Result
게시물 키워드"KIST"에 대한 4643개의 검색결과를 찾았습니다.
마그네슘 이차전지 상용화 걸림돌 제거
- KIST, 마그네슘 금속 화학적 활성화 공정으로 충·방전 효율 높여 - 부식성 없는 일반 전해질 활용으로 마그네슘 이차전지 상용화 기대 한국과학기술연구원(KIST, 원장 윤석진) 에너지저장연구센터 이민아 박사 연구팀은 부식성 첨가제가 없고 대량생산이 가능한 일반 전해질에서 마그네슘 전지의 고효율 구동을 가능하게 하는 마그네슘 금속 화학적 활성화 기술을 개발했다고 밝혔다. 전기자동차, 에너지 저장장치(ESS) 시장의 급격한 성장으로 인해 리튬이온전지의 수요가 폭발적으로 증가하고 있는 가운데 핵심 원자재인 리튬, 코발트 등의 수급은 특정 국가에 대한 의존도가 절대적이어서 안정적인 공급망 확보에 대한 우려가 크다. 이러한 이유로 차세대 이차전지 소재의 연구가 활발하게 진행되고 있으며, 그 가운데 지각에 풍부하게 매장된 마그네슘을 이용하는 이차전지도 주목받고 있다. 마그네슘을 활용한 이차전지는 리튬과 같은 알칼리 금속 이온과 달리 2가 이온인 Mg2+을 활용하기 때문에 높은 에너지 밀도를 기대할 수 있고, 특히 리튬 금속에 비해 약 1.9배 높은 용량을 가지는 마그네슘 금속을 직접 음극으로 활용할 경우 가장 높은 에너지밀도를 얻을 수 있다. 이러한 장점에도 불구하고 전해질과의 반응성으로 인해 마그네슘 금속의 효율적인 충·방전이 어렵다는 결정적인 단점이 상용화를 가로막고 있었는데, KIST 연구팀이 마그네슘 금속의 고효율 충·방전 반응 유도 기술을 개발해 마그네슘 이차전지의 상용화에 대한 기대감이 높아지고 있다. 특히 마그네슘의 충·방전을 촉진하기 위해 부식성 전해질을 활용하는 기존 연구와 달리 기존 상용 전해질과 유사한 성분의 일반적인 전해질을 활용함으로써 고전압 전극을 활용하고, 전지 부품의 부식 또한 최소화할 수 있게 되었다. 연구팀은 전지 조립 전에 음극으로 활용할 마그네슘 금속을 반응성 알킬 할라이드(Reactive alkyl halide) 용액에 담그는 간단한 공정으로 마그네슘 표면에 마그네슘 알킬 할라이드 올리고머 기반의 새로운 조성을 가지는 인공 보호막을 합성했다. 여기에 특정 반응 용매를 선택하면 마그네슘 표면에 나노구조가 함께 형성되어 마그네슘 충·방전이 촉진되는 것을 확인했다. 이를 바탕으로 전해질과의 원치 않는 반응을 억제하고, 나노구조화를 통해 반응 면적을 극대화해 높은 효율의 마그네슘 충·방전 유도에 성공했다. 개발된 기술을 적용하면 부식성 첨가제가 없는 일반적인 전해질에서 마그네슘 금속을 충·방전 할 때 2V 이상이던 과전압을 0.2V 미만으로 낮출 수 있으며, 10% 미만이던 쿨롱 효율을 99.5% 이상으로 끌어올릴 수 있었다. 연구팀은 990회 이상 안정적인 마그네슘 금속의 충·방전을 구현해 대량생산이 가능한 일반적인 전해질에서도 마그네슘 이차전지가 안정적으로 구동됨을 확인했다. KIST 이민아 박사는 “이번 연구성과는 마그네슘 금속 표면에 계면층 형성을 원천 차단하는 부식성 전해질을 사용하던 기존 마그네슘 이차전지 연구에 새로운 방향성을 제시한 것”이라며, “에너지 저장시스템(ESS)에 적합한 일반 전해질 기반의 저비용, 고에너지밀도 마그네슘 이차전지의 상용화 가능성을 높일 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 운영되는 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 나노 소재 분야 국제학술지 ‘ACS Nano’ (IF:18.027, JCR 분야 상위 5.652%) 최신 호에 게재됐다. [그림 1] 화학적 활성화 전 후 마그네슘 금속의 충방전 반응 비교 [그림 2] 활성화된 마그네슘 금속의 충방전 성능 ○ 논문명: Reversible magnesium metal cycling in additive-free simple salt electrolytes enabled by spontaneous chemical activation ○ 논문저자 - 전아리 학생연구원(제1저자/KIST 에너지저장연구센터) - 전승윤 학생연구원(제1저자/KIST 에너지저장연구센터) - 이민아 선임연구원(교신저자/KIST 에너지저장연구센터)
마그네슘 이차전지 상용화 걸림돌 제거
