급속 충·방전 시간인 4분으로 실험했을 때, 기존 이차전지 대비 1.5배의 성능을 보였고, 충·방전 350회의 반복에도 99% 이상의 성능 유지를 나타내는 현상을 실험적으로 확인하였다. KIST 이중기 박사는 “본 연구에서 개발된 반도체 접합 구조 계면특성을 가진 리튬이차전지 음극재 합성 기법 및 개선 방안은 차세대 급속 충전용 전기자동차 및 무선이동원인 드론, 근력증강 로봇 등의 전원설계에 응용 가능하고, 다른 무선 이동원의 핵심 디바이스 설계에도 새로운 접근방법을 제시할 것으로 전망된다.“고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 KIST 기관고유사업, 한국연구재단 중견연구자사업을 통해 수행되었으며, 연구 결과는 국제 학술지인 ‘ACS Nano’ (IF: 13.942, JCR 분야 상위 3.082%) 최신호에 온라인 게재되었다. * (논문명) Self-Relaxant Super-Elastic Matrix Derived from C60 Incorporated Sn Nanoparticles for Ultra-High-Performance Li-Ion Batteries - (제 1저자) 한국과학기술연구원 Ryanda Enggar Anugrah Ardhi - (교신저자) 한국과학기술연구원 이중기 박사 <그림설명> <그림 1> (a) Sn-PC60전극의 구조 및 자가완화특성에 대한 모식도 (b) 충?방전과정 중 금속/n-type반도체(a-SnO2)/p-type반도체(PC60)구조에서의 전자이동에 대한 모식도 및 에너지도표 ● EVac Vacuum energy level ● EF Fermi energy level ● Eg Band-gap energy ● CBM Conduction-band minimum ● VBM Valence-band maximum ● W Space charge region(SCR)
전기자동차, 드론에 사용될 급속충전용 고용량 · 장수명 전지 나온다
- 전기화학적 한계 극복한 급속충전 고용량 리튬이차전지 음극 신소재 개발 - 전기자동차 및 드론, 근력증강 로봇 등 차세대 디바이스 접목 기대 리튬이온전지(lithium ion battery)는 밀도가 높아 무게가 가볍고 고용량의 전지를 만드는데 유리해 전기자동차용 전원으로 개발되고 있으나 주유시간에 비해 상대적으로 매우 긴 충전시간, 그리고 반복되는 충·방전 과정을 거치면 원래 지니고 있는 성능이 현격하게 감소되는 문제가 있다. 따라서 산업계에서는 급속충전이 가능하고 오랫동안 성능저하 없이 사용될 수 있는 우수한 효율의 소재 개발이 요구되어져왔다. 최근 국내 연구진이 고속충전이 가능하면서도 장시간 사용해도 고용량, 고출력을 유지하는 리튬이온전지용 음극 신소재를 개발하여 주목을 받고 있다. 한국과학기술연구원(KIST, 원장 이병권) 에너지저장연구단 이중기 박사팀은 이차전지 소재 설계에 있어서 반도체 접합 구조 계면*을 형성하여 급속 충·방전 조건하에서도 고용량, 장수명이 가능한 신개념 리튬이차전지 음극 소재를 개발하였다. *반도체 접합 구조 계면 : 단결정 안에서 서로 다른 특성의 반도체가 접해 있는 구조. 즉, 비정상 반도체(P형)와 정상 반도체(N형)가 접해 있는 P-N 접합구조(P-N junction) KIST 연구진은 우선 열 증발·증착 장치를 사용하여 아주 우수한 탄성을 지니는 플라즈마 중합 탄소구조체를 제조하고, 이와 동시에 화학증착방법을 이용하여 수 나노크기로 주석입자를 균일하게 분산시켰다. 연구진은 위와 같이 두 개의 상이하게 다른 복합공정을 이용하여 새로운 개념의 이차전지 소재를 제조하였다. 이 소재는 우수한 탄성을 지녀 충·방전 시 발생되는 부피팽창을 극복할 수 있고, 나노 분산된 주석 입자 주위에 형성된 산화주석막과 플라즈마 중합된 탄소구조체 사이에 형성된 반도체 접합 구조 계면은 전극 내에 전하가 걸려있을 때 이동되는 리튬이온과 전자의 이동속도를 가속시켜 고출력, 고용량이 가능하게 할 수 있다. 