Result
게시물 키워드"KIST"에 대한 4641개의 검색결과를 찾았습니다.
KIST, 항암제 내성과 부작용 동시에 잡는 신규 약물 개발
- 암세포에서 활성화되어 항암제 내성 억제제 및 항암제를 동시에 방출 - 부작용이 발생하지 않는 새로운 무독성 항암제 나노약물 개발 기대 암을 효과적으로 치료할 수 있는 다양한 방법이 개발되어 왔지만, 항암제를 이용한 화학요법은 암세포를 효과적으로 사멸할 수 있어 임상에서 우수한 항암 효과를 보이고 있다. 무엇보다 다른 항암 치료법보다 상대적으로 치료비용이 저렴하고, 대부분의 암에서 우수한 효과를 보이기 때문에 항암제를 이용한 화학요법은 가장 많이 사용되고 있는 치료법이다. 그러나 암세포에서 발생하는 항암제에 대한 내성은 화학요법의 효과와 민감성을 크게 감소시켜 암의 재발 및 치료 실패를 초래한다. 본래 암세포는 항암제에 대해 내성을 가지고 있으며, 화학요법에 높은 반응성을 나타내는 암세포일지라도 치료 과정 중에 항암제 내성이 발생할 수 있다. 최근 국내 연구진이 이러한 암세포의 항암제 내성을 극복할 수 있는 약물을 개발하여 주목받고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 테라그노시스연구센터 김광명 박사 연구팀이 항암제 내성을 극복할 수 있는 암세포 특이적 항암제 전구체 약물 개발에 성공했다고 밝혔다. KIST 연구진은 항암제 내성을 억제하는 약물(스맥, SMAC : Streptomyces peucetius 세균에서 유래 하며, 백혈병, 림프종, 신경모세포종, 육종 등 많은 종류의 암을 치료하는 데 사용되는 항암제이다. SMAC)과 항암제(독소루비신, Doxorubicin : 세포 내 미토콘드리아(Mitochondria) 유래의 단백질로서, 세포 자멸사를 유도하는 신호 경로에 관여한다. Doxorubicin)를 결합시켜 새로운 약물을 만들었다. 이 약물은 생체 내에서는 활성화되지 않고 있다가, 암세포를 만나게 되면 암세포에서 과발현되는 효소( 카텝신B : 리소솜(Lysosome)에 존재하는 산성의 단백질가수분해효소중 하나. 암세포에서는 정상 세포에 비해 카텝신 B의 발현이 상대적으로 매우 높은 것으로 알려져 있다. 카텝신B)와 반응한다. 암세포와 반응한 약물은 항암제와 함께 내성억제제를 방출하게 되어 효과적으로 항암제 내성을 극복하는 동시에 암세포를 공격할 수 있다. 그 결과 암세포가 갖고 있는 기본적인 항암제 내성뿐만 아니라, 치료 과정 중 발생하는 후천적 항암제 내성 또한 억제할 수 있어 암의 재발 및 치료 실패가 발생하지 않는 효과적인 화학요법이 가능할 것으로 보인다. 또한, 약물이 암세포와 반응하도록 하는 효소인 카텝신 B는 암세포가 아닌 정상 세포에서는 상대적으로 매우 적은 양이 발현되기 때문에, 정상 세포에서는 나노약물이 비활성 상태로 존재하여 독성이 나타나지 않아 기존 화학요법의 문제점인 부작용을 감소시킬 수 있을 것으로 기대된다. KIST 김광명 박사는 “본 암세포 특이적 항암제 전구체 나노약물 기술은 기존 화학요법의 치료 실패를 초래하는 항암제 내성을 효과적으로 억제함과 동시에 정상 세포에 대한 독성을 감소시켜 항암제 내성 및 부작용이 발생하지 않는 새로운 항암제로 활용이 가능할 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 재료과학, 바이오소재 분야의 국제학술지 ‘Biomaterials’ (IF:10.317, JCR 분야 상위 2.6%) 최신호에 게재되었다. * (논문명) Cancer-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant cancer therapy - (제 1저자) 한국과학기술연구원 심만규 위촉연구원(現, 녹스팜) - (제 1저자) 한국과학기술연구원 문유정 학생연구원 - (교신저자) 한국과학기술연구원 김광명 책임연구원 <그림설명> [그림 1] 암세포 특이적 항암제 전구체 나노약물 기술의 모식도 암세포 특이적 항암제 전구체 나노약물은 기존의 항암제인 “Doxorubicin”을 항암제 내성 억제가 가능한 펩타이드인 “SMAC”와 카텝신 B 특이적 절단이 가능한 펩타이드인 “FRRG”를 통해 결합하였다. 이 암세포 특이적 항암제 전구체 (SMAC-FRRG-DOX)는 추가적인 고분자 및 약물 담체를 사용하지 않아도 분자 내의 소수성 상호작용에 의해 자체적으로 나노입자를 형성하였으며, 암세포 내에 과발현되는 효소인 카텝신 B에 의해 선택적으로 활성화되어 SMAC과 Doxorubicin을 동시에 방출한다. [그림 2] 생체발광 영상을 이용한 폐 전이암 동물 모델 내 치료 효능평가 결과 생체발광(Bioluminescence)이 가능한 유방암 세포를 이용하여 폐 전이암 동물 모델을 확보한 뒤, Doxorubicin 투여군, Doxorubicin과 SMAC 병용 투여군 및 암세포 특이적 항암제 전구체 나노약물 투여군의 폐 전이암 성장 속도를 생체발광 영상을 이용하여 추적하였다. 암세포 특이적 항암제 전구체를 이용한 폐 전이암 동물 모델 내 치료 효능이 다른 치료법과 비교하여 암의 성장을 매우 효과적으로 억제하였다.
KIST, 항암제 내성과 부작용 동시에 잡는 신규 약물 개발
- 암세포에서 활성화되어 항암제 내성 억제제 및 항암제를 동시에 방출 - 부작용이 발생하지 않는 새로운 무독성 항암제 나노약물 개발 기대 암을 효과적으로 치료할 수 있는 다양한 방법이 개발되어 왔지만, 항암제를 이용한 화학요법은 암세포를 효과적으로 사멸할 수 있어 임상에서 우수한 항암 효과를 보이고 있다. 무엇보다 다른 항암 치료법보다 상대적으로 치료비용이 저렴하고, 대부분의 암에서 우수한 효과를 보이기 때문에 항암제를 이용한 화학요법은 가장 많이 사용되고 있는 치료법이다. 그러나 암세포에서 발생하는 항암제에 대한 내성은 화학요법의 효과와 민감성을 크게 감소시켜 암의 재발 및 치료 실패를 초래한다. 본래 암세포는 항암제에 대해 내성을 가지고 있으며, 화학요법에 높은 반응성을 나타내는 암세포일지라도 치료 과정 중에 항암제 내성이 발생할 수 있다. 최근 국내 연구진이 이러한 암세포의 항암제 내성을 극복할 수 있는 약물을 개발하여 주목받고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 테라그노시스연구센터 김광명 박사 연구팀이 항암제 내성을 극복할 수 있는 암세포 특이적 항암제 전구체 약물 개발에 성공했다고 밝혔다. KIST 연구진은 항암제 내성을 억제하는 약물(스맥, SMAC : Streptomyces peucetius 세균에서 유래 하며, 백혈병, 림프종, 신경모세포종, 육종 등 많은 종류의 암을 치료하는 데 사용되는 항암제이다. SMAC)과 항암제(독소루비신, Doxorubicin : 세포 내 미토콘드리아(Mitochondria) 유래의 단백질로서, 세포 자멸사를 유도하는 신호 경로에 관여한다. Doxorubicin)를 결합시켜 새로운 약물을 만들었다. 