- KIST, 마그네슘 금속 화학적 활성화 공정으로 충·방전 효율 높여 - 부식성 없는 일반 전해질 활용으로 마그네슘 이차전지 상용화 기대 한국과학기술연구원(KIST, 원장 윤석진) 에너지저장연구센터 이민아 박사 연구팀은 부식성 첨가제가 없고 대량생산이 가능한 일반 전해질에서 마그네슘 전지의 고효율 구동을 가능하게 하는 마그네슘 금속 화학적 활성화 기술을 개발했다고 밝혔다. 전기자동차, 에너지 저장장치(ESS) 시장의 급격한 성장으로 인해 리튬이온전지의 수요가 폭발적으로 증가하고 있는 가운데 핵심 원자재인 리튬, 코발트 등의 수급은 특정 국가에 대한 의존도가 절대적이어서 안정적인 공급망 확보에 대한 우려가 크다. 이러한 이유로 차세대 이차전지 소재의 연구가 활발하게 진행되고 있으며, 그 가운데 지각에 풍부하게 매장된 마그네슘을 이용하는 이차전지도 주목받고 있다. 마그네슘을 활용한 이차전지는 리튬과 같은 알칼리 금속 이온과 달리 2가 이온인 Mg2+을 활용하기 때문에 높은 에너지 밀도를 기대할 수 있고, 특히 리튬 금속에 비해 약 1.9배 높은 용량을 가지는 마그네슘 금속을 직접 음극으로 활용할 경우 가장 높은 에너지밀도를 얻을 수 있다. 이러한 장점에도 불구하고 전해질과의 반응성으로 인해 마그네슘 금속의 효율적인 충·방전이 어렵다는 결정적인 단점이 상용화를 가로막고 있었는데, KIST 연구팀이 마그네슘 금속의 고효율 충·방전 반응 유도 기술을 개발해 마그네슘 이차전지의 상용화에 대한 기대감이 높아지고 있다. 특히 마그네슘의 충·방전을 촉진하기 위해 부식성 전해질을 활용하는 기존 연구와 달리 기존 상용 전해질과 유사한 성분의 일반적인 전해질을 활용함으로써 고전압 전극을 활용하고, 전지 부품의 부식 또한 최소화할 수 있게 되었다. 연구팀은 전지 조립 전에 음극으로 활용할 마그네슘 금속을 반응성 알킬 할라이드(Reactive alkyl halide) 용액에 담그는 간단한 공정으로 마그네슘 표면에 마그네슘 알킬 할라이드 올리고머 기반의 새로운 조성을 가지는 인공 보호막을 합성했다. 여기에 특정 반응 용매를 선택하면 마그네슘 표면에 나노구조가 함께 형성되어 마그네슘 충·방전이 촉진되는 것을 확인했다. 이를 바탕으로 전해질과의 원치 않는 반응을 억제하고, 나노구조화를 통해 반응 면적을 극대화해 높은 효율의 마그네슘 충·방전 유도에 성공했다. 개발된 기술을 적용하면 부식성 첨가제가 없는 일반적인 전해질에서 마그네슘 금속을 충·방전 할 때 2V 이상이던 과전압을 0.2V 미만으로 낮출 수 있으며, 10% 미만이던 쿨롱 효율을 99.5% 이상으로 끌어올릴 수 있었다. 연구팀은 990회 이상 안정적인 마그네슘 금속의 충·방전을 구현해 대량생산이 가능한 일반적인 전해질에서도 마그네슘 이차전지가 안정적으로 구동됨을 확인했다. KIST 이민아 박사는 “이번 연구성과는 마그네슘 금속 표면에 계면층 형성을 원천 차단하는 부식성 전해질을 사용하던 기존 마그네슘 이차전지 연구에 새로운 방향성을 제시한 것”이라며, “에너지 저장시스템(ESS)에 적합한 일반 전해질 기반의 저비용, 고에너지밀도 마그네슘 이차전지의 상용화 가능성을 높일 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 운영되는 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 나노 소재 분야 국제학술지 ‘ACS Nano’ (IF:18.027, JCR 분야 상위 5.652%) 최신 호에 게재됐다. [그림 1] 화학적 활성화 전 후 마그네슘 금속의 충방전 반응 비교 [그림 2] 활성화된 마그네슘 금속의 충방전 성능 ○ 논문명: Reversible magnesium metal cycling in additive-free simple salt electrolytes enabled by spontaneous chemical activation ○ 논문저자 - 전아리 학생연구원(제1저자/KIST 에너지저장연구센터) - 전승윤 학생연구원(제1저자/KIST 에너지저장연구센터) - 이민아 선임연구원(교신저자/KIST 에너지저장연구센터)
마그네슘 이차전지 상용화 걸림돌 제거
- KIST, 마그네슘 금속 화학적 활성화 공정으로 충·방전 효율 높여 - 부식성 없는 일반 전해질 활용으로 마그네슘 이차전지 상용화 기대 한국과학기술연구원(KIST, 원장 윤석진) 에너지저장연구센터 이민아 박사 연구팀은 부식성 첨가제가 없고 대량생산이 가능한 일반 전해질에서 마그네슘 전지의 고효율 구동을 가능하게 하는 마그네슘 금속 화학적 활성화 기술을 개발했다고 밝혔다. 전기자동차, 에너지 저장장치(ESS) 시장의 급격한 성장으로 인해 리튬이온전지의 수요가 폭발적으로 증가하고 있는 가운데 핵심 원자재인 리튬, 코발트 등의 수급은 특정 국가에 대한 의존도가 절대적이어서 안정적인 공급망 확보에 대한 우려가 크다. 이러한 이유로 차세대 이차전지 소재의 연구가 활발하게 진행되고 있으며, 그 가운데 지각에 풍부하게 매장된 마그네슘을 이용하는 이차전지도 주목받고 있다. 마그네슘을 활용한 이차전지는 리튬과 같은 알칼리 금속 이온과 달리 2가 이온인 Mg2+을 활용하기 때문에 높은 에너지 밀도를 기대할 수 있고, 특히 리튬 금속에 비해 약 1.9배 높은 용량을 가지는 마그네슘 금속을 직접 음극으로 활용할 경우 가장 높은 에너지밀도를 얻을 수 있다. 이러한 장점에도 불구하고 전해질과의 반응성으로 인해 마그네슘 금속의 효율적인 충·방전이 어렵다는 결정적인 단점이 상용화를 가로막고 있었는데, KIST 연구팀이 마그네슘 금속의 고효율 충·방전 반응 유도 기술을 개발해 마그네슘 이차전지의 상용화에 대한 기대감이 높아지고 있다. 