이 원리를 전지에 적용하면 충?방전 시 단위시간 당 이동되는 리튬이온의 속도를 증가시키면서도 계면저항을 최소화시킴으로서 급속충전 상태에서도 장시간 고용량 상태를 유지시킬 수 있다. 실제로 본 연구를 통해 개발된 리튬이온전지용 음극재는 충·방전 시간 50분으로 약 5000회를 반복하여도 97.18%의 성능(기존 이차전지 대비 약 3배)을 유지했다. 또한 급속 충·방전 시간인 4분으로 실험했을 때, 기존 이차전지 대비 1.5배의 성능을 보였고, 충·방전 350회의 반복에도 99% 이상의 성능 유지를 나타내는 현상을 실험적으로 확인하였다. KIST 이중기 박사는 “본 연구에서 개발된 반도체 접합 구조 계면특성을 가진 리튬이차전지 음극재 합성 기법 및 개선 방안은 차세대 급속 충전용 전기자동차 및 무선이동원인 드론, 근력증강 로봇 등의 전원설계에 응용 가능하고, 다른 무선 이동원의 핵심 디바이스 설계에도 새로운 접근방법을 제시할 것으로 전망된다.“고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 KIST 기관고유사업, 한국연구재단 중견연구자사업을 통해 수행되었으며, 연구 결과는 국제 학술지인 ‘ACS Nano’ (IF: 13.942, JCR 분야 상위 3.082%) 최신호에 온라인 게재되었다. * (논문명) Self-Relaxant Super-Elastic Matrix Derived from C60 Incorporated Sn Nanoparticles for Ultra-High-Performance Li-Ion Batteries - (제 1저자) 한국과학기술연구원 Ryanda Enggar Anugrah Ardhi - (교신저자) 한국과학기술연구원 이중기 박사 <그림설명> <그림 1> (a) Sn-PC60전극의 구조 및 자가완화특성에 대한 모식도 (b) 충?방전과정 중 금속/n-type반도체(a-SnO2)/p-type반도체(PC60)구조에서의 전자이동에 대한 모식도 및 에너지도표 ● EVac Vacuum energy level ● EF Fermi energy level ● Eg Band-gap energy ● CBM Conduction-band minimum ● VBM Valence-band maximum ● W Space charge region(SCR)
전기자동차, 드론에 사용될 급속충전용 고용량 · 장수명 전지 나온다
- 전기화학적 한계 극복한 급속충전 고용량 리튬이차전지 음극 신소재 개발 - 전기자동차 및 드론, 근력증강 로봇 등 차세대 디바이스 접목 기대 리튬이온전지(lithium ion battery)는 밀도가 높아 무게가 가볍고 고용량의 전지를 만드는데 유리해 전기자동차용 전원으로 개발되고 있으나 주유시간에 비해 상대적으로 매우 긴 충전시간, 그리고 반복되는 충·방전 과정을 거치면 원래 지니고 있는 성능이 현격하게 감소되는 문제가 있다. 따라서 산업계에서는 급속충전이 가능하고 오랫동안 성능저하 없이 사용될 수 있는 우수한 효율의 소재 개발이 요구되어져왔다. 최근 국내 연구진이 고속충전이 가능하면서도 장시간 사용해도 고용량, 고출력을 유지하는 리튬이온전지용 음극 신소재를 개발하여 주목을 받고 있다. 한국과학기술연구원(KIST, 원장 이병권) 에너지저장연구단 이중기 박사팀은 이차전지 소재 설계에 있어서 반도체 접합 구조 계면*을 형성하여 급속 충·방전 조건하에서도 고용량, 장수명이 가능한 신개념 리튬이차전지 음극 소재를 개발하였다. *반도체 접합 구조 계면 : 단결정 안에서 서로 다른 특성의 반도체가 접해 있는 구조. 즉, 비정상 반도체(P형)와 정상 반도체(N형)가 접해 있는 P-N 접합구조(P-N junction) KIST 연구진은 우선 열 증발·증착 장치를 사용하여 아주 우수한 탄성을 지니는 플라즈마 중합 탄소구조체를 제조하고, 이와 동시에 화학증착방법을 이용하여 수 나노크기로 주석입자를 균일하게 분산시켰다. 