Result
게시물 키워드"KIST"에 대한 4645개의 검색결과를 찾았습니다.
전기차 배터리 화재, 반도체 기술로 잡는다
- 반도체 물리와 전기화학 융합, 반도체 박막을 통한 덴드라이트 형성 차단 전기자동차 시대로의 전환이 현실로 다가오고 있지만, 전력 공급원인 리튬이온 배터리의 화재, 폭발 사고에 대한 우려가 끊이질 않고 있다. 이를 극복하기 위해 다양한 노력이 이루어지고 있는 가운데, 국내 연구진이 리튬이온 이차전지에 반도체 기술을 적용하여 폭발 위험을 획기적으로 줄여 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 이중기 박사 연구팀이 리튬금속 전극 표면에 반도체 박막을 형성하여 배터리 화재의 원인인 덴드라이트 형성을 원천 차단했다고 밝혔다. 리튬이온 이차전지의 화재는 소재 표면에 생기는 덴드라이트가 가장 큰 원인으로 알려져있다. 배터리 충전 시에 리튬이온이 음극으로 이동하여 표면에서 리튬금속으로 저장되는 과정에서 나뭇가지 형태의 결정으로 형성되는 것을 덴드라이트라 부르는데, 전극의 부피를 팽창시키고, 전극과 전해질 사이의 반응을 일으켜 화재를 유발하고 전지의 성능을 저하시킨다. 연구팀은 전도성이 높은 반도체 소재인 풀러렌(C60)을 플라즈마에 노출시켜 리튬금속전극과 전해질 사이에 반도체 박막을 만들어 덴드라이트가 형성되지 않게 했다. 개발된 반도체 박막은 전자는 통과시키고 리튬이온은 통과시키지 못하게 하는데, 전극 표면에서 전자와 이온이 만날 수 없어 리튬 결정이 형성되지 않아 덴드라이트의 형성 또한 원천적으로 차단할 수 있다. 전극의 안정성을 테스트하기 위해 리튬-리튬 대칭셀로 실험했을 때, 일반 리튬금속 전극이 20회 충·방전 사이클까지 안정적이었던 극한 전기화학 환경에서 연구진이 개발한 반도체 박막을 갖는 전극은 리튬 덴드라이트의 성장 없이 1,200 사이클 동안 안정적이었다. 또한 리튬코발트산화물 양극과 개발된 전극을 이용하여 안정성 평가를 수행한 결과 500 사이클 후에 용량의 약 81%가 유지되었는데, 약 52% 정도만 유지되는 일반 리튬금속전극에 비해 약 60% 향상되었다. KIST 이중기 박사는 “이번 연구에서 개발된 고안전성 리튬금속전극 개발 기술은 기존의 리튬금속에서 발생하는 금속 덴드라이트 발생을 억제하면서 화재의 위험이 없는 안전한 차세대 이차전지 개발을 위한 차세대 융합형 원천기술로써 주목받을 것으로 기대된다.”라며 “이번에 반도체 박막을 형성하기 위해 사용한 고가의 풀러렌이 아닌 다른 저렴한 소재를 통해 본 기술을 적용하려는 연구를 진행할 예정이다. 재료, 공정비용을 낮춰 상용화에 한 발 더 다가갈 예정”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자사업, 해외우수신진연구자사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 저널인 ‘ACS Energy Letters’ (IF: 19.003, JCR 분야 상위 1.852%) 최신 호에 게재되었다. * (논문명) Metal-Semiconductor Ohmic and Schottky Contact-Interfaces for Stable Li-Metal Electrodes - (제 1저자) 한국과학기술연구원 랸다 엥가르 아누그라 아르디 학생연구원 - (교신저자) 한국과학기술연구원 이중기 책임연구원 <그림설명> [그림 1] (좌) 일반 리튬이온 이차전지 표면에 형성된 덴드라이트 결정의 모습과 (우)덴드라이트가 형성되지 않은 p형 반도체 전극의 표면 [그림 2] (좌) 오믹접촉을 하는 n형 반도체와 리튬금속 사이를 전자는 통과하면서 반도체층 내부에 리튬금속이 형성된다. 또한 전해질 성분과 반응하여 두꺼운 SEI 층이 형성된다. (우) 쇼트키접촉을 하는 p형 반도체와리튬금속 사이는 전자는 통과하지 못하고 층 바로 밑에서 통과해온 리튬이온과 반응하여 반도체층 밑에서만 리튬이 증착된다. 터널링현상으로 계면을 통과한 소수의 전자만이 전해질막을 통과하여 얇은 SEI 막을 형성한다.
