Result
게시물 키워드"KIST"에 대한 4644개의 검색결과를 찾았습니다.
화학무기의 독성을 제거하는 신개념 코팅기술 개발, 화학전 및 테러 대응기술 실용화 눈 앞에
- 기능성 고분자 설계를 통한 제독촉매 복합화로 다양한 기재에 제독코팅 - 차세대 보호의 및 보호장비, 화학물질 누출 오염처리에 기여할 것으로 전망 고독성 유기화합물은 무색무취의 특성을 가지며 극소량으로 대량학살이 가능하여 전 세계적으로 화학무기금지협약을 통해 사용을 금지하고 있다. 그럼에도 불구하고 최근 화학무기를 사용한 사례가 발생하여 이에 대응하기 위한 방호소재 개발의 필요성이 대두되고 있다. 현재 주로 활성탄을 사용하여 독성 화학물질을 흡착하는 보호의 및 방독면으로 화학무기에 대응하고 있으나, 2차 오염 등의 문제가 있어 독성을 원천적으로 제거할 수 있는 제독촉매의 개발이 요구되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 물질구조제어연구센터 백경열 책임연구원 연구팀이 2019년 나노기반 제독촉매를 개발한 데 이어, 가공과 코팅이 용이한 제독용 복합소재의 개발에 성공했다고 밝혔다. 기존에 개발한 금속유기골격체(Metal-Organic Framework, MOF) 제독촉매는 제독 성능은 높지만 모래와 같이 부서지는 입자 형태로 되어 있어 군복 및 군용장비 코팅에 실용화하지 못하고 있었다. 백경열 책임연구원 연구팀은 이러한 문제를 극복하기 위해 기능성 고분자를 설계하고 이를 제독촉매와 혼합함으로써 필름, 섬유 등의 형태로 가공할 수 있으면서도 성능을 유지할 수 있는 신개념 제독기술을 개발하였다. 연구팀은 기존에 개발하였던 나노미터 수준의 지르코늄(Zr) 기반 제독촉매의 높은 반응성을 유지하면서 가공성을 향상시키는 기능성 고분자형 지지체를 신규로 개발하여 이를 혼합한 복합소재를 제독촉매로 이용하였다. 군복 및 군용장비의 스프레이 공정에 복합소재를 적용하여 제독 코팅층을 형성하고, 실제 화학무기인 신경작용제 소만(GD)을 이용하여 제독성능을 테스트한 결과, 개발한 소재가 제독용 코팅소재로써 실증적용이 가능한 것으로 확인하였다. KIST 백경열 책임연구원은 “기존에 보고된 전기방사법이 아닌 단순 스프레이 공정을 통해서 넓은 면적까지 빠른 속도로 코팅이 가능하며 화학무기의 독성을 손쉽게 제거할 수 있다는 것이 이번 연구의 차별점”이며, “스프레이 코팅을 통하여 유사시 군복과 군용장비에 사전제독뿐만 아니라 오염된 부분의 사후제독도 가능하여 보다 효과적으로 화학무기 또는 고독성 화학물질로부터 군인 및 국민의 생명과 안전을 지킬 수 있을 것으로 기대한다”고 연구 의의를 밝혔다. 본 연구는 KIST 안보·재난안전기술단과의 협력으로 기관고유사업 (K-DARPA) 및 과학기술정보통신부의 지원으로 수행되었으며, 연구결과는 복합체 분야의 국제 학술저널인 ‘ACS Applied Materials & Interfaces’(IF : 10.383, JCR 상위 14.05%) 최신호에 온라인 게재되었다. * (논문명) Feasible Detoxification Coating Material for Chemical Warfare Agent using PMMA-BPEI Copolymer and Metal-Organic Framework Composites - (제 1저자) 한국과학기술연구원 서진영 박사후연구원 - (교신저자) 한국과학기술연구원 백경열 책임연구원 [그림 설명] [그림 1] 기능성 고분자 지지체와 나노제독촉매를 활용한 코팅소재 개발 전략 및 화학무기 분해에 관한 모식도 [그림 2] KIST 연구진이 개발한 제독촉매 분말(좌)과 제독촉매를 유리에 코팅한 소재(우)
화학무기의 독성을 제거하는 신개념 코팅기술 개발, 화학전 및 테러 대응기술 실용화 눈 앞에
- 기능성 고분자 설계를 통한 제독촉매 복합화로 다양한 기재에 제독코팅 - 차세대 보호의 및 보호장비, 화학물질 누출 오염처리에 기여할 것으로 전망 고독성 유기화합물은 무색무취의 특성을 가지며 극소량으로 대량학살이 가능하여 전 세계적으로 화학무기금지협약을 통해 사용을 금지하고 있다. 그럼에도 불구하고 최근 화학무기를 사용한 사례가 발생하여 이에 대응하기 위한 방호소재 개발의 필요성이 대두되고 있다. 현재 주로 활성탄을 사용하여 독성 화학물질을 흡착하는 보호의 및 방독면으로 화학무기에 대응하고 있으나, 2차 오염 등의 문제가 있어 독성을 원천적으로 제거할 수 있는 제독촉매의 개발이 요구되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 물질구조제어연구센터 백경열 책임연구원 연구팀이 2019년 나노기반 제독촉매를 개발한 데 이어, 가공과 코팅이 용이한 제독용 복합소재의 개발에 성공했다고 밝혔다. 