이 약물은 생체 내에서는 활성화되지 않고 있다가, 암세포를 만나게 되면 암세포에서 과발현되는 효소( 카텝신B : 리소솜(Lysosome)에 존재하는 산성의 단백질가수분해효소중 하나. 암세포에서는 정상 세포에 비해 카텝신 B의 발현이 상대적으로 매우 높은 것으로 알려져 있다. 카텝신B)와 반응한다. 암세포와 반응한 약물은 항암제와 함께 내성억제제를 방출하게 되어 효과적으로 항암제 내성을 극복하는 동시에 암세포를 공격할 수 있다. 그 결과 암세포가 갖고 있는 기본적인 항암제 내성뿐만 아니라, 치료 과정 중 발생하는 후천적 항암제 내성 또한 억제할 수 있어 암의 재발 및 치료 실패가 발생하지 않는 효과적인 화학요법이 가능할 것으로 보인다. 또한, 약물이 암세포와 반응하도록 하는 효소인 카텝신 B는 암세포가 아닌 정상 세포에서는 상대적으로 매우 적은 양이 발현되기 때문에, 정상 세포에서는 나노약물이 비활성 상태로 존재하여 독성이 나타나지 않아 기존 화학요법의 문제점인 부작용을 감소시킬 수 있을 것으로 기대된다. KIST 김광명 박사는 “본 암세포 특이적 항암제 전구체 나노약물 기술은 기존 화학요법의 치료 실패를 초래하는 항암제 내성을 효과적으로 억제함과 동시에 정상 세포에 대한 독성을 감소시켜 항암제 내성 및 부작용이 발생하지 않는 새로운 항암제로 활용이 가능할 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 재료과학, 바이오소재 분야의 국제학술지 ‘Biomaterials’ (IF:10.317, JCR 분야 상위 2.6%) 최신호에 게재되었다. * (논문명) Cancer-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant cancer therapy - (제 1저자) 한국과학기술연구원 심만규 위촉연구원(現, 녹스팜) - (제 1저자) 한국과학기술연구원 문유정 학생연구원 - (교신저자) 한국과학기술연구원 김광명 책임연구원 <그림설명> [그림 1] 암세포 특이적 항암제 전구체 나노약물 기술의 모식도 암세포 특이적 항암제 전구체 나노약물은 기존의 항암제인 “Doxorubicin”을 항암제 내성 억제가 가능한 펩타이드인 “SMAC”와 카텝신 B 특이적 절단이 가능한 펩타이드인 “FRRG”를 통해 결합하였다. 이 암세포 특이적 항암제 전구체 (SMAC-FRRG-DOX)는 추가적인 고분자 및 약물 담체를 사용하지 않아도 분자 내의 소수성 상호작용에 의해 자체적으로 나노입자를 형성하였으며, 암세포 내에 과발현되는 효소인 카텝신 B에 의해 선택적으로 활성화되어 SMAC과 Doxorubicin을 동시에 방출한다. [그림 2] 생체발광 영상을 이용한 폐 전이암 동물 모델 내 치료 효능평가 결과 생체발광(Bioluminescence)이 가능한 유방암 세포를 이용하여 폐 전이암 동물 모델을 확보한 뒤, Doxorubicin 투여군, Doxorubicin과 SMAC 병용 투여군 및 암세포 특이적 항암제 전구체 나노약물 투여군의 폐 전이암 성장 속도를 생체발광 영상을 이용하여 추적하였다. 암세포 특이적 항암제 전구체를 이용한 폐 전이암 동물 모델 내 치료 효능이 다른 치료법과 비교하여 암의 성장을 매우 효과적으로 억제하였다.