전기차 배터리 화재, 반도체 기술로 잡는다
- 반도체 물리와 전기화학 융합, 반도체 박막을 통한 덴드라이트 형성 차단 전기자동차 시대로의 전환이 현실로 다가오고 있지만, 전력 공급원인 리튬이온 배터리의 화재, 폭발 사고에 대한 우려가 끊이질 않고 있다. 이를 극복하기 위해 다양한 노력이 이루어지고 있는 가운데, 국내 연구진이 리튬이온 이차전지에 반도체 기술을 적용하여 폭발 위험을 획기적으로 줄여 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 이중기 박사 연구팀이 리튬금속 전극 표면에 반도체 박막을 형성하여 배터리 화재의 원인인 덴드라이트 형성을 원천 차단했다고 밝혔다. 리튬이온 이차전지의 화재는 소재 표면에 생기는 덴드라이트가 가장 큰 원인으로 알려져있다. 배터리 충전 시에 리튬이온이 음극으로 이동하여 표면에서 리튬금속으로 저장되는 과정에서 나뭇가지 형태의 결정으로 형성되는 것을 덴드라이트라 부르는데, 전극의 부피를 팽창시키고, 전극과 전해질 사이의 반응을 일으켜 화재를 유발하고 전지의 성능을 저하시킨다. 연구팀은 전도성이 높은 반도체 소재인 풀러렌(C60)을 플라즈마에 노출시켜 리튬금속전극과 전해질 사이에 반도체 박막을 만들어 덴드라이트가 형성되지 않게 했다. 개발된 반도체 박막은 전자는 통과시키고 리튬이온은 통과시키지 못하게 하는데, 전극 표면에서 전자와 이온이 만날 수 없어 리튬 결정이 형성되지 않아 덴드라이트의 형성 또한 원천적으로 차단할 수 있다. 전극의 안정성을 테스트하기 위해 리튬-리튬 대칭셀로 실험했을 때, 일반 리튬금속 전극이 20회 충·방전 사이클까지 안정적이었던 극한 전기화학 환경에서 연구진이 개발한 반도체 박막을 갖는 전극은 리튬 덴드라이트의 성장 없이 1,200 사이클 동안 안정적이었다. 또한 리튬코발트산화물 양극과 개발된 전극을 이용하여 안정성 평가를 수행한 결과 500 사이클 후에 용량의 약 81%가 유지되었는데, 약 52% 정도만 유지되는 일반 리튬금속전극에 비해 약 60% 향상되었다. KIST 이중기 박사는 “이번 연구에서 개발된 고안전성 리튬금속전극 개발 기술은 기존의 리튬금속에서 발생하는 금속 덴드라이트 발생을 억제하면서 화재의 위험이 없는 안전한 차세대 이차전지 개발을 위한 차세대 융합형 원천기술로써 주목받을 것으로 기대된다.”라며 “이번에 반도체 박막을 형성하기 위해 사용한 고가의 풀러렌이 아닌 다른 저렴한 소재를 통해 본 기술을 적용하려는 연구를 진행할 예정이다. 재료, 공정비용을 낮춰 상용화에 한 발 더 다가갈 예정”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자사업, 해외우수신진연구자사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 저널인 ‘ACS Energy Letters’ (IF: 19.003, JCR 분야 상위 1.852%) 최신 호에 게재되었다. * (논문명) Metal-Semiconductor Ohmic and Schottky Contact-Interfaces for Stable Li-Metal Electrodes - (제 1저자) 한국과학기술연구원 랸다 엥가르 아누그라 아르디 학생연구원 - (교신저자) 한국과학기술연구원 이중기 책임연구원 <그림설명> [그림 1] (좌) 일반 리튬이온 이차전지 표면에 형성된 덴드라이트 결정의 모습과 (우)덴드라이트가 형성되지 않은 p형 반도체 전극의 표면 [그림 2] (좌) 오믹접촉을 하는 n형 반도체와 리튬금속 사이를 전자는 통과하면서 반도체층 내부에 리튬금속이 형성된다. 또한 전해질 성분과 반응하여 두꺼운 SEI 층이 형성된다. (우) 쇼트키접촉을 하는 p형 반도체와리튬금속 사이는 전자는 통과하지 못하고 층 바로 밑에서 통과해온 리튬이온과 반응하여 반도체층 밑에서만 리튬이 증착된다. 터널링현상으로 계면을 통과한 소수의 전자만이 전해질막을 통과하여 얇은 SEI 막을 형성한다.