기존에 개발한 금속유기골격체(Metal-Organic Framework, MOF) 제독촉매는 제독 성능은 높지만 모래와 같이 부서지는 입자 형태로 되어 있어 군복 및 군용장비 코팅에 실용화하지 못하고 있었다. 백경열 책임연구원 연구팀은 이러한 문제를 극복하기 위해 기능성 고분자를 설계하고 이를 제독촉매와 혼합함으로써 필름, 섬유 등의 형태로 가공할 수 있으면서도 성능을 유지할 수 있는 신개념 제독기술을 개발하였다. 연구팀은 기존에 개발하였던 나노미터 수준의 지르코늄(Zr) 기반 제독촉매의 높은 반응성을 유지하면서 가공성을 향상시키는 기능성 고분자형 지지체를 신규로 개발하여 이를 혼합한 복합소재를 제독촉매로 이용하였다. 군복 및 군용장비의 스프레이 공정에 복합소재를 적용하여 제독 코팅층을 형성하고, 실제 화학무기인 신경작용제 소만(GD)을 이용하여 제독성능을 테스트한 결과, 개발한 소재가 제독용 코팅소재로써 실증적용이 가능한 것으로 확인하였다. KIST 백경열 책임연구원은 “기존에 보고된 전기방사법이 아닌 단순 스프레이 공정을 통해서 넓은 면적까지 빠른 속도로 코팅이 가능하며 화학무기의 독성을 손쉽게 제거할 수 있다는 것이 이번 연구의 차별점”이며, “스프레이 코팅을 통하여 유사시 군복과 군용장비에 사전제독뿐만 아니라 오염된 부분의 사후제독도 가능하여 보다 효과적으로 화학무기 또는 고독성 화학물질로부터 군인 및 국민의 생명과 안전을 지킬 수 있을 것으로 기대한다”고 연구 의의를 밝혔다. 본 연구는 KIST 안보·재난안전기술단과의 협력으로 기관고유사업 (K-DARPA) 및 과학기술정보통신부의 지원으로 수행되었으며, 연구결과는 복합체 분야의 국제 학술저널인 ‘ACS Applied Materials & Interfaces’(IF : 10.383, JCR 상위 14.05%) 최신호에 온라인 게재되었다. * (논문명) Feasible Detoxification Coating Material for Chemical Warfare Agent using PMMA-BPEI Copolymer and Metal-Organic Framework Composites - (제 1저자) 한국과학기술연구원 서진영 박사후연구원 - (교신저자) 한국과학기술연구원 백경열 책임연구원 [그림 설명] [그림 1] 기능성 고분자 지지체와 나노제독촉매를 활용한 코팅소재 개발 전략 및 화학무기 분해에 관한 모식도 [그림 2] KIST 연구진이 개발한 제독촉매 분말(좌)과 제독촉매를 유리에 코팅한 소재(우)
화학무기의 독성을 제거하는 신개념 코팅기술 개발, 화학전 및 테러 대응기술 실용화 눈 앞에
- 기능성 고분자 설계를 통한 제독촉매 복합화로 다양한 기재에 제독코팅 - 차세대 보호의 및 보호장비, 화학물질 누출 오염처리에 기여할 것으로 전망 고독성 유기화합물은 무색무취의 특성을 가지며 극소량으로 대량학살이 가능하여 전 세계적으로 화학무기금지협약을 통해 사용을 금지하고 있다. 그럼에도 불구하고 최근 화학무기를 사용한 사례가 발생하여 이에 대응하기 위한 방호소재 개발의 필요성이 대두되고 있다. 현재 주로 활성탄을 사용하여 독성 화학물질을 흡착하는 보호의 및 방독면으로 화학무기에 대응하고 있으나, 2차 오염 등의 문제가 있어 독성을 원천적으로 제거할 수 있는 제독촉매의 개발이 요구되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 물질구조제어연구센터 백경열 책임연구원 연구팀이 2019년 나노기반 제독촉매를 개발한 데 이어, 가공과 코팅이 용이한 제독용 복합소재의 개발에 성공했다고 밝혔다. 기존에 개발한 금속유기골격체(Metal-Organic Framework, MOF) 제독촉매는 제독 성능은 높지만 모래와 같이 부서지는 입자 형태로 되어 있어 군복 및 군용장비 코팅에 실용화하지 못하고 있었다. 백경열 책임연구원 연구팀은 이러한 문제를 극복하기 위해 기능성 고분자를 설계하고 이를 제독촉매와 혼합함으로써 필름, 섬유 등의 형태로 가공할 수 있으면서도 성능을 유지할 수 있는 신개념 제독기술을 개발하였다. 연구팀은 기존에 개발하였던 나노미터 수준의 지르코늄(Zr) 기반 제독촉매의 높은 반응성을 유지하면서 가공성을 향상시키는 기능성 고분자형 지지체를 신규로 개발하여 이를 혼합한 복합소재를 제독촉매로 이용하였다. 