특히 마그네슘의 충·방전을 촉진하기 위해 부식성 전해질을 활용하는 기존 연구와 달리 기존 상용 전해질과 유사한 성분의 일반적인 전해질을 활용함으로써 고전압 전극을 활용하고, 전지 부품의 부식 또한 최소화할 수 있게 되었다. 연구팀은 전지 조립 전에 음극으로 활용할 마그네슘 금속을 반응성 알킬 할라이드(Reactive alkyl halide) 용액에 담그는 간단한 공정으로 마그네슘 표면에 마그네슘 알킬 할라이드 올리고머 기반의 새로운 조성을 가지는 인공 보호막을 합성했다. 여기에 특정 반응 용매를 선택하면 마그네슘 표면에 나노구조가 함께 형성되어 마그네슘 충·방전이 촉진되는 것을 확인했다. 이를 바탕으로 전해질과의 원치 않는 반응을 억제하고, 나노구조화를 통해 반응 면적을 극대화해 높은 효율의 마그네슘 충·방전 유도에 성공했다. 개발된 기술을 적용하면 부식성 첨가제가 없는 일반적인 전해질에서 마그네슘 금속을 충·방전 할 때 2V 이상이던 과전압을 0.2V 미만으로 낮출 수 있으며, 10% 미만이던 쿨롱 효율을 99.5% 이상으로 끌어올릴 수 있었다. 연구팀은 990회 이상 안정적인 마그네슘 금속의 충·방전을 구현해 대량생산이 가능한 일반적인 전해질에서도 마그네슘 이차전지가 안정적으로 구동됨을 확인했다. KIST 이민아 박사는 “이번 연구성과는 마그네슘 금속 표면에 계면층 형성을 원천 차단하는 부식성 전해질을 사용하던 기존 마그네슘 이차전지 연구에 새로운 방향성을 제시한 것”이라며, “에너지 저장시스템(ESS)에 적합한 일반 전해질 기반의 저비용, 고에너지밀도 마그네슘 이차전지의 상용화 가능성을 높일 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 운영되는 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 나노 소재 분야 국제학술지 ‘ACS Nano’ (IF:18.027, JCR 분야 상위 5.652%) 최신 호에 게재됐다. [그림 1] 화학적 활성화 전 후 마그네슘 금속의 충방전 반응 비교 [그림 2] 활성화된 마그네슘 금속의 충방전 성능 ○ 논문명: Reversible magnesium metal cycling in additive-free simple salt electrolytes enabled by spontaneous chemical activation ○ 논문저자 - 전아리 학생연구원(제1저자/KIST 에너지저장연구센터) - 전승윤 학생연구원(제1저자/KIST 에너지저장연구센터) - 이민아 선임연구원(교신저자/KIST 에너지저장연구센터)
마그네슘 이차전지 상용화 걸림돌 제거
- KIST, 마그네슘 금속 화학적 활성화 공정으로 충·방전 효율 높여 - 부식성 없는 일반 전해질 활용으로 마그네슘 이차전지 상용화 기대 한국과학기술연구원(KIST, 원장 윤석진) 에너지저장연구센터 이민아 박사 연구팀은 부식성 첨가제가 없고 대량생산이 가능한 일반 전해질에서 마그네슘 전지의 고효율 구동을 가능하게 하는 마그네슘 금속 화학적 활성화 기술을 개발했다고 밝혔다. 전기자동차, 에너지 저장장치(ESS) 시장의 급격한 성장으로 인해 리튬이온전지의 수요가 폭발적으로 증가하고 있는 가운데 핵심 원자재인 리튬, 코발트 등의 수급은 특정 국가에 대한 의존도가 절대적이어서 안정적인 공급망 확보에 대한 우려가 크다. 이러한 이유로 차세대 이차전지 소재의 연구가 활발하게 진행되고 있으며, 그 가운데 지각에 풍부하게 매장된 마그네슘을 이용하는 이차전지도 주목받고 있다. 마그네슘을 활용한 이차전지는 리튬과 같은 알칼리 금속 이온과 달리 2가 이온인 Mg2+을 활용하기 때문에 높은 에너지 밀도를 기대할 수 있고, 특히 리튬 금속에 비해 약 1.9배 높은 용량을 가지는 마그네슘 금속을 직접 음극으로 활용할 경우 가장 높은 에너지밀도를 얻을 수 있다. 이러한 장점에도 불구하고 전해질과의 반응성으로 인해 마그네슘 금속의 효율적인 충·방전이 어렵다는 결정적인 단점이 상용화를 가로막고 있었는데, KIST 연구팀이 마그네슘 금속의 고효율 충·방전 반응 유도 기술을 개발해 마그네슘 이차전지의 상용화에 대한 기대감이 높아지고 있다. 특히 마그네슘의 충·방전을 촉진하기 위해 부식성 전해질을 활용하는 기존 연구와 달리 기존 상용 전해질과 유사한 성분의 일반적인 전해질을 활용함으로써 고전압 전극을 활용하고, 전지 부품의 부식 또한 최소화할 수 있게 되었다. 연구팀은 전지 조립 전에 음극으로 활용할 마그네슘 금속을 반응성 알킬 할라이드(Reactive alkyl halide) 용액에 담그는 간단한 공정으로 마그네슘 표면에 마그네슘 알킬 할라이드 올리고머 기반의 새로운 조성을 가지는 인공 보호막을 합성했다. 여기에 특정 반응 용매를 선택하면 마그네슘 표면에 나노구조가 함께 형성되어 마그네슘 충·방전이 촉진되는 것을 확인했다. 이를 바탕으로 전해질과의 원치 않는 반응을 억제하고, 나노구조화를 통해 반응 면적을 극대화해 높은 효율의 마그네슘 충·방전 유도에 성공했다. 