전기차 배터리 화재, 반도체 기술로 잡는다
- 반도체 물리와 전기화학 융합, 반도체 박막을 통한 덴드라이트 형성 차단 전기자동차 시대로의 전환이 현실로 다가오고 있지만, 전력 공급원인 리튬이온 배터리의 화재, 폭발 사고에 대한 우려가 끊이질 않고 있다. 이를 극복하기 위해 다양한 노력이 이루어지고 있는 가운데, 국내 연구진이 리튬이온 이차전지에 반도체 기술을 적용하여 폭발 위험을 획기적으로 줄여 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 이중기 박사 연구팀이 리튬금속 전극 표면에 반도체 박막을 형성하여 배터리 화재의 원인인 덴드라이트 형성을 원천 차단했다고 밝혔다. 리튬이온 이차전지의 화재는 소재 표면에 생기는 덴드라이트가 가장 큰 원인으로 알려져있다. 배터리 충전 시에 리튬이온이 음극으로 이동하여 표면에서 리튬금속으로 저장되는 과정에서 나뭇가지 형태의 결정으로 형성되는 것을 덴드라이트라 부르는데, 전극의 부피를 팽창시키고, 전극과 전해질 사이의 반응을 일으켜 화재를 유발하고 전지의 성능을 저하시킨다. 연구팀은 전도성이 높은 반도체 소재인 풀러렌(C60)을 플라즈마에 노출시켜 리튬금속전극과 전해질 사이에 반도체 박막을 만들어 덴드라이트가 형성되지 않게 했다. 개발된 반도체 박막은 전자는 통과시키고 리튬이온은 통과시키지 못하게 하는데, 전극 표면에서 전자와 이온이 만날 수 없어 리튬 결정이 형성되지 않아 덴드라이트의 형성 또한 원천적으로 차단할 수 있다. 전극의 안정성을 테스트하기 위해 리튬-리튬 대칭셀로 실험했을 때, 일반 리튬금속 전극이 20회 충·방전 사이클까지 안정적이었던 극한 전기화학 환경에서 연구진이 개발한 반도체 박막을 갖는 전극은 리튬 덴드라이트의 성장 없이 1,200 사이클 동안 안정적이었다. 또한 리튬코발트산화물 양극과 개발된 전극을 이용하여 안정성 평가를 수행한 결과 500 사이클 후에 용량의 약 81%가 유지되었는데, 약 52% 정도만 유지되는 일반 리튬금속전극에 비해 약 60% 향상되었다. KIST 이중기 박사는 “이번 연구에서 개발된 고안전성 리튬금속전극 개발 기술은 기존의 리튬금속에서 발생하는 금속 덴드라이트 발생을 억제하면서 화재의 위험이 없는 안전한 차세대 이차전지 개발을 위한 차세대 융합형 원천기술로써 주목받을 것으로 기대된다.”라며 “이번에 반도체 박막을 형성하기 위해 사용한 고가의 풀러렌이 아닌 다른 저렴한 소재를 통해 본 기술을 적용하려는 연구를 진행할 예정이다. 재료, 공정비용을 낮춰 상용화에 한 발 더 다가갈 예정”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자사업, 해외우수신진연구자사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 저널인 ‘ACS Energy Letters’ (IF: 19.003, JCR 분야 상위 1.852%) 최신 호에 게재되었다. * (논문명) Metal-Semiconductor Ohmic and Schottky Contact-Interfaces for Stable Li-Metal Electrodes - (제 1저자) 한국과학기술연구원 랸다 엥가르 아누그라 아르디 학생연구원 - (교신저자) 한국과학기술연구원 이중기 책임연구원 <그림설명> [그림 1] (좌) 일반 리튬이온 이차전지 표면에 형성된 덴드라이트 결정의 모습과 (우)덴드라이트가 형성되지 않은 p형 반도체 전극의 표면 [그림 2] (좌) 오믹접촉을 하는 n형 반도체와 리튬금속 사이를 전자는 통과하면서 반도체층 내부에 리튬금속이 형성된다. 또한 전해질 성분과 반응하여 두꺼운 SEI 층이 형성된다. (우) 쇼트키접촉을 하는 p형 반도체와리튬금속 사이는 전자는 통과하지 못하고 층 바로 밑에서 통과해온 리튬이온과 반응하여 반도체층 밑에서만 리튬이 증착된다. 터널링현상으로 계면을 통과한 소수의 전자만이 전해질막을 통과하여 얇은 SEI 막을 형성한다.
전기차 배터리 화재, 반도체 기술로 잡는다
- 반도체 물리와 전기화학 융합, 반도체 박막을 통한 덴드라이트 형성 차단 전기자동차 시대로의 전환이 현실로 다가오고 있지만, 전력 공급원인 리튬이온 배터리의 화재, 폭발 사고에 대한 우려가 끊이질 않고 있다. 이를 극복하기 위해 다양한 노력이 이루어지고 있는 가운데, 국내 연구진이 리튬이온 이차전지에 반도체 기술을 적용하여 폭발 위험을 획기적으로 줄여 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 이중기 박사 연구팀이 리튬금속 전극 표면에 반도체 박막을 형성하여 배터리 화재의 원인인 덴드라이트 형성을 원천 차단했다고 밝혔다. 리튬이온 이차전지의 화재는 소재 표면에 생기는 덴드라이트가 가장 큰 원인으로 알려져있다. 배터리 충전 시에 리튬이온이 음극으로 이동하여 표면에서 리튬금속으로 저장되는 과정에서 나뭇가지 형태의 결정으로 형성되는 것을 덴드라이트라 부르는데, 전극의 부피를 팽창시키고, 전극과 전해질 사이의 반응을 일으켜 화재를 유발하고 전지의 성능을 저하시킨다. 연구팀은 전도성이 높은 반도체 소재인 풀러렌(C60)을 플라즈마에 노출시켜 리튬금속전극과 전해질 사이에 반도체 박막을 만들어 덴드라이트가 형성되지 않게 했다. 