군복 및 군용장비의 스프레이 공정에 복합소재를 적용하여 제독 코팅층을 형성하고, 실제 화학무기인 신경작용제 소만(GD)을 이용하여 제독성능을 테스트한 결과, 개발한 소재가 제독용 코팅소재로써 실증적용이 가능한 것으로 확인하였다. KIST 백경열 책임연구원은 “기존에 보고된 전기방사법이 아닌 단순 스프레이 공정을 통해서 넓은 면적까지 빠른 속도로 코팅이 가능하며 화학무기의 독성을 손쉽게 제거할 수 있다는 것이 이번 연구의 차별점”이며, “스프레이 코팅을 통하여 유사시 군복과 군용장비에 사전제독뿐만 아니라 오염된 부분의 사후제독도 가능하여 보다 효과적으로 화학무기 또는 고독성 화학물질로부터 군인 및 국민의 생명과 안전을 지킬 수 있을 것으로 기대한다”고 연구 의의를 밝혔다. 본 연구는 KIST 안보·재난안전기술단과의 협력으로 기관고유사업 (K-DARPA) 및 과학기술정보통신부의 지원으로 수행되었으며, 연구결과는 복합체 분야의 국제 학술저널인 ‘ACS Applied Materials & Interfaces’(IF : 10.383, JCR 상위 14.05%) 최신호에 온라인 게재되었다. * (논문명) Feasible Detoxification Coating Material for Chemical Warfare Agent using PMMA-BPEI Copolymer and Metal-Organic Framework Composites - (제 1저자) 한국과학기술연구원 서진영 박사후연구원 - (교신저자) 한국과학기술연구원 백경열 책임연구원 [그림 설명] [그림 1] 기능성 고분자 지지체와 나노제독촉매를 활용한 코팅소재 개발 전략 및 화학무기 분해에 관한 모식도 [그림 2] KIST 연구진이 개발한 제독촉매 분말(좌)과 제독촉매를 유리에 코팅한 소재(우)
화학무기의 독성을 제거하는 신개념 코팅기술 개발, 화학전 및 테러 대응기술 실용화 눈 앞에
- 기능성 고분자 설계를 통한 제독촉매 복합화로 다양한 기재에 제독코팅 - 차세대 보호의 및 보호장비, 화학물질 누출 오염처리에 기여할 것으로 전망 고독성 유기화합물은 무색무취의 특성을 가지며 극소량으로 대량학살이 가능하여 전 세계적으로 화학무기금지협약을 통해 사용을 금지하고 있다. 그럼에도 불구하고 최근 화학무기를 사용한 사례가 발생하여 이에 대응하기 위한 방호소재 개발의 필요성이 대두되고 있다. 현재 주로 활성탄을 사용하여 독성 화학물질을 흡착하는 보호의 및 방독면으로 화학무기에 대응하고 있으나, 2차 오염 등의 문제가 있어 독성을 원천적으로 제거할 수 있는 제독촉매의 개발이 요구되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 물질구조제어연구센터 백경열 책임연구원 연구팀이 2019년 나노기반 제독촉매를 개발한 데 이어, 가공과 코팅이 용이한 제독용 복합소재의 개발에 성공했다고 밝혔다. 기존에 개발한 금속유기골격체(Metal-Organic Framework, MOF) 제독촉매는 제독 성능은 높지만 모래와 같이 부서지는 입자 형태로 되어 있어 군복 및 군용장비 코팅에 실용화하지 못하고 있었다. 백경열 책임연구원 연구팀은 이러한 문제를 극복하기 위해 기능성 고분자를 설계하고 이를 제독촉매와 혼합함으로써 필름, 섬유 등의 형태로 가공할 수 있으면서도 성능을 유지할 수 있는 신개념 제독기술을 개발하였다. 연구팀은 기존에 개발하였던 나노미터 수준의 지르코늄(Zr) 기반 제독촉매의 높은 반응성을 유지하면서 가공성을 향상시키는 기능성 고분자형 지지체를 신규로 개발하여 이를 혼합한 복합소재를 제독촉매로 이용하였다. 군복 및 군용장비의 스프레이 공정에 복합소재를 적용하여 제독 코팅층을 형성하고, 실제 화학무기인 신경작용제 소만(GD)을 이용하여 제독성능을 테스트한 결과, 개발한 소재가 제독용 코팅소재로써 실증적용이 가능한 것으로 확인하였다. KIST 백경열 책임연구원은 “기존에 보고된 전기방사법이 아닌 단순 스프레이 공정을 통해서 넓은 면적까지 빠른 속도로 코팅이 가능하며 화학무기의 독성을 손쉽게 제거할 수 있다는 것이 이번 연구의 차별점”이며, “스프레이 코팅을 통하여 유사시 군복과 군용장비에 사전제독뿐만 아니라 오염된 부분의 사후제독도 가능하여 보다 효과적으로 화학무기 또는 고독성 화학물질로부터 군인 및 국민의 생명과 안전을 지킬 수 있을 것으로 기대한다”고 연구 의의를 밝혔다. 