연구진은 위와 같이 두 개의 상이하게 다른 복합공정을 이용하여 새로운 개념의 이차전지 소재를 제조하였다. 이 소재는 우수한 탄성을 지녀 충·방전 시 발생되는 부피팽창을 극복할 수 있고, 나노 분산된 주석 입자 주위에 형성된 산화주석막과 플라즈마 중합된 탄소구조체 사이에 형성된 반도체 접합 구조 계면은 전극 내에 전하가 걸려있을 때 이동되는 리튬이온과 전자의 이동속도를 가속시켜 고출력, 고용량이 가능하게 할 수 있다. 이 원리를 전지에 적용하면 충?방전 시 단위시간 당 이동되는 리튬이온의 속도를 증가시키면서도 계면저항을 최소화시킴으로서 급속충전 상태에서도 장시간 고용량 상태를 유지시킬 수 있다. 실제로 본 연구를 통해 개발된 리튬이온전지용 음극재는 충·방전 시간 50분으로 약 5000회를 반복하여도 97.18%의 성능(기존 이차전지 대비 약 3배)을 유지했다. 또한 급속 충·방전 시간인 4분으로 실험했을 때, 기존 이차전지 대비 1.5배의 성능을 보였고, 충·방전 350회의 반복에도 99% 이상의 성능 유지를 나타내는 현상을 실험적으로 확인하였다. KIST 이중기 박사는 “본 연구에서 개발된 반도체 접합 구조 계면특성을 가진 리튬이차전지 음극재 합성 기법 및 개선 방안은 차세대 급속 충전용 전기자동차 및 무선이동원인 드론, 근력증강 로봇 등의 전원설계에 응용 가능하고, 다른 무선 이동원의 핵심 디바이스 설계에도 새로운 접근방법을 제시할 것으로 전망된다.“고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 KIST 기관고유사업, 한국연구재단 중견연구자사업을 통해 수행되었으며, 연구 결과는 국제 학술지인 ‘ACS Nano’ (IF: 13.942, JCR 분야 상위 3.082%) 최신호에 온라인 게재되었다. * (논문명) Self-Relaxant Super-Elastic Matrix Derived from C60 Incorporated Sn Nanoparticles for Ultra-High-Performance Li-Ion Batteries - (제 1저자) 한국과학기술연구원 Ryanda Enggar Anugrah Ardhi - (교신저자) 한국과학기술연구원 이중기 박사 <그림설명> <그림 1> (a) Sn-PC60전극의 구조 및 자가완화특성에 대한 모식도 (b) 충?방전과정 중 금속/n-type반도체(a-SnO2)/p-type반도체(PC60)구조에서의 전자이동에 대한 모식도 및 에너지도표 ● EVac Vacuum energy level ● EF Fermi energy level ● Eg Band-gap energy ● CBM Conduction-band minimum ● VBM Valence-band maximum ● W Space charge region(SCR)
전기자동차, 드론에 사용될 급속충전용 고용량 · 장수명 전지 나온다
- 전기화학적 한계 극복한 급속충전 고용량 리튬이차전지 음극 신소재 개발 - 전기자동차 및 드론, 근력증강 로봇 등 차세대 디바이스 접목 기대 리튬이온전지(lithium ion battery)는 밀도가 높아 무게가 가볍고 고용량의 전지를 만드는데 유리해 전기자동차용 전원으로 개발되고 있으나 주유시간에 비해 상대적으로 매우 긴 충전시간, 그리고 반복되는 충·방전 과정을 거치면 원래 지니고 있는 성능이 현격하게 감소되는 문제가 있다. 따라서 산업계에서는 급속충전이 가능하고 오랫동안 성능저하 없이 사용될 수 있는 우수한 효율의 소재 개발이 요구되어져왔다. 최근 국내 연구진이 고속충전이 가능하면서도 장시간 사용해도 고용량, 고출력을 유지하는 리튬이온전지용 음극 신소재를 개발하여 주목을 받고 있다. 