개발된 기술을 적용하면 부식성 첨가제가 없는 일반적인 전해질에서 마그네슘 금속을 충·방전 할 때 2V 이상이던 과전압을 0.2V 미만으로 낮출 수 있으며, 10% 미만이던 쿨롱 효율을 99.5% 이상으로 끌어올릴 수 있었다. 연구팀은 990회 이상 안정적인 마그네슘 금속의 충·방전을 구현해 대량생산이 가능한 일반적인 전해질에서도 마그네슘 이차전지가 안정적으로 구동됨을 확인했다. KIST 이민아 박사는 “이번 연구성과는 마그네슘 금속 표면에 계면층 형성을 원천 차단하는 부식성 전해질을 사용하던 기존 마그네슘 이차전지 연구에 새로운 방향성을 제시한 것”이라며, “에너지 저장시스템(ESS)에 적합한 일반 전해질 기반의 저비용, 고에너지밀도 마그네슘 이차전지의 상용화 가능성을 높일 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 운영되는 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 나노 소재 분야 국제학술지 ‘ACS Nano’ (IF:18.027, JCR 분야 상위 5.652%) 최신 호에 게재됐다. [그림 1] 화학적 활성화 전 후 마그네슘 금속의 충방전 반응 비교 [그림 2] 활성화된 마그네슘 금속의 충방전 성능 ○ 논문명: Reversible magnesium metal cycling in additive-free simple salt electrolytes enabled by spontaneous chemical activation ○ 논문저자 - 전아리 학생연구원(제1저자/KIST 에너지저장연구센터) - 전승윤 학생연구원(제1저자/KIST 에너지저장연구센터) - 이민아 선임연구원(교신저자/KIST 에너지저장연구센터)
마그네슘 이차전지 상용화 걸림돌 제거
- KIST, 마그네슘 금속 화학적 활성화 공정으로 충·방전 효율 높여 - 부식성 없는 일반 전해질 활용으로 마그네슘 이차전지 상용화 기대 한국과학기술연구원(KIST, 원장 윤석진) 에너지저장연구센터 이민아 박사 연구팀은 부식성 첨가제가 없고 대량생산이 가능한 일반 전해질에서 마그네슘 전지의 고효율 구동을 가능하게 하는 마그네슘 금속 화학적 활성화 기술을 개발했다고 밝혔다. 전기자동차, 에너지 저장장치(ESS) 시장의 급격한 성장으로 인해 리튬이온전지의 수요가 폭발적으로 증가하고 있는 가운데 핵심 원자재인 리튬, 코발트 등의 수급은 특정 국가에 대한 의존도가 절대적이어서 안정적인 공급망 확보에 대한 우려가 크다. 이러한 이유로 차세대 이차전지 소재의 연구가 활발하게 진행되고 있으며, 그 가운데 지각에 풍부하게 매장된 마그네슘을 이용하는 이차전지도 주목받고 있다. 마그네슘을 활용한 이차전지는 리튬과 같은 알칼리 금속 이온과 달리 2가 이온인 Mg2+을 활용하기 때문에 높은 에너지 밀도를 기대할 수 있고, 특히 리튬 금속에 비해 약 1.9배 높은 용량을 가지는 마그네슘 금속을 직접 음극으로 활용할 경우 가장 높은 에너지밀도를 얻을 수 있다. 이러한 장점에도 불구하고 전해질과의 반응성으로 인해 마그네슘 금속의 효율적인 충·방전이 어렵다는 결정적인 단점이 상용화를 가로막고 있었는데, KIST 연구팀이 마그네슘 금속의 고효율 충·방전 반응 유도 기술을 개발해 마그네슘 이차전지의 상용화에 대한 기대감이 높아지고 있다. 특히 마그네슘의 충·방전을 촉진하기 위해 부식성 전해질을 활용하는 기존 연구와 달리 기존 상용 전해질과 유사한 성분의 일반적인 전해질을 활용함으로써 고전압 전극을 활용하고, 전지 부품의 부식 또한 최소화할 수 있게 되었다. 연구팀은 전지 조립 전에 음극으로 활용할 마그네슘 금속을 반응성 알킬 할라이드(Reactive alkyl halide) 용액에 담그는 간단한 공정으로 마그네슘 표면에 마그네슘 알킬 할라이드 올리고머 기반의 새로운 조성을 가지는 인공 보호막을 합성했다. 여기에 특정 반응 용매를 선택하면 마그네슘 표면에 나노구조가 함께 형성되어 마그네슘 충·방전이 촉진되는 것을 확인했다. 이를 바탕으로 전해질과의 원치 않는 반응을 억제하고, 나노구조화를 통해 반응 면적을 극대화해 높은 효율의 마그네슘 충·방전 유도에 성공했다. 개발된 기술을 적용하면 부식성 첨가제가 없는 일반적인 전해질에서 마그네슘 금속을 충·방전 할 때 2V 이상이던 과전압을 0.2V 미만으로 낮출 수 있으며, 10% 미만이던 쿨롱 효율을 99.5% 이상으로 끌어올릴 수 있었다. 