본 연구는 KIST 안보·재난안전기술단과의 협력으로 기관고유사업 (K-DARPA) 및 과학기술정보통신부의 지원으로 수행되었으며, 연구결과는 복합체 분야의 국제 학술저널인 ‘ACS Applied Materials & Interfaces’(IF : 10.383, JCR 상위 14.05%) 최신호에 온라인 게재되었다. * (논문명) Feasible Detoxification Coating Material for Chemical Warfare Agent using PMMA-BPEI Copolymer and Metal-Organic Framework Composites - (제 1저자) 한국과학기술연구원 서진영 박사후연구원 - (교신저자) 한국과학기술연구원 백경열 책임연구원 [그림 설명] [그림 1] 기능성 고분자 지지체와 나노제독촉매를 활용한 코팅소재 개발 전략 및 화학무기 분해에 관한 모식도 [그림 2] KIST 연구진이 개발한 제독촉매 분말(좌)과 제독촉매를 유리에 코팅한 소재(우)
화학무기의 독성을 제거하는 신개념 코팅기술 개발, 화학전 및 테러 대응기술 실용화 눈 앞에
- 기능성 고분자 설계를 통한 제독촉매 복합화로 다양한 기재에 제독코팅 - 차세대 보호의 및 보호장비, 화학물질 누출 오염처리에 기여할 것으로 전망 고독성 유기화합물은 무색무취의 특성을 가지며 극소량으로 대량학살이 가능하여 전 세계적으로 화학무기금지협약을 통해 사용을 금지하고 있다. 그럼에도 불구하고 최근 화학무기를 사용한 사례가 발생하여 이에 대응하기 위한 방호소재 개발의 필요성이 대두되고 있다. 현재 주로 활성탄을 사용하여 독성 화학물질을 흡착하는 보호의 및 방독면으로 화학무기에 대응하고 있으나, 2차 오염 등의 문제가 있어 독성을 원천적으로 제거할 수 있는 제독촉매의 개발이 요구되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 물질구조제어연구센터 백경열 책임연구원 연구팀이 2019년 나노기반 제독촉매를 개발한 데 이어, 가공과 코팅이 용이한 제독용 복합소재의 개발에 성공했다고 밝혔다. 기존에 개발한 금속유기골격체(Metal-Organic Framework, MOF) 제독촉매는 제독 성능은 높지만 모래와 같이 부서지는 입자 형태로 되어 있어 군복 및 군용장비 코팅에 실용화하지 못하고 있었다. 백경열 책임연구원 연구팀은 이러한 문제를 극복하기 위해 기능성 고분자를 설계하고 이를 제독촉매와 혼합함으로써 필름, 섬유 등의 형태로 가공할 수 있으면서도 성능을 유지할 수 있는 신개념 제독기술을 개발하였다. 연구팀은 기존에 개발하였던 나노미터 수준의 지르코늄(Zr) 기반 제독촉매의 높은 반응성을 유지하면서 가공성을 향상시키는 기능성 고분자형 지지체를 신규로 개발하여 이를 혼합한 복합소재를 제독촉매로 이용하였다. 군복 및 군용장비의 스프레이 공정에 복합소재를 적용하여 제독 코팅층을 형성하고, 실제 화학무기인 신경작용제 소만(GD)을 이용하여 제독성능을 테스트한 결과, 개발한 소재가 제독용 코팅소재로써 실증적용이 가능한 것으로 확인하였다. KIST 백경열 책임연구원은 “기존에 보고된 전기방사법이 아닌 단순 스프레이 공정을 통해서 넓은 면적까지 빠른 속도로 코팅이 가능하며 화학무기의 독성을 손쉽게 제거할 수 있다는 것이 이번 연구의 차별점”이며, “스프레이 코팅을 통하여 유사시 군복과 군용장비에 사전제독뿐만 아니라 오염된 부분의 사후제독도 가능하여 보다 효과적으로 화학무기 또는 고독성 화학물질로부터 군인 및 국민의 생명과 안전을 지킬 수 있을 것으로 기대한다”고 연구 의의를 밝혔다. 본 연구는 KIST 안보·재난안전기술단과의 협력으로 기관고유사업 (K-DARPA) 및 과학기술정보통신부의 지원으로 수행되었으며, 연구결과는 복합체 분야의 국제 학술저널인 ‘ACS Applied Materials & Interfaces’(IF : 10.383, JCR 상위 14.05%) 최신호에 온라인 게재되었다. * (논문명) Feasible Detoxification Coating Material for Chemical Warfare Agent using PMMA-BPEI Copolymer and Metal-Organic Framework Composites - (제 1저자) 한국과학기술연구원 서진영 박사후연구원 - (교신저자) 한국과학기술연구원 백경열 책임연구원 [그림 설명] [그림 1] 기능성 고분자 지지체와 나노제독촉매를 활용한 코팅소재 개발 전략 및 화학무기 분해에 관한 모식도 [그림 2] KIST 연구진이 개발한 제독촉매 분말(좌)과 제독촉매를 유리에 코팅한 소재(우)