KIST, 항암제 내성과 부작용 동시에 잡는 신규 약물 개발
- 암세포에서 활성화되어 항암제 내성 억제제 및 항암제를 동시에 방출 - 부작용이 발생하지 않는 새로운 무독성 항암제 나노약물 개발 기대 암을 효과적으로 치료할 수 있는 다양한 방법이 개발되어 왔지만, 항암제를 이용한 화학요법은 암세포를 효과적으로 사멸할 수 있어 임상에서 우수한 항암 효과를 보이고 있다. 무엇보다 다른 항암 치료법보다 상대적으로 치료비용이 저렴하고, 대부분의 암에서 우수한 효과를 보이기 때문에 항암제를 이용한 화학요법은 가장 많이 사용되고 있는 치료법이다. 그러나 암세포에서 발생하는 항암제에 대한 내성은 화학요법의 효과와 민감성을 크게 감소시켜 암의 재발 및 치료 실패를 초래한다. 본래 암세포는 항암제에 대해 내성을 가지고 있으며, 화학요법에 높은 반응성을 나타내는 암세포일지라도 치료 과정 중에 항암제 내성이 발생할 수 있다. 최근 국내 연구진이 이러한 암세포의 항암제 내성을 극복할 수 있는 약물을 개발하여 주목받고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 테라그노시스연구센터 김광명 박사 연구팀이 항암제 내성을 극복할 수 있는 암세포 특이적 항암제 전구체 약물 개발에 성공했다고 밝혔다. KIST 연구진은 항암제 내성을 억제하는 약물(스맥, SMAC : Streptomyces peucetius 세균에서 유래 하며, 백혈병, 림프종, 신경모세포종, 육종 등 많은 종류의 암을 치료하는 데 사용되는 항암제이다. SMAC)과 항암제(독소루비신, Doxorubicin : 세포 내 미토콘드리아(Mitochondria) 유래의 단백질로서, 세포 자멸사를 유도하는 신호 경로에 관여한다. Doxorubicin)를 결합시켜 새로운 약물을 만들었다. 이 약물은 생체 내에서는 활성화되지 않고 있다가, 암세포를 만나게 되면 암세포에서 과발현되는 효소( 카텝신B : 리소솜(Lysosome)에 존재하는 산성의 단백질가수분해효소중 하나. 암세포에서는 정상 세포에 비해 카텝신 B의 발현이 상대적으로 매우 높은 것으로 알려져 있다. 카텝신B)와 반응한다. 암세포와 반응한 약물은 항암제와 함께 내성억제제를 방출하게 되어 효과적으로 항암제 내성을 극복하는 동시에 암세포를 공격할 수 있다. 그 결과 암세포가 갖고 있는 기본적인 항암제 내성뿐만 아니라, 치료 과정 중 발생하는 후천적 항암제 내성 또한 억제할 수 있어 암의 재발 및 치료 실패가 발생하지 않는 효과적인 화학요법이 가능할 것으로 보인다. 또한, 약물이 암세포와 반응하도록 하는 효소인 카텝신 B는 암세포가 아닌 정상 세포에서는 상대적으로 매우 적은 양이 발현되기 때문에, 정상 세포에서는 나노약물이 비활성 상태로 존재하여 독성이 나타나지 않아 기존 화학요법의 문제점인 부작용을 감소시킬 수 있을 것으로 기대된다. KIST 김광명 박사는 “본 암세포 특이적 항암제 전구체 나노약물 기술은 기존 화학요법의 치료 실패를 초래하는 항암제 내성을 효과적으로 억제함과 동시에 정상 세포에 대한 독성을 감소시켜 항암제 내성 및 부작용이 발생하지 않는 새로운 항암제로 활용이 가능할 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 재료과학, 바이오소재 분야의 국제학술지 ‘Biomaterials’ (IF:10.317, JCR 분야 상위 2.6%) 최신호에 게재되었다. * (논문명) Cancer-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant cancer therapy - (제 1저자) 한국과학기술연구원 심만규 위촉연구원(現, 녹스팜) - (제 1저자) 한국과학기술연구원 문유정 학생연구원 - (교신저자) 한국과학기술연구원 김광명 책임연구원 <그림설명> [그림 1] 암세포 특이적 항암제 전구체 나노약물 기술의 모식도 암세포 특이적 항암제 전구체 나노약물은 기존의 항암제인 “Doxorubicin”을 항암제 내성 억제가 가능한 펩타이드인 “SMAC”와 카텝신 B 특이적 절단이 가능한 펩타이드인 “FRRG”를 통해 결합하였다. 이 암세포 특이적 항암제 전구체 (SMAC-FRRG-DOX)는 추가적인 고분자 및 약물 담체를 사용하지 않아도 분자 내의 소수성 상호작용에 의해 자체적으로 나노입자를 형성하였으며, 암세포 내에 과발현되는 효소인 카텝신 B에 의해 선택적으로 활성화되어 SMAC과 Doxorubicin을 동시에 방출한다. [그림 2] 생체발광 영상을 이용한 폐 전이암 동물 모델 내 치료 효능평가 결과 생체발광(Bioluminescence)이 가능한 유방암 세포를 이용하여 폐 전이암 동물 모델을 확보한 뒤, Doxorubicin 투여군, Doxorubicin과 SMAC 병용 투여군 및 암세포 특이적 항암제 전구체 나노약물 투여군의 폐 전이암 성장 속도를 생체발광 영상을 이용하여 추적하였다. 암세포 특이적 항암제 전구체를 이용한 폐 전이암 동물 모델 내 치료 효능이 다른 치료법과 비교하여 암의 성장을 매우 효과적으로 억제하였다.