연구팀은 990회 이상 안정적인 마그네슘 금속의 충·방전을 구현해 대량생산이 가능한 일반적인 전해질에서도 마그네슘 이차전지가 안정적으로 구동됨을 확인했다. KIST 이민아 박사는 “이번 연구성과는 마그네슘 금속 표면에 계면층 형성을 원천 차단하는 부식성 전해질을 사용하던 기존 마그네슘 이차전지 연구에 새로운 방향성을 제시한 것”이라며, “에너지 저장시스템(ESS)에 적합한 일반 전해질 기반의 저비용, 고에너지밀도 마그네슘 이차전지의 상용화 가능성을 높일 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 운영되는 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 나노 소재 분야 국제학술지 ‘ACS Nano’ (IF:18.027, JCR 분야 상위 5.652%) 최신 호에 게재됐다. [그림 1] 화학적 활성화 전 후 마그네슘 금속의 충방전 반응 비교 [그림 2] 활성화된 마그네슘 금속의 충방전 성능 ○ 논문명: Reversible magnesium metal cycling in additive-free simple salt electrolytes enabled by spontaneous chemical activation ○ 논문저자 - 전아리 학생연구원(제1저자/KIST 에너지저장연구센터) - 전승윤 학생연구원(제1저자/KIST 에너지저장연구센터) - 이민아 선임연구원(교신저자/KIST 에너지저장연구센터)
마그네슘 이차전지 상용화 걸림돌 제거
- KIST, 마그네슘 금속 화학적 활성화 공정으로 충·방전 효율 높여 - 부식성 없는 일반 전해질 활용으로 마그네슘 이차전지 상용화 기대 한국과학기술연구원(KIST, 원장 윤석진) 에너지저장연구센터 이민아 박사 연구팀은 부식성 첨가제가 없고 대량생산이 가능한 일반 전해질에서 마그네슘 전지의 고효율 구동을 가능하게 하는 마그네슘 금속 화학적 활성화 기술을 개발했다고 밝혔다. 전기자동차, 에너지 저장장치(ESS) 시장의 급격한 성장으로 인해 리튬이온전지의 수요가 폭발적으로 증가하고 있는 가운데 핵심 원자재인 리튬, 코발트 등의 수급은 특정 국가에 대한 의존도가 절대적이어서 안정적인 공급망 확보에 대한 우려가 크다. 이러한 이유로 차세대 이차전지 소재의 연구가 활발하게 진행되고 있으며, 그 가운데 지각에 풍부하게 매장된 마그네슘을 이용하는 이차전지도 주목받고 있다. 마그네슘을 활용한 이차전지는 리튬과 같은 알칼리 금속 이온과 달리 2가 이온인 Mg2+을 활용하기 때문에 높은 에너지 밀도를 기대할 수 있고, 특히 리튬 금속에 비해 약 1.9배 높은 용량을 가지는 마그네슘 금속을 직접 음극으로 활용할 경우 가장 높은 에너지밀도를 얻을 수 있다. 이러한 장점에도 불구하고 전해질과의 반응성으로 인해 마그네슘 금속의 효율적인 충·방전이 어렵다는 결정적인 단점이 상용화를 가로막고 있었는데, KIST 연구팀이 마그네슘 금속의 고효율 충·방전 반응 유도 기술을 개발해 마그네슘 이차전지의 상용화에 대한 기대감이 높아지고 있다. 특히 마그네슘의 충·방전을 촉진하기 위해 부식성 전해질을 활용하는 기존 연구와 달리 기존 상용 전해질과 유사한 성분의 일반적인 전해질을 활용함으로써 고전압 전극을 활용하고, 전지 부품의 부식 또한 최소화할 수 있게 되었다. 연구팀은 전지 조립 전에 음극으로 활용할 마그네슘 금속을 반응성 알킬 할라이드(Reactive alkyl halide) 용액에 담그는 간단한 공정으로 마그네슘 표면에 마그네슘 알킬 할라이드 올리고머 기반의 새로운 조성을 가지는 인공 보호막을 합성했다. 여기에 특정 반응 용매를 선택하면 마그네슘 표면에 나노구조가 함께 형성되어 마그네슘 충·방전이 촉진되는 것을 확인했다. 이를 바탕으로 전해질과의 원치 않는 반응을 억제하고, 나노구조화를 통해 반응 면적을 극대화해 높은 효율의 마그네슘 충·방전 유도에 성공했다. 개발된 기술을 적용하면 부식성 첨가제가 없는 일반적인 전해질에서 마그네슘 금속을 충·방전 할 때 2V 이상이던 과전압을 0.2V 미만으로 낮출 수 있으며, 10% 미만이던 쿨롱 효율을 99.5% 이상으로 끌어올릴 수 있었다. 연구팀은 990회 이상 안정적인 마그네슘 금속의 충·방전을 구현해 대량생산이 가능한 일반적인 전해질에서도 마그네슘 이차전지가 안정적으로 구동됨을 확인했다. KIST 이민아 박사는 “이번 연구성과는 마그네슘 금속 표면에 계면층 형성을 원천 차단하는 부식성 전해질을 사용하던 기존 마그네슘 이차전지 연구에 새로운 방향성을 제시한 것”이라며, “에너지 저장시스템(ESS)에 적합한 일반 전해질 기반의 저비용, 고에너지밀도 마그네슘 이차전지의 상용화 가능성을 높일 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 운영되는 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 나노 소재 분야 국제학술지 ‘ACS Nano’ (IF:18.027, JCR 분야 상위 5.652%) 최신 호에 게재됐다. [그림 1] 화학적 활성화 전 후 마그네슘 금속의 충방전 반응 비교 [그림 2] 활성화된 마그네슘 금속의 충방전 성능 ○ 논문명: Reversible magnesium metal cycling in additive-free simple salt electrolytes enabled by spontaneous chemical activation ○ 논문저자 - 전아리 학생연구원(제1저자/KIST 에너지저장연구센터) - 전승윤 학생연구원(제1저자/KIST 에너지저장연구센터) - 이민아 선임연구원(교신저자/KIST 에너지저장연구센터)