KIST, 미래 모빌리티를 위한 나노소재기술 개발한다
- KIST-NST 전자파솔루션융합연구단(SEIF) 출범, 6년간 450억원 규모 - KIST, KITECH 등 16개 기관 참여해 미래 모빌리티용 전자파 솔루션 소재·부품 원천기술 개발 및 실증 국가과학기술연구회(NST, 이사장 김복철)와 한국과학기술연구원(KIST, 원장 윤석진)은 지난 8일 KIST 서울 본원에서 전자파솔루션융합연구단(SEIF,Solutions to Electromagnetic Interference in Future-mobility) 현판식을 개최했다. 현판식에는 KIST 윤석진 원장을 비롯해 NST 김복철 이사장, 한국생산기술연구원(KITECH) 이낙규 원장, 한국산업기술시험원(KTL) 김세종 원장, 한국재료연구원(KIMS) 이정환 원장, 한국항공우주연구원(KARI) 이상률 원장 등 관계자 40여 명이 참석했다. 전자파솔루션융합연구단은 총괄주관기관인 KIST를 중심으로, KITECH, KIMS, KARI 등 출연(연)과 한국산업기술시험원, 한국자동차연구원, 한국전자기술연구원 및 3개의 대학과 6개 기업이 협력하여, ‘미래 모빌리티 수요 선제 대응을 위한 세계 최고 수준의 전자파 제어 솔루션 소재·부품 원천기술 확보 및 실용화’를 목표로 6년간 450억원 규모의 연구를 수행하게 된다. 연구를 총괄하는 KIST 박종혁 단장은 “자율주행차, 도심항공교통 등 폭발적으로 성장중인 미래 모빌리티 시장에 적용할 수 있는 나노소재 기반 전자파솔루션 시스템 연구로 통해 미래 모빌리티 구현을 지원할 계획”이라고 말했다. KIST 윤석진 원장은 “본 사업은 미래 사회를 대비하기 위한 필수적인 연구로 산업적 시급성이 있고 정책적 정합성도 높은 분야”라며, “미래선도형 융합연구사업의 취지에 맞게 원천기술의 개발을 통해 차세대 국가 성장동력 확보와 일자리 창출에 기여할 수 있도록 적극적으로 지원할 계획”이라고 밝혔다. [그림 1] 국가과학기술연구회와 KIST는 11월 8일(화) 서울 성북구 본원에서 전자파솔루션융합연구단 현판식을 개최했다. (왼쪽부터) 강종윤 KIST 첨단소재기술연구본부장, 석현광 KIST 연구기획조정본부장, 양은경 KIST 부원장, 송태승 KTL 주관기관책임자, 홍성우 KITECH 주관기관책임자, 박종혁 전자파솔루션융합연구단장, 윤석진 KIST 원장, 김복철 NST 이사장, 이낙규 KITECH 원장, 김세종 KTL 원장, 이정환 KIMS 원장, 이상률 KARI 원장, 김주선 NST 융합연구본부장, 김기완 NST 융합연구부장
KIST, 사업화 유망기술 교류회 개최
- 바이오헬스·탄소중립 기술 대상 사업화를 위한 교류회 운영 - 과학기술일자리진흥원, 기술보증기금, 한국산업기술진흥협회 공동 개최 한국과학기술연구원(KIST, 원장 윤석진)은 11월 2일(수) 삼성 코엑스 컨퍼런스룸에서 과학기술일자리진흥원, 기술보증기금, 한국산업기술진흥협회와 함께 바이오헬스 및 탄소중립 분야를 중심으로 사업화 유망기술 교류회를 개최했다. 행사는 산업계와의 개방형 혁신을 위한 사업기획 세미나와, 바이오헬스·탄소중립분야 사업화 유망기술을 소개하는 세미나로 진행되었다. 사업기획 세미나에서는 KIST의 산·연협력 프로그램 소개 및 과학기술일자리진흥원, 기술보증기금, 한국산업기술진흥협회의 산·연협력 조건부 R&D 사업 및 기술금융(투·융자)지원 프로그램 및 기업지원 프로그램을 소개했다. 유망기술 세미나에서는 바이오헬스 및 탄소중립 분야에서 KIST가 보유한 11개 유망기술에 대한 기업체 공개 설명회와 기술이전 상담을 실시했다. 바이오헬스 분야의 경우 △ PD-L1 표적화 암 치료제, △대장암 예후 진단 기술, △창상 치료제, △천연물 활용 탈모치료제, △친환경 자외선 차단제 △광반응 천연물 이용한 치과 질환 치료 기술 등의 기술이 소개되었다. 아울러, 탄소중립 분야 기술로는 △이산화탄소 포집 및 전기화학적 직접 전환 통한 합성가스 생산 기술, △액상 유기수소운반체 탈수소화용 촉매 제조기술, △금속 단일 원자 촉매 기술, △유해 휘발성유기화합물 현장 탐지기술, △CO2 활용 합성가스 생산(건식개질) 촉매 기술 등의 기술을 선보였다. KIST 윤석진 원장은 “사업화 유망기술을 기업에 소개하는 본 행사를 통해 관련 기업은 신성장 동력을 확보하고 KIST는 정부출연연구기관으로서 국가 경제 발전에 기여할 수 있도록 지원을 아끼지 않겠다”고 밝혔다. [그림 1] 2022년 KIST 사업화 유망기술 교류회 포스터.