한국과학기술연구원(KIST, 원장 이병권) 에너지저장연구단 이중기 박사팀은 이차전지 소재 설계에 있어서 반도체 접합 구조 계면*을 형성하여 급속 충·방전 조건하에서도 고용량, 장수명이 가능한 신개념 리튬이차전지 음극 소재를 개발하였다. *반도체 접합 구조 계면 : 단결정 안에서 서로 다른 특성의 반도체가 접해 있는 구조. 즉, 비정상 반도체(P형)와 정상 반도체(N형)가 접해 있는 P-N 접합구조(P-N junction) KIST 연구진은 우선 열 증발·증착 장치를 사용하여 아주 우수한 탄성을 지니는 플라즈마 중합 탄소구조체를 제조하고, 이와 동시에 화학증착방법을 이용하여 수 나노크기로 주석입자를 균일하게 분산시켰다. 연구진은 위와 같이 두 개의 상이하게 다른 복합공정을 이용하여 새로운 개념의 이차전지 소재를 제조하였다. 이 소재는 우수한 탄성을 지녀 충·방전 시 발생되는 부피팽창을 극복할 수 있고, 나노 분산된 주석 입자 주위에 형성된 산화주석막과 플라즈마 중합된 탄소구조체 사이에 형성된 반도체 접합 구조 계면은 전극 내에 전하가 걸려있을 때 이동되는 리튬이온과 전자의 이동속도를 가속시켜 고출력, 고용량이 가능하게 할 수 있다. 이 원리를 전지에 적용하면 충?방전 시 단위시간 당 이동되는 리튬이온의 속도를 증가시키면서도 계면저항을 최소화시킴으로서 급속충전 상태에서도 장시간 고용량 상태를 유지시킬 수 있다. 실제로 본 연구를 통해 개발된 리튬이온전지용 음극재는 충·방전 시간 50분으로 약 5000회를 반복하여도 97.18%의 성능(기존 이차전지 대비 약 3배)을 유지했다. 또한 급속 충·방전 시간인 4분으로 실험했을 때, 기존 이차전지 대비 1.5배의 성능을 보였고, 충·방전 350회의 반복에도 99% 이상의 성능 유지를 나타내는 현상을 실험적으로 확인하였다. KIST 이중기 박사는 “본 연구에서 개발된 반도체 접합 구조 계면특성을 가진 리튬이차전지 음극재 합성 기법 및 개선 방안은 차세대 급속 충전용 전기자동차 및 무선이동원인 드론, 근력증강 로봇 등의 전원설계에 응용 가능하고, 다른 무선 이동원의 핵심 디바이스 설계에도 새로운 접근방법을 제시할 것으로 전망된다.“고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 KIST 기관고유사업, 한국연구재단 중견연구자사업을 통해 수행되었으며, 연구 결과는 국제 학술지인 ‘ACS Nano’ (IF: 13.942, JCR 분야 상위 3.082%) 최신호에 온라인 게재되었다. * (논문명) Self-Relaxant Super-Elastic Matrix Derived from C60 Incorporated Sn Nanoparticles for Ultra-High-Performance Li-Ion Batteries - (제 1저자) 한국과학기술연구원 Ryanda Enggar Anugrah Ardhi - (교신저자) 한국과학기술연구원 이중기 박사 <그림설명> <그림 1> (a) Sn-PC60전극의 구조 및 자가완화특성에 대한 모식도 (b) 충?방전과정 중 금속/n-type반도체(a-SnO2)/p-type반도체(PC60)구조에서의 전자이동에 대한 모식도 및 에너지도표 ● EVac Vacuum energy level ● EF Fermi energy level ● Eg Band-gap energy ● CBM Conduction-band minimum ● VBM Valence-band maximum ● W Space charge region(SCR)
전기적 펄스 인가 장치
피부의 수평 및 수직 방향으로 전기적 자극을 가하는 기기를 대체하기 위하여, 시트마스크에 맞물린전극을 형성함. 또한 제3전극을 팔이나 목에 접촉함. 이를 통하여 피부의 수평 및 수직 방향으로 전기적 자극을 가할 수 있음. 이는 피부에 기기를 문지르는 노동력을 필요로 하지 않고 휴식을 취하면서 피부에 전기적 자극을 가할 수 있는 장점이 있음.