마그네슘 이차전지 상용화 걸림돌 제거
- KIST, 마그네슘 금속 화학적 활성화 공정으로 충·방전 효율 높여 - 부식성 없는 일반 전해질 활용으로 마그네슘 이차전지 상용화 기대 한국과학기술연구원(KIST, 원장 윤석진) 에너지저장연구센터 이민아 박사 연구팀은 부식성 첨가제가 없고 대량생산이 가능한 일반 전해질에서 마그네슘 전지의 고효율 구동을 가능하게 하는 마그네슘 금속 화학적 활성화 기술을 개발했다고 밝혔다. 전기자동차, 에너지 저장장치(ESS) 시장의 급격한 성장으로 인해 리튬이온전지의 수요가 폭발적으로 증가하고 있는 가운데 핵심 원자재인 리튬, 코발트 등의 수급은 특정 국가에 대한 의존도가 절대적이어서 안정적인 공급망 확보에 대한 우려가 크다. 이러한 이유로 차세대 이차전지 소재의 연구가 활발하게 진행되고 있으며, 그 가운데 지각에 풍부하게 매장된 마그네슘을 이용하는 이차전지도 주목받고 있다. 마그네슘을 활용한 이차전지는 리튬과 같은 알칼리 금속 이온과 달리 2가 이온인 Mg2+을 활용하기 때문에 높은 에너지 밀도를 기대할 수 있고, 특히 리튬 금속에 비해 약 1.9배 높은 용량을 가지는 마그네슘 금속을 직접 음극으로 활용할 경우 가장 높은 에너지밀도를 얻을 수 있다. 이러한 장점에도 불구하고 전해질과의 반응성으로 인해 마그네슘 금속의 효율적인 충·방전이 어렵다는 결정적인 단점이 상용화를 가로막고 있었는데, KIST 연구팀이 마그네슘 금속의 고효율 충·방전 반응 유도 기술을 개발해 마그네슘 이차전지의 상용화에 대한 기대감이 높아지고 있다. 특히 마그네슘의 충·방전을 촉진하기 위해 부식성 전해질을 활용하는 기존 연구와 달리 기존 상용 전해질과 유사한 성분의 일반적인 전해질을 활용함으로써 고전압 전극을 활용하고, 전지 부품의 부식 또한 최소화할 수 있게 되었다. 연구팀은 전지 조립 전에 음극으로 활용할 마그네슘 금속을 반응성 알킬 할라이드(Reactive alkyl halide) 용액에 담그는 간단한 공정으로 마그네슘 표면에 마그네슘 알킬 할라이드 올리고머 기반의 새로운 조성을 가지는 인공 보호막을 합성했다. 여기에 특정 반응 용매를 선택하면 마그네슘 표면에 나노구조가 함께 형성되어 마그네슘 충·방전이 촉진되는 것을 확인했다. 이를 바탕으로 전해질과의 원치 않는 반응을 억제하고, 나노구조화를 통해 반응 면적을 극대화해 높은 효율의 마그네슘 충·방전 유도에 성공했다. 개발된 기술을 적용하면 부식성 첨가제가 없는 일반적인 전해질에서 마그네슘 금속을 충·방전 할 때 2V 이상이던 과전압을 0.2V 미만으로 낮출 수 있으며, 10% 미만이던 쿨롱 효율을 99.5% 이상으로 끌어올릴 수 있었다. 연구팀은 990회 이상 안정적인 마그네슘 금속의 충·방전을 구현해 대량생산이 가능한 일반적인 전해질에서도 마그네슘 이차전지가 안정적으로 구동됨을 확인했다. KIST 이민아 박사는 “이번 연구성과는 마그네슘 금속 표면에 계면층 형성을 원천 차단하는 부식성 전해질을 사용하던 기존 마그네슘 이차전지 연구에 새로운 방향성을 제시한 것”이라며, “에너지 저장시스템(ESS)에 적합한 일반 전해질 기반의 저비용, 고에너지밀도 마그네슘 이차전지의 상용화 가능성을 높일 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 운영되는 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 나노 소재 분야 국제학술지 ‘ACS Nano’ (IF:18.027, JCR 분야 상위 5.652%) 최신 호에 게재됐다. [그림 1] 화학적 활성화 전 후 마그네슘 금속의 충방전 반응 비교 [그림 2] 활성화된 마그네슘 금속의 충방전 성능 ○ 논문명: Reversible magnesium metal cycling in additive-free simple salt electrolytes enabled by spontaneous chemical activation ○ 논문저자 - 전아리 학생연구원(제1저자/KIST 에너지저장연구센터) - 전승윤 학생연구원(제1저자/KIST 에너지저장연구센터) - 이민아 선임연구원(교신저자/KIST 에너지저장연구센터)
마그네슘 이차전지 상용화 걸림돌 제거