KIST 펠로우 제2호 연구자 선정
- 분자의학기반 암치료 연구 전문가 김인산 박사 선정 - 연구비 최대 12억원, 주요 보직자급 혜택 지원 한국과학기술연구원(KIST, 원장 윤석진)은 탁월한 업적을 창출한 연구자들이 기관 차원의 인정과 예우를 받을 수 있는 KIST 펠로우(KIST Fellow) 제2호 연구자로 KIST 화학생명융합연구센터 김인산 박사를 선정했다고 1일 밝혔다. 2021년 4월 신설된 KIST 펠로우 제도는 탁월한 연구업적 및 성과를 낸 연구자에게 기관 차원의 인정과 예우를 제공함으로써 자긍심을 고취하고, 지속적인 연구활동을 지원하기 위해 운영되고 있다. KIST는 지난해 하헌필 박사를 펠로우로 선정한데 이어 올해 9월 KIST 제2호 펠로우 연구자 선정 공고를 시작해 추천서를 접수받았다. 이를 바탕으로 해외 석학의 기술검토(Peer Review)와 100% 외부 전문가로 구성된 심사위원회(KIST Fellow Committee)를 거쳐 제2호 펠로우 연구자로 김인산 박사를 최종 선정하였다. 김인산 박사는 의학을 전공한 의사이자 생화학·분자생물학을 전공한 생명과학자로서, 국내에서 보기 드문 융합의학 연구의 대표적 학자로 평가받았다. 특히 최근에는 세계적으로 관심을 받고 있는 인체 유래 나노물질인 페리틴과 엑소좀 기반 치료제 개발연구에서 세계적 업적을 내면서 이 분야 글로벌 리더로서 인정받았다. 김 박사는 엑소좀 기반 신약개발회사인 시프트바이오를 창업, 국내 상장회사인 랩지노믹스에 기술이전하여 공동개발을 하였고, 우수한 저널에 논문을 지속적으로 발표해 해당 분야의 학문 발전에도 기여했다. 이러한 공적을 바탕으로 제1회 임성기 연구자상 대상(2021), 과학기술정보통신부 훈장 혁신장(2022)을 수상한 바 있다. 김인산 박사의 주요 연구분야인 ‘엑소좀기반 신약기술’은 초고령화에 따른 암 및 난치성 질환치료 연구에 대한 요구가 가속화될 것으로 전망되는 상황에서 향후 발전 가능성이 높은 분야이다. 김인산 박사는 “이미 사용하고 있는 치료기술을 정교하게 적용하여 고가의 항암 치료제로 인한 사회적 문제를 해결하고 싶다”고 밝혔다. KIST 펠로우 선정자에게는 연 2억원, 최대 6년간 연구비가 지원되며, 주요 보직자급의 혜택을 지원한다. 윤석진 원장은 “올해로 두 돌을 맞은 KIST 펠로우 제도를 통해 소속 연구자들이 KIST에 대한 자긍심을 갖고 연구에만 전념할 수 있도록 독려하는 한편, 향후 지속적인 제도 보완을 통하여 영예롭고 상징적인 제도로 발전시켜 나가겠다.”고 말했다. [그림 1] 기념 촬영을 하고 있는 KIST 윤석진원장(좌)과 김인산박사(우).