개발된 반도체 박막은 전자는 통과시키고 리튬이온은 통과시키지 못하게 하는데, 전극 표면에서 전자와 이온이 만날 수 없어 리튬 결정이 형성되지 않아 덴드라이트의 형성 또한 원천적으로 차단할 수 있다. 전극의 안정성을 테스트하기 위해 리튬-리튬 대칭셀로 실험했을 때, 일반 리튬금속 전극이 20회 충·방전 사이클까지 안정적이었던 극한 전기화학 환경에서 연구진이 개발한 반도체 박막을 갖는 전극은 리튬 덴드라이트의 성장 없이 1,200 사이클 동안 안정적이었다. 또한 리튬코발트산화물 양극과 개발된 전극을 이용하여 안정성 평가를 수행한 결과 500 사이클 후에 용량의 약 81%가 유지되었는데, 약 52% 정도만 유지되는 일반 리튬금속전극에 비해 약 60% 향상되었다. KIST 이중기 박사는 “이번 연구에서 개발된 고안전성 리튬금속전극 개발 기술은 기존의 리튬금속에서 발생하는 금속 덴드라이트 발생을 억제하면서 화재의 위험이 없는 안전한 차세대 이차전지 개발을 위한 차세대 융합형 원천기술로써 주목받을 것으로 기대된다.”라며 “이번에 반도체 박막을 형성하기 위해 사용한 고가의 풀러렌이 아닌 다른 저렴한 소재를 통해 본 기술을 적용하려는 연구를 진행할 예정이다. 재료, 공정비용을 낮춰 상용화에 한 발 더 다가갈 예정”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자사업, 해외우수신진연구자사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 저널인 ‘ACS Energy Letters’ (IF: 19.003, JCR 분야 상위 1.852%) 최신 호에 게재되었다. * (논문명) Metal-Semiconductor Ohmic and Schottky Contact-Interfaces for Stable Li-Metal Electrodes - (제 1저자) 한국과학기술연구원 랸다 엥가르 아누그라 아르디 학생연구원 - (교신저자) 한국과학기술연구원 이중기 책임연구원 <그림설명> [그림 1] (좌) 일반 리튬이온 이차전지 표면에 형성된 덴드라이트 결정의 모습과 (우)덴드라이트가 형성되지 않은 p형 반도체 전극의 표면 [그림 2] (좌) 오믹접촉을 하는 n형 반도체와 리튬금속 사이를 전자는 통과하면서 반도체층 내부에 리튬금속이 형성된다. 또한 전해질 성분과 반응하여 두꺼운 SEI 층이 형성된다. (우) 쇼트키접촉을 하는 p형 반도체와리튬금속 사이는 전자는 통과하지 못하고 층 바로 밑에서 통과해온 리튬이온과 반응하여 반도체층 밑에서만 리튬이 증착된다. 터널링현상으로 계면을 통과한 소수의 전자만이 전해질막을 통과하여 얇은 SEI 막을 형성한다.
전기차 배터리 화재, 반도체 기술로 잡는다
- 반도체 물리와 전기화학 융합, 반도체 박막을 통한 덴드라이트 형성 차단 전기자동차 시대로의 전환이 현실로 다가오고 있지만, 전력 공급원인 리튬이온 배터리의 화재, 폭발 사고에 대한 우려가 끊이질 않고 있다. 이를 극복하기 위해 다양한 노력이 이루어지고 있는 가운데, 국내 연구진이 리튬이온 이차전지에 반도체 기술을 적용하여 폭발 위험을 획기적으로 줄여 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 이중기 박사 연구팀이 리튬금속 전극 표면에 반도체 박막을 형성하여 배터리 화재의 원인인 덴드라이트 형성을 원천 차단했다고 밝혔다. 리튬이온 이차전지의 화재는 소재 표면에 생기는 덴드라이트가 가장 큰 원인으로 알려져있다. 배터리 충전 시에 리튬이온이 음극으로 이동하여 표면에서 리튬금속으로 저장되는 과정에서 나뭇가지 형태의 결정으로 형성되는 것을 덴드라이트라 부르는데, 전극의 부피를 팽창시키고, 전극과 전해질 사이의 반응을 일으켜 화재를 유발하고 전지의 성능을 저하시킨다. 연구팀은 전도성이 높은 반도체 소재인 풀러렌(C60)을 플라즈마에 노출시켜 리튬금속전극과 전해질 사이에 반도체 박막을 만들어 덴드라이트가 형성되지 않게 했다. 개발된 반도체 박막은 전자는 통과시키고 리튬이온은 통과시키지 못하게 하는데, 전극 표면에서 전자와 이온이 만날 수 없어 리튬 결정이 형성되지 않아 덴드라이트의 형성 또한 원천적으로 차단할 수 있다. 전극의 안정성을 테스트하기 위해 리튬-리튬 대칭셀로 실험했을 때, 일반 리튬금속 전극이 20회 충·방전 사이클까지 안정적이었던 극한 전기화학 환경에서 연구진이 개발한 반도체 박막을 갖는 전극은 리튬 덴드라이트의 성장 없이 1,200 사이클 동안 안정적이었다. 또한 리튬코발트산화물 양극과 개발된 전극을 이용하여 안정성 평가를 수행한 결과 500 사이클 후에 용량의 약 81%가 유지되었는데, 약 52% 정도만 유지되는 일반 리튬금속전극에 비해 약 60% 향상되었다. KIST 이중기 박사는 “이번 연구에서 개발된 고안전성 리튬금속전극 개발 기술은 기존의 리튬금속에서 발생하는 금속 덴드라이트 발생을 억제하면서 화재의 위험이 없는 안전한 차세대 이차전지 개발을 위한 차세대 융합형 원천기술로써 주목받을 것으로 기대된다.”라며 “이번에 반도체 박막을 형성하기 위해 사용한 고가의 풀러렌이 아닌 다른 저렴한 소재를 통해 본 기술을 적용하려는 연구를 진행할 예정이다. 