전기차 배터리 화재, 반도체 기술로 잡는다
- 반도체 물리와 전기화학 융합, 반도체 박막을 통한 덴드라이트 형성 차단 전기자동차 시대로의 전환이 현실로 다가오고 있지만, 전력 공급원인 리튬이온 배터리의 화재, 폭발 사고에 대한 우려가 끊이질 않고 있다. 이를 극복하기 위해 다양한 노력이 이루어지고 있는 가운데, 국내 연구진이 리튬이온 이차전지에 반도체 기술을 적용하여 폭발 위험을 획기적으로 줄여 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 이중기 박사 연구팀이 리튬금속 전극 표면에 반도체 박막을 형성하여 배터리 화재의 원인인 덴드라이트 형성을 원천 차단했다고 밝혔다. 리튬이온 이차전지의 화재는 소재 표면에 생기는 덴드라이트가 가장 큰 원인으로 알려져있다. 배터리 충전 시에 리튬이온이 음극으로 이동하여 표면에서 리튬금속으로 저장되는 과정에서 나뭇가지 형태의 결정으로 형성되는 것을 덴드라이트라 부르는데, 전극의 부피를 팽창시키고, 전극과 전해질 사이의 반응을 일으켜 화재를 유발하고 전지의 성능을 저하시킨다. 연구팀은 전도성이 높은 반도체 소재인 풀러렌(C60)을 플라즈마에 노출시켜 리튬금속전극과 전해질 사이에 반도체 박막을 만들어 덴드라이트가 형성되지 않게 했다. 개발된 반도체 박막은 전자는 통과시키고 리튬이온은 통과시키지 못하게 하는데, 전극 표면에서 전자와 이온이 만날 수 없어 리튬 결정이 형성되지 않아 덴드라이트의 형성 또한 원천적으로 차단할 수 있다. 전극의 안정성을 테스트하기 위해 리튬-리튬 대칭셀로 실험했을 때, 일반 리튬금속 전극이 20회 충·방전 사이클까지 안정적이었던 극한 전기화학 환경에서 연구진이 개발한 반도체 박막을 갖는 전극은 리튬 덴드라이트의 성장 없이 1,200 사이클 동안 안정적이었다. 또한 리튬코발트산화물 양극과 개발된 전극을 이용하여 안정성 평가를 수행한 결과 500 사이클 후에 용량의 약 81%가 유지되었는데, 약 52% 정도만 유지되는 일반 리튬금속전극에 비해 약 60% 향상되었다. KIST 이중기 박사는 “이번 연구에서 개발된 고안전성 리튬금속전극 개발 기술은 기존의 리튬금속에서 발생하는 금속 덴드라이트 발생을 억제하면서 화재의 위험이 없는 안전한 차세대 이차전지 개발을 위한 차세대 융합형 원천기술로써 주목받을 것으로 기대된다.”라며 “이번에 반도체 박막을 형성하기 위해 사용한 고가의 풀러렌이 아닌 다른 저렴한 소재를 통해 본 기술을 적용하려는 연구를 진행할 예정이다. 재료, 공정비용을 낮춰 상용화에 한 발 더 다가갈 예정”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자사업, 해외우수신진연구자사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 저널인 ‘ACS Energy Letters’ (IF: 19.003, JCR 분야 상위 1.852%) 최신 호에 게재되었다. * (논문명) Metal-Semiconductor Ohmic and Schottky Contact-Interfaces for Stable Li-Metal Electrodes - (제 1저자) 한국과학기술연구원 랸다 엥가르 아누그라 아르디 학생연구원 - (교신저자) 한국과학기술연구원 이중기 책임연구원 <그림설명> [그림 1] (좌) 일반 리튬이온 이차전지 표면에 형성된 덴드라이트 결정의 모습과 (우)덴드라이트가 형성되지 않은 p형 반도체 전극의 표면 [그림 2] (좌) 오믹접촉을 하는 n형 반도체와 리튬금속 사이를 전자는 통과하면서 반도체층 내부에 리튬금속이 형성된다. 또한 전해질 성분과 반응하여 두꺼운 SEI 층이 형성된다. (우) 쇼트키접촉을 하는 p형 반도체와리튬금속 사이는 전자는 통과하지 못하고 층 바로 밑에서 통과해온 리튬이온과 반응하여 반도체층 밑에서만 리튬이 증착된다. 터널링현상으로 계면을 통과한 소수의 전자만이 전해질막을 통과하여 얇은 SEI 막을 형성한다.