빌딩숲 태양광 발전 머지 않았다
- 출력, 안정성이 높은 CIGS 소재를 이용한 투광형 태양전지 개발 - 투명산화물전극 및 Ag 전구체 적용으로 투명도, 발전성능 향상 2050년 탄소배출 제로를 달성하기 위해 다양한 대체에너지원이 검토되고 있고, 그 가운데 하나로 태양광 발전기술에 대한 관심이 높다. 하지만 인구밀집도가 높고 국토면적의 70% 이상이 산인 우리나라는 대규모 태양전지 설치공간의 확보가 어렵다. 이 때문에 기존 도심건물의 활용을 극대화하는 건물일체형 태양광발전(BIPV)이 주목받고 있다. 건물에 직접 활용이 가능한 대표적 태양 전지기술인 창호형 태양전지기술은 빛을 부분적으로만 투과시켜 투명성을 확보할 수 있는 비정질 박막실리콘, 유기박막, 염료감응 소재를 중심으로 연구개발이 진행되고 있지만 아직까지 상용화에 필요한 효율성과 내구성이 확보되지 않고 있다. 한국과학기술연구원(KIST, 원장 윤석진) 차세대태양전지연구센터 정증현 센터장, 유형근 박사 연구팀은 뉴욕주립대 연구팀과의 공동연구로 발전성능과 장기안정성이 뛰어난 Cu(InGa)Se2(이하CIGS) 화합물 박막소재를 이용한 투광형 태양전지 기술을 개발했다고 밝혔다. CIGS 화합물 태양전지는 널리 쓰이고 있는 결정질 실리콘 태양전지 수준의 고효율(23.4%) 광발전성능과 높은 장기안정성을 갖고 있어 실제 생활에 적용이 가능하지만 불투명하다. 이는 소재 자체의 높은 광흡수 능력과, 태양전지 뒷면에 전극으로 사용되는 몰리브데늄 금속이 불투명성으로 인해 투명하지 않다는 문제가 있었다. 연구진은 소재 전면의 투광도를 높이기 위해 수 ㎛ 크기까지 에칭이 가능한 레이저 공정을 적용했다. 그 결과 육안으로는 구분이 어려운 크기로 불투명한 박막소재를 제거하고 광투과가 가능한 미세패턴을 균일하게 형성할 수 있었다. 에칭된 태양전지는 광발전성능 저하가 없는 투광형 태양전지로, 현재 건물의 창호로 사용중인 유리를 태양전지로 대체하거나 기존 유리에 태양전지를 추가하는 등 바로 활용이 가능하다. 또한, 레이저 에칭공정의 효율을 높이기 위해서는 CIGS 박막태양전지의 뒷면 전극을 통한 레이저 조사가 가능하도록 기존 불투명한 몰리브데늄에서 투명한 인듐주석산화물(ITO)로 적용해야 했다. 그러나 ITO/CIGS 계면의 높은 전기저항 때문에 광발전성능이 크게 낮아지는 문제점이 있었다. 연구팀은 ITO 후면전극에 10 nm 두께의 은(Ag) 전구체를 적용하면 계면의 전기저항을 낮출 수 있다는 사실을 확인해, 양면이 투명한 CIGS 박막태양전지 셀구조에서 고출력 광발전이 가능한 기술을 개발하였다. 이러한 셀구조는 전면을 통한 광발전뿐만 아니라 후면입사 광에 의한 발전이 20~30%정도 추가되므로 더 높은 발전량을 얻을 수 있다. 개발한 투광형 태양전지 모듈은 레이저 에칭 면적비율 조절로 투과도 제어가 자유롭고 광발전출력이 높아서(30% 광투과에서 11% 이상 광발전효율) 건물에서 요구하는 다양한 투과도 수요를 맞추면서도 더 많은 전기생산이 가능하다. 또한, 레이저 에칭에 의한 투광패턴을 100 ㎛ 이하로 작게 형성할 수 있어 심미적으로 우수한 창호 제작이 가능하고, 모듈화시 기존의 기계적 방법에서 정밀한 레이저 에칭으로 대체함으로써 패터닝에 따른 효율 감소를 방지할 수 있었다. KIST 정증현 센터장은 “개발된 창호형 태양전지는 가격경쟁력이 우수하고 이미 상용화된 CIGS 소재를 활용하기 때문에 기술의 실용화가 용이하다. 향후 발전성능과 레이저 에칭 능력을 향상시키면 경쟁력이 한층 높아질 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업 및 한국연구재단 기후변화대응기술개발사업으로 수행되었으며, 연구결과는 에너지 분야의 국제학술지 ‘Progress in photovoltaics: Research and Applications 최신호(7월호) 표지논문으로 선정되었다. * (논문명) Transparent back-junction control in Cu(In,Ga)Se2 absorber for high-efficiency, color-neutral, and semitransparent solar module - (제 1저자) 한국과학기술연구원 정아름 학생연구원 - (공동저자) Professor David Hwang, State University of New York - (교신저자) 한국과학기술연구원 정증현 책임연구원 - (교신저자) 한국과학기술연구원 유형근 선임연구원