재료, 공정비용을 낮춰 상용화에 한 발 더 다가갈 예정”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자사업, 해외우수신진연구자사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 저널인 ‘ACS Energy Letters’ (IF: 19.003, JCR 분야 상위 1.852%) 최신 호에 게재되었다. * (논문명) Metal-Semiconductor Ohmic and Schottky Contact-Interfaces for Stable Li-Metal Electrodes - (제 1저자) 한국과학기술연구원 랸다 엥가르 아누그라 아르디 학생연구원 - (교신저자) 한국과학기술연구원 이중기 책임연구원 <그림설명> [그림 1] (좌) 일반 리튬이온 이차전지 표면에 형성된 덴드라이트 결정의 모습과 (우)덴드라이트가 형성되지 않은 p형 반도체 전극의 표면 [그림 2] (좌) 오믹접촉을 하는 n형 반도체와 리튬금속 사이를 전자는 통과하면서 반도체층 내부에 리튬금속이 형성된다. 또한 전해질 성분과 반응하여 두꺼운 SEI 층이 형성된다. (우) 쇼트키접촉을 하는 p형 반도체와리튬금속 사이는 전자는 통과하지 못하고 층 바로 밑에서 통과해온 리튬이온과 반응하여 반도체층 밑에서만 리튬이 증착된다. 터널링현상으로 계면을 통과한 소수의 전자만이 전해질막을 통과하여 얇은 SEI 막을 형성한다.
전기차 배터리 화재, 반도체 기술로 잡는다
- 반도체 물리와 전기화학 융합, 반도체 박막을 통한 덴드라이트 형성 차단 전기자동차 시대로의 전환이 현실로 다가오고 있지만, 전력 공급원인 리튬이온 배터리의 화재, 폭발 사고에 대한 우려가 끊이질 않고 있다. 이를 극복하기 위해 다양한 노력이 이루어지고 있는 가운데, 국내 연구진이 리튬이온 이차전지에 반도체 기술을 적용하여 폭발 위험을 획기적으로 줄여 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 이중기 박사 연구팀이 리튬금속 전극 표면에 반도체 박막을 형성하여 배터리 화재의 원인인 덴드라이트 형성을 원천 차단했다고 밝혔다. 리튬이온 이차전지의 화재는 소재 표면에 생기는 덴드라이트가 가장 큰 원인으로 알려져있다. 배터리 충전 시에 리튬이온이 음극으로 이동하여 표면에서 리튬금속으로 저장되는 과정에서 나뭇가지 형태의 결정으로 형성되는 것을 덴드라이트라 부르는데, 전극의 부피를 팽창시키고, 전극과 전해질 사이의 반응을 일으켜 화재를 유발하고 전지의 성능을 저하시킨다. 연구팀은 전도성이 높은 반도체 소재인 풀러렌(C60)을 플라즈마에 노출시켜 리튬금속전극과 전해질 사이에 반도체 박막을 만들어 덴드라이트가 형성되지 않게 했다. 개발된 반도체 박막은 전자는 통과시키고 리튬이온은 통과시키지 못하게 하는데, 전극 표면에서 전자와 이온이 만날 수 없어 리튬 결정이 형성되지 않아 덴드라이트의 형성 또한 원천적으로 차단할 수 있다. 전극의 안정성을 테스트하기 위해 리튬-리튬 대칭셀로 실험했을 때, 일반 리튬금속 전극이 20회 충·방전 사이클까지 안정적이었던 극한 전기화학 환경에서 연구진이 개발한 반도체 박막을 갖는 전극은 리튬 덴드라이트의 성장 없이 1,200 사이클 동안 안정적이었다. 또한 리튬코발트산화물 양극과 개발된 전극을 이용하여 안정성 평가를 수행한 결과 500 사이클 후에 용량의 약 81%가 유지되었는데, 약 52% 정도만 유지되는 일반 리튬금속전극에 비해 약 60% 향상되었다. KIST 이중기 박사는 “이번 연구에서 개발된 고안전성 리튬금속전극 개발 기술은 기존의 리튬금속에서 발생하는 금속 덴드라이트 발생을 억제하면서 화재의 위험이 없는 안전한 차세대 이차전지 개발을 위한 차세대 융합형 원천기술로써 주목받을 것으로 기대된다.”라며 “이번에 반도체 박막을 형성하기 위해 사용한 고가의 풀러렌이 아닌 다른 저렴한 소재를 통해 본 기술을 적용하려는 연구를 진행할 예정이다. 재료, 공정비용을 낮춰 상용화에 한 발 더 다가갈 예정”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자사업, 해외우수신진연구자사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 저널인 ‘ACS Energy Letters’ (IF: 19.003, JCR 분야 상위 1.852%) 최신 호에 게재되었다. * (논문명) Metal-Semiconductor Ohmic and Schottky Contact-Interfaces for Stable Li-Metal Electrodes - (제 1저자) 한국과학기술연구원 랸다 엥가르 아누그라 아르디 학생연구원 - (교신저자) 한국과학기술연구원 이중기 책임연구원 <그림설명> [그림 1] (좌) 일반 리튬이온 이차전지 표면에 형성된 덴드라이트 결정의 모습과 (우)덴드라이트가 형성되지 않은 p형 반도체 전극의 표면 [그림 2] (좌) 오믹접촉을 하는 n형 반도체와 리튬금속 사이를 전자는 통과하면서 반도체층 내부에 리튬금속이 형성된다. 또한 전해질 성분과 반응하여 두꺼운 SEI 층이 형성된다. (우) 쇼트키접촉을 하는 p형 반도체와리튬금속 사이는 전자는 통과하지 못하고 층 바로 밑에서 통과해온 리튬이온과 반응하여 반도체층 밑에서만 리튬이 증착된다. 터널링현상으로 계면을 통과한 소수의 전자만이 전해질막을 통과하여 얇은 SEI 막을 형성한다.