전기차 배터리 화재, 반도체 기술로 잡는다
- 반도체 물리와 전기화학 융합, 반도체 박막을 통한 덴드라이트 형성 차단 전기자동차 시대로의 전환이 현실로 다가오고 있지만, 전력 공급원인 리튬이온 배터리의 화재, 폭발 사고에 대한 우려가 끊이질 않고 있다. 이를 극복하기 위해 다양한 노력이 이루어지고 있는 가운데, 국내 연구진이 리튬이온 이차전지에 반도체 기술을 적용하여 폭발 위험을 획기적으로 줄여 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 이중기 박사 연구팀이 리튬금속 전극 표면에 반도체 박막을 형성하여 배터리 화재의 원인인 덴드라이트 형성을 원천 차단했다고 밝혔다. 리튬이온 이차전지의 화재는 소재 표면에 생기는 덴드라이트가 가장 큰 원인으로 알려져있다. 배터리 충전 시에 리튬이온이 음극으로 이동하여 표면에서 리튬금속으로 저장되는 과정에서 나뭇가지 형태의 결정으로 형성되는 것을 덴드라이트라 부르는데, 전극의 부피를 팽창시키고, 전극과 전해질 사이의 반응을 일으켜 화재를 유발하고 전지의 성능을 저하시킨다. 연구팀은 전도성이 높은 반도체 소재인 풀러렌(C60)을 플라즈마에 노출시켜 리튬금속전극과 전해질 사이에 반도체 박막을 만들어 덴드라이트가 형성되지 않게 했다. 개발된 반도체 박막은 전자는 통과시키고 리튬이온은 통과시키지 못하게 하는데, 전극 표면에서 전자와 이온이 만날 수 없어 리튬 결정이 형성되지 않아 덴드라이트의 형성 또한 원천적으로 차단할 수 있다. 전극의 안정성을 테스트하기 위해 리튬-리튬 대칭셀로 실험했을 때, 일반 리튬금속 전극이 20회 충·방전 사이클까지 안정적이었던 극한 전기화학 환경에서 연구진이 개발한 반도체 박막을 갖는 전극은 리튬 덴드라이트의 성장 없이 1,200 사이클 동안 안정적이었다. 또한 리튬코발트산화물 양극과 개발된 전극을 이용하여 안정성 평가를 수행한 결과 500 사이클 후에 용량의 약 81%가 유지되었는데, 약 52% 정도만 유지되는 일반 리튬금속전극에 비해 약 60% 향상되었다. KIST 이중기 박사는 “이번 연구에서 개발된 고안전성 리튬금속전극 개발 기술은 기존의 리튬금속에서 발생하는 금속 덴드라이트 발생을 억제하면서 화재의 위험이 없는 안전한 차세대 이차전지 개발을 위한 차세대 융합형 원천기술로써 주목받을 것으로 기대된다.”라며 “이번에 반도체 박막을 형성하기 위해 사용한 고가의 풀러렌이 아닌 다른 저렴한 소재를 통해 본 기술을 적용하려는 연구를 진행할 예정이다. 재료, 공정비용을 낮춰 상용화에 한 발 더 다가갈 예정”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자사업, 해외우수신진연구자사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 저널인 ‘ACS Energy Letters’ (IF: 19.003, JCR 분야 상위 1.852%) 최신 호에 게재되었다. * (논문명) Metal-Semiconductor Ohmic and Schottky Contact-Interfaces for Stable Li-Metal Electrodes - (제 1저자) 한국과학기술연구원 랸다 엥가르 아누그라 아르디 학생연구원 - (교신저자) 한국과학기술연구원 이중기 책임연구원 <그림설명> [그림 1] (좌) 일반 리튬이온 이차전지 표면에 형성된 덴드라이트 결정의 모습과 (우)덴드라이트가 형성되지 않은 p형 반도체 전극의 표면 [그림 2] (좌) 오믹접촉을 하는 n형 반도체와 리튬금속 사이를 전자는 통과하면서 반도체층 내부에 리튬금속이 형성된다. 또한 전해질 성분과 반응하여 두꺼운 SEI 층이 형성된다. (우) 쇼트키접촉을 하는 p형 반도체와리튬금속 사이는 전자는 통과하지 못하고 층 바로 밑에서 통과해온 리튬이온과 반응하여 반도체층 밑에서만 리튬이 증착된다. 터널링현상으로 계면을 통과한 소수의 전자만이 전해질막을 통과하여 얇은 SEI 막을 형성한다.