빌딩숲 태양광 발전 머지 않았다
- 출력, 안정성이 높은 CIGS 소재를 이용한 투광형 태양전지 개발 - 투명산화물전극 및 Ag 전구체 적용으로 투명도, 발전성능 향상 2050년 탄소배출 제로를 달성하기 위해 다양한 대체에너지원이 검토되고 있고, 그 가운데 하나로 태양광 발전기술에 대한 관심이 높다. 하지만 인구밀집도가 높고 국토면적의 70% 이상이 산인 우리나라는 대규모 태양전지 설치공간의 확보가 어렵다. 이 때문에 기존 도심건물의 활용을 극대화하는 건물일체형 태양광발전(BIPV)이 주목받고 있다. 건물에 직접 활용이 가능한 대표적 태양 전지기술인 창호형 태양전지기술은 빛을 부분적으로만 투과시켜 투명성을 확보할 수 있는 비정질 박막실리콘, 유기박막, 염료감응 소재를 중심으로 연구개발이 진행되고 있지만 아직까지 상용화에 필요한 효율성과 내구성이 확보되지 않고 있다. 한국과학기술연구원(KIST, 원장 윤석진) 차세대태양전지연구센터 정증현 센터장, 유형근 박사 연구팀은 뉴욕주립대 연구팀과의 공동연구로 발전성능과 장기안정성이 뛰어난 Cu(InGa)Se2(이하CIGS) 화합물 박막소재를 이용한 투광형 태양전지 기술을 개발했다고 밝혔다. CIGS 화합물 태양전지는 널리 쓰이고 있는 결정질 실리콘 태양전지 수준의 고효율(23.4%) 광발전성능과 높은 장기안정성을 갖고 있어 실제 생활에 적용이 가능하지만 불투명하다. 이는 소재 자체의 높은 광흡수 능력과, 태양전지 뒷면에 전극으로 사용되는 몰리브데늄 금속이 불투명성으로 인해 투명하지 않다는 문제가 있었다. 연구진은 소재 전면의 투광도를 높이기 위해 수 ㎛ 크기까지 에칭이 가능한 레이저 공정을 적용했다. 그 결과 육안으로는 구분이 어려운 크기로 불투명한 박막소재를 제거하고 광투과가 가능한 미세패턴을 균일하게 형성할 수 있었다. 에칭된 태양전지는 광발전성능 저하가 없는 투광형 태양전지로, 현재 건물의 창호로 사용중인 유리를 태양전지로 대체하거나 기존 유리에 태양전지를 추가하는 등 바로 활용이 가능하다. 또한, 레이저 에칭공정의 효율을 높이기 위해서는 CIGS 박막태양전지의 뒷면 전극을 통한 레이저 조사가 가능하도록 기존 불투명한 몰리브데늄에서 투명한 인듐주석산화물(ITO)로 적용해야 했다. 그러나 ITO/CIGS 계면의 높은 전기저항 때문에 광발전성능이 크게 낮아지는 문제점이 있었다. 연구팀은 ITO 후면전극에 10 nm 두께의 은(Ag) 전구체를 적용하면 계면의 전기저항을 낮출 수 있다는 사실을 확인해, 양면이 투명한 CIGS 박막태양전지 셀구조에서 고출력 광발전이 가능한 기술을 개발하였다. 이러한 셀구조는 전면을 통한 광발전뿐만 아니라 후면입사 광에 의한 발전이 20~30%정도 추가되므로 더 높은 발전량을 얻을 수 있다. 개발한 투광형 태양전지 모듈은 레이저 에칭 면적비율 조절로 투과도 제어가 자유롭고 광발전출력이 높아서(30% 광투과에서 11% 이상 광발전효율) 건물에서 요구하는 다양한 투과도 수요를 맞추면서도 더 많은 전기생산이 가능하다. 또한, 레이저 에칭에 의한 투광패턴을 100 ㎛ 이하로 작게 형성할 수 있어 심미적으로 우수한 창호 제작이 가능하고, 모듈화시 기존의 기계적 방법에서 정밀한 레이저 에칭으로 대체함으로써 패터닝에 따른 효율 감소를 방지할 수 있었다. KIST 정증현 센터장은 “개발된 창호형 태양전지는 가격경쟁력이 우수하고 이미 상용화된 CIGS 소재를 활용하기 때문에 기술의 실용화가 용이하다. 향후 발전성능과 레이저 에칭 능력을 향상시키면 경쟁력이 한층 높아질 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업 및 한국연구재단 기후변화대응기술개발사업으로 수행되었으며, 연구결과는 에너지 분야의 국제학술지 ‘Progress in photovoltaics: Research and Applications 최신호(7월호) 표지논문으로 선정되었다. * (논문명) Transparent back-junction control in Cu(In,Ga)Se2 absorber for high-efficiency, color-neutral, and semitransparent solar module - (제 1저자) 한국과학기술연구원 정아름 학생연구원 - (공동저자) Professor David Hwang, State University of New York - (교신저자) 한국과학기술연구원 정증현 책임연구원 - (교신저자) 한국과학기술연구원 유형근 선임연구원