전기차 배터리 화재, 반도체 기술로 잡는다
- 반도체 물리와 전기화학 융합, 반도체 박막을 통한 덴드라이트 형성 차단 전기자동차 시대로의 전환이 현실로 다가오고 있지만, 전력 공급원인 리튬이온 배터리의 화재, 폭발 사고에 대한 우려가 끊이질 않고 있다. 이를 극복하기 위해 다양한 노력이 이루어지고 있는 가운데, 국내 연구진이 리튬이온 이차전지에 반도체 기술을 적용하여 폭발 위험을 획기적으로 줄여 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 이중기 박사 연구팀이 리튬금속 전극 표면에 반도체 박막을 형성하여 배터리 화재의 원인인 덴드라이트 형성을 원천 차단했다고 밝혔다. 리튬이온 이차전지의 화재는 소재 표면에 생기는 덴드라이트가 가장 큰 원인으로 알려져있다. 배터리 충전 시에 리튬이온이 음극으로 이동하여 표면에서 리튬금속으로 저장되는 과정에서 나뭇가지 형태의 결정으로 형성되는 것을 덴드라이트라 부르는데, 전극의 부피를 팽창시키고, 전극과 전해질 사이의 반응을 일으켜 화재를 유발하고 전지의 성능을 저하시킨다. 연구팀은 전도성이 높은 반도체 소재인 풀러렌(C60)을 플라즈마에 노출시켜 리튬금속전극과 전해질 사이에 반도체 박막을 만들어 덴드라이트가 형성되지 않게 했다. 개발된 반도체 박막은 전자는 통과시키고 리튬이온은 통과시키지 못하게 하는데, 전극 표면에서 전자와 이온이 만날 수 없어 리튬 결정이 형성되지 않아 덴드라이트의 형성 또한 원천적으로 차단할 수 있다. 전극의 안정성을 테스트하기 위해 리튬-리튬 대칭셀로 실험했을 때, 일반 리튬금속 전극이 20회 충·방전 사이클까지 안정적이었던 극한 전기화학 환경에서 연구진이 개발한 반도체 박막을 갖는 전극은 리튬 덴드라이트의 성장 없이 1,200 사이클 동안 안정적이었다. 또한 리튬코발트산화물 양극과 개발된 전극을 이용하여 안정성 평가를 수행한 결과 500 사이클 후에 용량의 약 81%가 유지되었는데, 약 52% 정도만 유지되는 일반 리튬금속전극에 비해 약 60% 향상되었다. KIST 이중기 박사는 “이번 연구에서 개발된 고안전성 리튬금속전극 개발 기술은 기존의 리튬금속에서 발생하는 금속 덴드라이트 발생을 억제하면서 화재의 위험이 없는 안전한 차세대 이차전지 개발을 위한 차세대 융합형 원천기술로써 주목받을 것으로 기대된다.”라며 “이번에 반도체 박막을 형성하기 위해 사용한 고가의 풀러렌이 아닌 다른 저렴한 소재를 통해 본 기술을 적용하려는 연구를 진행할 예정이다. 재료, 공정비용을 낮춰 상용화에 한 발 더 다가갈 예정”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자사업, 해외우수신진연구자사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 저널인 ‘ACS Energy Letters’ (IF: 19.003, JCR 분야 상위 1.852%) 최신 호에 게재되었다. * (논문명) Metal-Semiconductor Ohmic and Schottky Contact-Interfaces for Stable Li-Metal Electrodes - (제 1저자) 한국과학기술연구원 랸다 엥가르 아누그라 아르디 학생연구원 - (교신저자) 한국과학기술연구원 이중기 책임연구원 <그림설명> [그림 1] (좌) 일반 리튬이온 이차전지 표면에 형성된 덴드라이트 결정의 모습과 (우)덴드라이트가 형성되지 않은 p형 반도체 전극의 표면 [그림 2] (좌) 오믹접촉을 하는 n형 반도체와 리튬금속 사이를 전자는 통과하면서 반도체층 내부에 리튬금속이 형성된다. 또한 전해질 성분과 반응하여 두꺼운 SEI 층이 형성된다. (우) 쇼트키접촉을 하는 p형 반도체와리튬금속 사이는 전자는 통과하지 못하고 층 바로 밑에서 통과해온 리튬이온과 반응하여 반도체층 밑에서만 리튬이 증착된다. 터널링현상으로 계면을 통과한 소수의 전자만이 전해질막을 통과하여 얇은 SEI 막을 형성한다.