- KIST, 마그네슘 금속 화학적 활성화 공정으로 충·방전 효율 높여 - 부식성 없는 일반 전해질 활용으로 마그네슘 이차전지 상용화 기대 한국과학기술연구원(KIST, 원장 윤석진) 에너지저장연구센터 이민아 박사 연구팀은 부식성 첨가제가 없고 대량생산이 가능한 일반 전해질에서 마그네슘 전지의 고효율 구동을 가능하게 하는 마그네슘 금속 화학적 활성화 기술을 개발했다고 밝혔다. 전기자동차, 에너지 저장장치(ESS) 시장의 급격한 성장으로 인해 리튬이온전지의 수요가 폭발적으로 증가하고 있는 가운데 핵심 원자재인 리튬, 코발트 등의 수급은 특정 국가에 대한 의존도가 절대적이어서 안정적인 공급망 확보에 대한 우려가 크다. 이러한 이유로 차세대 이차전지 소재의 연구가 활발하게 진행되고 있으며, 그 가운데 지각에 풍부하게 매장된 마그네슘을 이용하는 이차전지도 주목받고 있다. 마그네슘을 활용한 이차전지는 리튬과 같은 알칼리 금속 이온과 달리 2가 이온인 Mg2+을 활용하기 때문에 높은 에너지 밀도를 기대할 수 있고, 특히 리튬 금속에 비해 약 1.9배 높은 용량을 가지는 마그네슘 금속을 직접 음극으로 활용할 경우 가장 높은 에너지밀도를 얻을 수 있다. 이러한 장점에도 불구하고 전해질과의 반응성으로 인해 마그네슘 금속의 효율적인 충·방전이 어렵다는 결정적인 단점이 상용화를 가로막고 있었는데, KIST 연구팀이 마그네슘 금속의 고효율 충·방전 반응 유도 기술을 개발해 마그네슘 이차전지의 상용화에 대한 기대감이 높아지고 있다. 특히 마그네슘의 충·방전을 촉진하기 위해 부식성 전해질을 활용하는 기존 연구와 달리 기존 상용 전해질과 유사한 성분의 일반적인 전해질을 활용함으로써 고전압 전극을 활용하고, 전지 부품의 부식 또한 최소화할 수 있게 되었다. 연구팀은 전지 조립 전에 음극으로 활용할 마그네슘 금속을 반응성 알킬 할라이드(Reactive alkyl halide) 용액에 담그는 간단한 공정으로 마그네슘 표면에 마그네슘 알킬 할라이드 올리고머 기반의 새로운 조성을 가지는 인공 보호막을 합성했다. 여기에 특정 반응 용매를 선택하면 마그네슘 표면에 나노구조가 함께 형성되어 마그네슘 충·방전이 촉진되는 것을 확인했다. 이를 바탕으로 전해질과의 원치 않는 반응을 억제하고, 나노구조화를 통해 반응 면적을 극대화해 높은 효율의 마그네슘 충·방전 유도에 성공했다. 개발된 기술을 적용하면 부식성 첨가제가 없는 일반적인 전해질에서 마그네슘 금속을 충·방전 할 때 2V 이상이던 과전압을 0.2V 미만으로 낮출 수 있으며, 10% 미만이던 쿨롱 효율을 99.5% 이상으로 끌어올릴 수 있었다. 연구팀은 990회 이상 안정적인 마그네슘 금속의 충·방전을 구현해 대량생산이 가능한 일반적인 전해질에서도 마그네슘 이차전지가 안정적으로 구동됨을 확인했다. KIST 이민아 박사는 “이번 연구성과는 마그네슘 금속 표면에 계면층 형성을 원천 차단하는 부식성 전해질을 사용하던 기존 마그네슘 이차전지 연구에 새로운 방향성을 제시한 것”이라며, “에너지 저장시스템(ESS)에 적합한 일반 전해질 기반의 저비용, 고에너지밀도 마그네슘 이차전지의 상용화 가능성을 높일 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 운영되는 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 나노 소재 분야 국제학술지 ‘ACS Nano’ (IF:18.027, JCR 분야 상위 5.652%) 최신 호에 게재됐다. [그림 1] 화학적 활성화 전 후 마그네슘 금속의 충방전 반응 비교 [그림 2] 활성화된 마그네슘 금속의 충방전 성능 ○ 논문명: Reversible magnesium metal cycling in additive-free simple salt electrolytes enabled by spontaneous chemical activation ○ 논문저자 - 전아리 학생연구원(제1저자/KIST 에너지저장연구센터) - 전승윤 학생연구원(제1저자/KIST 에너지저장연구센터) - 이민아 선임연구원(교신저자/KIST 에너지저장연구센터)
‘제16회 홍릉포럼’개최
- 주제 : 상생의 커뮤니티! 홍릉 - 디지털 사회로의 전환에 따른 공유·협력 촉진 및 융합·개방·협력을통한 첨단분야 핵심인재 양성 체계 구축을 위한 토론 □ ‘제16회 홍릉포럼'이 국민대학교 본부관 학술회의장에서 '상생의 커뮤니티! 홍릉'을 주제로 6월 2일(금) 개최되었다. ㅇ홍릉포럼은 경희대, 고등과학원, 고려대학교, 국립산림과학원, 국민대학교, 동덕여자대학교, 서울과학기술대학교, 서울시립대학교, 서울테크노파크, 수림문화재단, 한국과학기술연구원(KIST), 한국과학기술원(KAIST) 경영대학, 한국과학기술정보연구원(KISTI), 한국국방연구원, 한국예술종합학교, 한국외국어대학교, 한국원자력의학원, 한국콘텐츠진흥원 총 18개 기관이 지역 기업과 자치구 등 관계기관 간 협력방안을 발굴‧공유하기 위해 진행하는 학술‧연구포럼이다. ㅇ 홍릉포럼은 2012년 7월, 1회 포럼을 시작으로 연 2회 개최되는 행사로, 금번 행사까지 총 16회를 맞이하였다. * 코로나19 상황으로 ‘20년도에는 미개최, ‘21년과 ‘22년에는 1회씩 개최 □ 이번 홍릉포럼에서는 홍릉 지역 교류 활성화, 디지털 사회로의 전환에 따른 공유 및 협력 촉진 방안 마련, 융합·개방·협력을 통한 첨단분야 핵심인재 양성 체계 구축을 위한 심도 있는 논의가 이루어졌다. ㅇ 김연희 국민대 행정대학원 교수는 공동체 정신과 실용주의 기반 융합교육을 위하여 활용하고 있는 팀팀클래스를 주제로 발표하였다. ㅇ 이어, 양지현 국민대 자동차융합대학 교수는 대학교육의 경계를 허무는 미래대학의 