전기차 배터리 화재, 반도체 기술로 잡는다
- 반도체 물리와 전기화학 융합, 반도체 박막을 통한 덴드라이트 형성 차단 전기자동차 시대로의 전환이 현실로 다가오고 있지만, 전력 공급원인 리튬이온 배터리의 화재, 폭발 사고에 대한 우려가 끊이질 않고 있다. 이를 극복하기 위해 다양한 노력이 이루어지고 있는 가운데, 국내 연구진이 리튬이온 이차전지에 반도체 기술을 적용하여 폭발 위험을 획기적으로 줄여 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 이중기 박사 연구팀이 리튬금속 전극 표면에 반도체 박막을 형성하여 배터리 화재의 원인인 덴드라이트 형성을 원천 차단했다고 밝혔다. 리튬이온 이차전지의 화재는 소재 표면에 생기는 덴드라이트가 가장 큰 원인으로 알려져있다. 배터리 충전 시에 리튬이온이 음극으로 이동하여 표면에서 리튬금속으로 저장되는 과정에서 나뭇가지 형태의 결정으로 형성되는 것을 덴드라이트라 부르는데, 전극의 부피를 팽창시키고, 전극과 전해질 사이의 반응을 일으켜 화재를 유발하고 전지의 성능을 저하시킨다. 연구팀은 전도성이 높은 반도체 소재인 풀러렌(C60)을 플라즈마에 노출시켜 리튬금속전극과 전해질 사이에 반도체 박막을 만들어 덴드라이트가 형성되지 않게 했다. 개발된 반도체 박막은 전자는 통과시키고 리튬이온은 통과시키지 못하게 하는데, 전극 표면에서 전자와 이온이 만날 수 없어 리튬 결정이 형성되지 않아 덴드라이트의 형성 또한 원천적으로 차단할 수 있다. 전극의 안정성을 테스트하기 위해 리튬-리튬 대칭셀로 실험했을 때, 일반 리튬금속 전극이 20회 충·방전 사이클까지 안정적이었던 극한 전기화학 환경에서 연구진이 개발한 반도체 박막을 갖는 전극은 리튬 덴드라이트의 성장 없이 1,200 사이클 동안 안정적이었다. 또한 리튬코발트산화물 양극과 개발된 전극을 이용하여 안정성 평가를 수행한 결과 500 사이클 후에 용량의 약 81%가 유지되었는데, 약 52% 정도만 유지되는 일반 리튬금속전극에 비해 약 60% 향상되었다. KIST 이중기 박사는 “이번 연구에서 개발된 고안전성 리튬금속전극 개발 기술은 기존의 리튬금속에서 발생하는 금속 덴드라이트 발생을 억제하면서 화재의 위험이 없는 안전한 차세대 이차전지 개발을 위한 차세대 융합형 원천기술로써 주목받을 것으로 기대된다.”라며 “이번에 반도체 박막을 형성하기 위해 사용한 고가의 풀러렌이 아닌 다른 저렴한 소재를 통해 본 기술을 적용하려는 연구를 진행할 예정이다. 재료, 공정비용을 낮춰 상용화에 한 발 더 다가갈 예정”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자사업, 해외우수신진연구자사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 저널인 ‘ACS Energy Letters’ (IF: 19.003, JCR 분야 상위 1.852%) 최신 호에 게재되었다. * (논문명) Metal-Semiconductor Ohmic and Schottky Contact-Interfaces for Stable Li-Metal Electrodes - (제 1저자) 한국과학기술연구원 랸다 엥가르 아누그라 아르디 학생연구원 - (교신저자) 한국과학기술연구원 이중기 책임연구원 <그림설명> [그림 1] (좌) 일반 리튬이온 이차전지 표면에 형성된 덴드라이트 결정의 모습과 (우)덴드라이트가 형성되지 않은 p형 반도체 전극의 표면 [그림 2] (좌) 오믹접촉을 하는 n형 반도체와 리튬금속 사이를 전자는 통과하면서 반도체층 내부에 리튬금속이 형성된다. 또한 전해질 성분과 반응하여 두꺼운 SEI 층이 형성된다. (우) 쇼트키접촉을 하는 p형 반도체와리튬금속 사이는 전자는 통과하지 못하고 층 바로 밑에서 통과해온 리튬이온과 반응하여 반도체층 밑에서만 리튬이 증착된다. 터널링현상으로 계면을 통과한 소수의 전자만이 전해질막을 통과하여 얇은 SEI 막을 형성한다.