전기차 배터리 화재, 반도체 기술로 잡는다
- 반도체 물리와 전기화학 융합, 반도체 박막을 통한 덴드라이트 형성 차단 전기자동차 시대로의 전환이 현실로 다가오고 있지만, 전력 공급원인 리튬이온 배터리의 화재, 폭발 사고에 대한 우려가 끊이질 않고 있다. 이를 극복하기 위해 다양한 노력이 이루어지고 있는 가운데, 국내 연구진이 리튬이온 이차전지에 반도체 기술을 적용하여 폭발 위험을 획기적으로 줄여 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 이중기 박사 연구팀이 리튬금속 전극 표면에 반도체 박막을 형성하여 배터리 화재의 원인인 덴드라이트 형성을 원천 차단했다고 밝혔다. 리튬이온 이차전지의 화재는 소재 표면에 생기는 덴드라이트가 가장 큰 원인으로 알려져있다. 배터리 충전 시에 리튬이온이 음극으로 이동하여 표면에서 리튬금속으로 저장되는 과정에서 나뭇가지 형태의 결정으로 형성되는 것을 덴드라이트라 부르는데, 전극의 부피를 팽창시키고, 전극과 전해질 사이의 반응을 일으켜 화재를 유발하고 전지의 성능을 저하시킨다. 연구팀은 전도성이 높은 반도체 소재인 풀러렌(C60)을 플라즈마에 노출시켜 리튬금속전극과 전해질 사이에 반도체 박막을 만들어 덴드라이트가 형성되지 않게 했다. 개발된 반도체 박막은 전자는 통과시키고 리튬이온은 통과시키지 못하게 하는데, 전극 표면에서 전자와 이온이 만날 수 없어 리튬 결정이 형성되지 않아 덴드라이트의 형성 또한 원천적으로 차단할 수 있다. 전극의 안정성을 테스트하기 위해 리튬-리튬 대칭셀로 실험했을 때, 일반 리튬금속 전극이 20회 충·방전 사이클까지 안정적이었던 극한 전기화학 환경에서 연구진이 개발한 반도체 박막을 갖는 전극은 리튬 덴드라이트의 성장 없이 1,200 사이클 동안 안정적이었다. 또한 리튬코발트산화물 양극과 개발된 전극을 이용하여 안정성 평가를 수행한 결과 500 사이클 후에 용량의 약 81%가 유지되었는데, 약 52% 정도만 유지되는 일반 리튬금속전극에 비해 약 60% 향상되었다. KIST 이중기 박사는 “이번 연구에서 개발된 고안전성 리튬금속전극 개발 기술은 기존의 리튬금속에서 발생하는 금속 덴드라이트 발생을 억제하면서 화재의 위험이 없는 안전한 차세대 이차전지 개발을 위한 차세대 융합형 원천기술로써 주목받을 것으로 기대된다.”라며 “이번에 반도체 박막을 형성하기 위해 사용한 고가의 풀러렌이 아닌 다른 저렴한 소재를 통해 본 기술을 적용하려는 연구를 진행할 예정이다. 재료, 공정비용을 낮춰 상용화에 한 발 더 다가갈 예정”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자사업, 해외우수신진연구자사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 저널인 ‘ACS Energy Letters’ (IF: 19.003, JCR 분야 상위 1.852%) 최신 호에 게재되었다. * (논문명) Metal-Semiconductor Ohmic and Schottky Contact-Interfaces for Stable Li-Metal Electrodes - (제 1저자) 한국과학기술연구원 랸다 엥가르 아누그라 아르디 학생연구원 - (교신저자) 한국과학기술연구원 이중기 책임연구원 <그림설명> [그림 1] (좌) 일반 리튬이온 이차전지 표면에 형성된 덴드라이트 결정의 모습과 (우)덴드라이트가 형성되지 않은 p형 반도체 전극의 표면 [그림 2] (좌) 오믹접촉을 하는 n형 반도체와 리튬금속 사이를 전자는 통과하면서 반도체층 내부에 리튬금속이 형성된다. 또한 전해질 성분과 반응하여 두꺼운 SEI 층이 형성된다. (우) 쇼트키접촉을 하는 p형 반도체와리튬금속 사이는 전자는 통과하지 못하고 층 바로 밑에서 통과해온 리튬이온과 반응하여 반도체층 밑에서만 리튬이 증착된다. 터널링현상으로 계면을 통과한 소수의 전자만이 전해질막을 통과하여 얇은 SEI 막을 형성한다.