새로운 패러다임에 대하여 발표하였다. ㅇ 패널토론에서는 경희대학교 경영학과 정기택 교수가 좌장을 맡고 여러 분야의 전문가들이 패널로 참여하여 분야 간 융합·협력 및 인재 양성을 통한 홍릉의 확장과 성장에 대하여 약 40분간 논의했다. * 전문가 패널: 가정준 한국외국어대학교 교수, 김현우 한국과학기술연구원 서울바이오허브사업추진단 책임연구원, 임동권 고려대학교 KU-KIST 융합대학원 교수, 전희주 동덕여자대학교 교수 □ 제16회 홍릉포럼을 마무리하며 행사를 주관한 사단법인 홍릉포럼의 문길주 이사장은 “오늘 포럼으로 홍릉지역 기관 간 융합과 협력이 확대되어 상생의 커뮤니티 홍릉을 이룩하는 계기가 되기를 바란다”고 소감을 밝혔다 [사진 1] 홍릉 포럼 이사장 개화사 [사진 2] 홍릉 포럼 주요 참석자 단체 사진
내 몸 안의 주치의...더 얆게, 더 가볍게
이원령 KIST 생체재료연구센터 선임연구원 [과학 라운지] 손흥민 선수의 옛 동료이자 친구인 크리스티안 에릭센은 2021년 유로 2020 경기 도중 심장마비로 쓰러졌다. 복귀가 쉽지 않을 것이라는 전망과는 달리 현재 그는 심장 제세동기를 몸에 이식한 후에도 맨체스터 유나이티드에서 맹활약하고 있다. 심장 제세동기는 심장이 매우 빠르게 뛰거나 부정맥 전조 증상이 있을 때 전기 충격을 가해 맥박을 정상으로 돌려놓는 역할을 한다. 심장 이상으로 죽음의 문턱까지 갔던 사람도 이식형 전자 의료기기를 사용하면 세계 최고 축구 리그의 선수로 다시 뛸 수 있는 세상이다. 생체 이식형 전자 의료기기 산업은 미국 기업들이 주도하고 있다. 이로 인한 기업의 이익은 상상을 초월한다. 메드트로닉이라는 심장 제세동기 생산 기업은 연 매출이 300억 달러인데, 순수익이 50억 달러에 이른다. 반도체 산업이 발달한 우리나라에서도 관련 기업이 나올 법한데, 아직까지 두각을 나타내는 회사가 없는 것은 재료, 디바이스, 생물실험으로 이어지는 제품 개발 과정에서 매우 긴 시간 이익이 발생하지 않는 투자를 지속해야 하기 때문이다. 현재 대부분의 삽입형 전자 의료기기는 실리콘 반도체 기반으로 제작되기 때문에 부피가 크고 딱딱하다. 실제 제세동기를 삽입한 환자들의 어깨에는 제세동기가 혹처럼 볼록하게 자리 잡고 있다. 이처럼 부피가 큰 의료기기를 체내에 삽입함으로 인해 느끼는 위화감은 익숙해지기까지 꽤 오랜 시간이 걸리고, 미관상으로도 좋지 않다. 환자들이 삽입형 전자의료기기를 선택하는 것을 망설이게 하는 가장 큰 이유다. 심장질환뿐만 아니라 당뇨병을 앓는 환자도 생체 이식형 전자 의료기기를 선택하는 경우가 있다. 당뇨병 환자는 혈중 당 농도 관리를 위해 매일 정해진 시간마다 다섯 번 정도 바늘로 피를 뽑아야 한다. 가장 얇은 피부 부위 중 하나인 손끝에서 피를 뽑는데, 손끝은 통각세포가 가장 많이 분포하고 있어 고통이 극심하다. 일제 강점기 일본 형사들의 고문 방식 가운데 손톱 밑을 대나무 바늘로 찌르는 게 있었을 정도다. 이렇다 보니 한 번의 고통으로 오랜 시간 혈당 측정이 가능한 이식형 포도당 센서를 의사가 권유한다면, 환자 입장에서는 귀가 솔깃할 만하다. 실제로 최근 미국의 한 회사가 2주간 지속적으로 혈당 측정이 가능한 삽입형 포도당 센서를 개발해 환자들에게 희망을 주고 있다. 하지만, 높은 가격 외에도 5g 이상의 무게와 피부 부착에 필요한 강력 접착제, 그리고 5㎜ 두께의 바늘 사용으로 인한 알레르기 및 염증 반응 등 해결해야 할 문제가 많다. KIST가 개발하고 있는 박막형 생체 이식 전자 의료기기는 앞서 언급한 삽입형 전자 의료기기의 문제점을 모두 해결할 수 있는 미래형 의료기기다. 기존의 실리콘 기반 전자소자에서 벗어나 필름 형태의 박막형 기판에 생체신호 측정에 필요한 전자회로를 구현하는 것이 목표다. 현재는 당뇨병 환자들이 반복되는 고통을 겪지 않고 혈당을 측정할 수 있는 체내 이식형 포도당 센서 개발에 집중하고 있다. 지금까지 두께는 머리카락의 절반 수준인 5마이크로미터(㎛) 미만, 무게는 깃털 하나보다 가벼운 4㎎의 센서 개발에 성공했다. 앞으로 포도당뿐만 아니라 다양한 질환의 위험 인자를 동시에 측정할 수 있는 의료기기로 발전시켜 나갈 예정이다. 센서가 측정한 신호를 무선으로 얻기 위해서는 여러 개의 반도체 칩을 집적화한 회로가 필요한데, 이로 인해 센서는 두껍고 무거워질 수밖에 없다. 칩을 사용하지 않고 무선 정보 송신까지 가능한 플랫폼 개발을 동시에 진행 중이다. 연구자로서 오랜 기간 박막형 생체이식 전자 의료기기 연구에 매진하는 이유는 환자가 몸속에 디바이스를 이식한 후에도 이를 인지할 수 없을 정도로 불편함이 없는 의료기기를 개발하고 싶어서다. 얇고 가벼운 박막의 의료기기는 기능적으로도 몸 안에서 이물질에 대한 면역 반응을 최소화해 줄 수 있다. 다양한 질병의 징후를 한꺼번에 측정할 수 있는 삽입형 생체센서는 우리 몸의 이상반응을 즉시 알려줘서 대부분의 질병을 초기에 진단하고, 치료할 수 있는 이상적인 의료시스템을 구현해줄 것이다. 출처 : 조선일보(링크)