전기차 배터리 화재, 반도체 기술로 잡는다
- 반도체 물리와 전기화학 융합, 반도체 박막을 통한 덴드라이트 형성 차단 전기자동차 시대로의 전환이 현실로 다가오고 있지만, 전력 공급원인 리튬이온 배터리의 화재, 폭발 사고에 대한 우려가 끊이질 않고 있다. 이를 극복하기 위해 다양한 노력이 이루어지고 있는 가운데, 국내 연구진이 리튬이온 이차전지에 반도체 기술을 적용하여 폭발 위험을 획기적으로 줄여 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 이중기 박사 연구팀이 리튬금속 전극 표면에 반도체 박막을 형성하여 배터리 화재의 원인인 덴드라이트 형성을 원천 차단했다고 밝혔다. 리튬이온 이차전지의 화재는 소재 표면에 생기는 덴드라이트가 가장 큰 원인으로 알려져있다. 배터리 충전 시에 리튬이온이 음극으로 이동하여 표면에서 리튬금속으로 저장되는 과정에서 나뭇가지 형태의 결정으로 형성되는 것을 덴드라이트라 부르는데, 전극의 부피를 팽창시키고, 전극과 전해질 사이의 반응을 일으켜 화재를 유발하고 전지의 성능을 저하시킨다. 연구팀은 전도성이 높은 반도체 소재인 풀러렌(C60)을 플라즈마에 노출시켜 리튬금속전극과 전해질 사이에 반도체 박막을 만들어 덴드라이트가 형성되지 않게 했다. 개발된 반도체 박막은 전자는 통과시키고 리튬이온은 통과시키지 못하게 하는데, 전극 표면에서 전자와 이온이 만날 수 없어 리튬 결정이 형성되지 않아 덴드라이트의 형성 또한 원천적으로 차단할 수 있다. 전극의 안정성을 테스트하기 위해 리튬-리튬 대칭셀로 실험했을 때, 일반 리튬금속 전극이 20회 충·방전 사이클까지 안정적이었던 극한 전기화학 환경에서 연구진이 개발한 반도체 박막을 갖는 전극은 리튬 덴드라이트의 성장 없이 1,200 사이클 동안 안정적이었다. 또한 리튬코발트산화물 양극과 개발된 전극을 이용하여 안정성 평가를 수행한 결과 500 사이클 후에 용량의 약 81%가 유지되었는데, 약 52% 정도만 유지되는 일반 리튬금속전극에 비해 약 60% 향상되었다. KIST 이중기 박사는 “이번 연구에서 개발된 고안전성 리튬금속전극 개발 기술은 기존의 리튬금속에서 발생하는 금속 덴드라이트 발생을 억제하면서 화재의 위험이 없는 안전한 차세대 이차전지 개발을 위한 차세대 융합형 원천기술로써 주목받을 것으로 기대된다.”라며 “이번에 반도체 박막을 형성하기 위해 사용한 고가의 풀러렌이 아닌 다른 저렴한 소재를 통해 본 기술을 적용하려는 연구를 진행할 예정이다. 재료, 공정비용을 낮춰 상용화에 한 발 더 다가갈 예정”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자사업, 해외우수신진연구자사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 저널인 ‘ACS Energy Letters’ (IF: 19.003, JCR 분야 상위 1.852%) 최신 호에 게재되었다. * (논문명) Metal-Semiconductor Ohmic and Schottky Contact-Interfaces for Stable Li-Metal Electrodes - (제 1저자) 한국과학기술연구원 랸다 엥가르 아누그라 아르디 학생연구원 - (교신저자) 한국과학기술연구원 이중기 책임연구원 <그림설명> [그림 1] (좌) 일반 리튬이온 이차전지 표면에 형성된 덴드라이트 결정의 모습과 (우)덴드라이트가 형성되지 않은 p형 반도체 전극의 표면 [그림 2] (좌) 오믹접촉을 하는 n형 반도체와 리튬금속 사이를 전자는 통과하면서 반도체층 내부에 리튬금속이 형성된다. 또한 전해질 성분과 반응하여 두꺼운 SEI 층이 형성된다. (우) 쇼트키접촉을 하는 p형 반도체와리튬금속 사이는 전자는 통과하지 못하고 층 바로 밑에서 통과해온 리튬이온과 반응하여 반도체층 밑에서만 리튬이 증착된다. 터널링현상으로 계면을 통과한 소수의 전자만이 전해질막을 통과하여 얇은 SEI 막을 형성한다.