‘K-R&D 2.0’을 향한 도전 - KIST 윤석진 원장
한글은 이론의 여지없는 우리 민족 최고의 발명품이다. 단 24개의 자음과 모음만으로 조합할 수 있는 글자가 무한하다. 혀의 위치, 입술 모양을 과학적으로 분석해 말소리와 글자가 일치하도록 한 문자라서 가능한 일이다. 이런 한글이 2009년 인도네시아의 한 부족에게 전해졌다. 고유 문자가 없던 이들은 한글을 통해 비로소 자신들의 생각과 말을 읽고 쓸 수 있게 됐다. 인구 7만여 명의 작은 부족에게 전해진 한글은 규모면에서 드라마, 음악, 영화, 웹툰까지 전 세계 수십억 명이 주시하는 K-콘텐츠에 비해 보잘것 없다. 하지만 가장 귀하고 가치 있는 한류의 시작이었다. K는 이제 한국만의 국지적 현상을 뜻하는 접두사가 아니다. 세계인이 즐기고 공유하는 독창성을 의미한다. 필자는 지난 두 달간 칼럼을 통해 한국의 R&D도 세계 중심 국가로의 성장을 상징하는 ‘K’ 물결에 합류할 때라 말해왔다. 그간 우리 R&D는 모방과 재현에 치중한다는 인식이 지배적이었다. 하지만 선진국의 발전 경로를 무조건 답습하기만 한 것은 아니다. 우리의 현실에 맞게 개선하고 응용하며 새로운 길을 개척해 왔다. 베트남이 KIST를 모델로 V-KIST를 설립해 한국의 경험을 배우려는 것도 이 때문이다. 우리의 선배와 동료 연구자들은 어려운 여건 속에서도 ‘K-R&D 1.0’의 완성을 위해 고군분투했다. 심장 격인 불이 꺼지지 않는 연구소는 대한민국의 일원임을 자랑스러워하는 과학자로 가득했다. 그들은 모든 일상을 연구 활동으로 만들었고 새로운 성장동력과 양질의 일자리를 만들어낼 수 있다면 실패도, 정답 없는 반복도 두려워하지 않았다. 덕분에 좁은 국토, 빈한한 자원에도 한국은 세계 10위의 경제대국에 올라섰다. 이제는 ‘K-R&D 2.0’의 새로운 대항해를 준비할 때다. 과거의 추격형 연구를 뒤로 하고 선도형 연구의 신대륙으로 향해야 한다. 한국의 R&D 투자 비중이 세계 최고 수준이지만 여전히 미국의 1/6, 중국의 1/4에 불과하다. 이런 구조적 한계를 극복하려면 세계의 권력지도를 뒤바꾼 신항로 개척시대처럼, 우리 기업들이 평판 디스플레이라는 혁신기술로 소니의 아성을 무너뜨린 것처럼 기술혁신 기반의 창조적 파괴에 힘써야 한다. 산업 경쟁력 유지를 위한 연구는 이제 과감히 민간에 맡기고 공공 부문은 더 크고 미래지향적인 R&D에 나서야 한다. 특히 미세먼지, 기후변화, 코로나 팬데믹 등의 위기요소로부터 국민의 안전과 삶의 질을 지키는 빅사이언스가 필요하다. D·N·A(디지털·네트워크·AI) 기반의 자율실험실처럼 공격적인 디지털 전환으로 연구 효율도 높여야 한다. 이 새로운 패러다임의 첫 번째 퍼즐은 도전과 실패를 두려워하지 않도록 하는 제도적 지원, 마지막 조각은 자율적이고 자기주도적인 연구 문화의 정착이 될 것이다. “알은 하나의 세계다. 태어나고자 하는 자는 우선 그 세계를 파괴해야 한다.” 소설 데미안의 유명한 문장처럼 한국의 공공 R&D는 이제 과거의 성공 방정식을 파괴하고 다시 태어나야 한다. ‘K-R&D 2.0’은 대한민국을 더 이상 변수가 아닌 세계사의 상수로 발전시킬 가장 강력한 지렛대가 될 것이다. 출처 : 서울경제 (https://www.sedaily.com/NewsView/22L8XOTCIJ)
KIST-Industry Bridge Program(BP)
○ 추진배경 - KIST 보유 원천기술 또는 기업 보유기술의 상용화 전환연구를 통한 기술사업화 성과확산 도모 ○ 추진기간 : 2010.1.1 ~ 계속 ○ 총사업비 : 2,975 백만원/년 (’21년 기준) ○ 주요내용 - (BP-K) 사업화 가능성이 높은 KIST 보유기술에 대하여 상용화 보완 연구를 통해 수요자 중심의 기술의 보급?확산 촉진 - (BP-I) 중소·중견기업 보유 사업화 유망기술에 대한 상용 전환 연구 수행지원을 통해 중소?중견기업의 기술경쟁력 향상 ○ 추진경과 - 2010년: 상용화기술개발사업 신규 운영(신규 10건) - 2011년: 기획사업 시범운영, 상용화기술개발사업 운영(신규 8건) - 2012년: Enterpreneurship사업 흡수, BP사업으로 사업명 변경(신규 6건) - 2013년 ~ 현재: BP사업 운영 - 2017년: BP사업 운영다각화* * 수요맞춤형 타입분류(TypeⅠ~Ⅲ), SM-PS사업(소형 BP) - 2018년: 원천기술의 해외사업화를 위한 글로벌 과제기획 및 수행(카******, 코** 등) - 2020년: 수행유형의 다각화를 통해 수요자(기업)중심의 사업수행(Type Ⅰ·Ⅱ·Ⅲ) - 2021년: 수요중심 상용화기술개발을 위한 링킹랩 신설 운영