백금촉매 OUT, 값싸고 오래가는 수소 생산 촉매 개발
- 수소 생산 경제성 확보할 고효율·고내구성 전이금속계 수전해 촉매 개발 - 저가 인화몰리브덴에 티타늄 미량 도핑…전자구조 변화로 내구성 대폭 향상 수소전기차로 대표되는 수소경제 활성화의 핵심은 전기를 생산하기 위한 수소를 저렴한 가격에 생산하는 것이다. 수소를 생산하는 방법은 부생수소 포집, 화석연료 개질, 수전해 등이 있다. 그중 친환경적 방법인 ‘물의 전기분해’인 수전해 방식에서 수소발생반응을 촉진하는 역할을 하는 촉매는 수소경제의 효율과 가격 경쟁력을 결정하는 가장 중요한 요소이다. 하지만 수전해 장치에서는 수소발생반응 활성과 장기 내구성에서 어떤 물질과도 비교할 수 없을 만큼 좋은 성능을 보이는 고가의 백금(Pt) 촉매를 필수적으로 사용해야 해 다른 방법들만큼 가격경쟁력을 확보할 수 없었다. 수전해 장치는 물에 녹아 전류를 흐르게 해주는 전해질에 따라 다양한 종류가 있다. 이 가운데 고분자 전해질막(Proton exchange membrane, PEM) 기반 수전해 장치는 고가의 백금계 촉매가 아닌 전이금속 소재의 촉매에서도 수소발생반응이 활성이 높아 상용화 연구가 집중되고 있다. 하지만 활성을 끌어올리는 데 연구가 집중되는 사이 전기화학적 환경 속에서 쉽게 부식되는 전이금속 소재의 내구성을 높이는 연구는 상대적으로 등한시됐다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구단 유성종 박사팀이 백금을 사용하지 않고 수소 생산 효율을 향상시키고, 비백금촉매의 한계였던 내구성 문제를 극복하여 장기적 안정성을 확보한 전이금속 소재의 촉매를 개발했다고 밝혔다. KIST 유성종 박사팀은 저가의 전이금속인 인화 몰리브덴(MoP)에 스프레이 열분해(spray pyrolysis) 공정을 통해 소량의 티타늄을 주입하였다. 몰리브덴은 값이 싸고 비교적 다루기 쉬워 에너지 전환 및 저장장치의 촉매 재료로 사용되고 있지만, 산화에 취약하여 쉽게 부식되는 게 단점이었다. KIST 연구팀이 개발한 촉매는 합성 과정에서 각 재료의 전자구조가 완전히 재구성되며 수소발생반응의 활성도가 백금계 촉매와 동등한 수준을 보이는 것으로 확인됐다. 특히, 전자구조의 재구성에 따라 전이금속계 소재의 고질적인 한계로 지적되던 높은 부식성을 개선하여 기존 촉매 대비 내구성이 26배 향상되어 비백금계 촉매의 상용화 시기를 크게 앞당길 것으로 보인다. KIST 유성종 박사는 “이번 연구는 전이금속계 촉매 기반 수전해 장치의 최대 제약이었던 안정성을 향상한 것에 의의를 찾을 수 있다”며 “전이금속계 촉매의 수소생산 효율을 백금 촉매 수준으로 끌어올림과 동시에 안정성을 동시에 향상시킨 이번 연구가 친환경 수소에너지 생산 기술의 상용화를 한 발 더 앞당기는 데 기여하기를 바란다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 이번 연구는 에너지 및 나노 분야의 국제 학술지인 ‘Nano energy’ (IF: 16.602, JCR 분야 상위 4.299%) 최신호에 게재되었다. * (논문명) Electron-deficient titanium single-atom electrocatalyst for stable and efficient hydrogen production - (제 1저자) KIST 수소·연료전지연구단 장인준 박사후연구원 - (교신저자) KIST 수소·연료전지연구단 유성종 책임연구원 <그림설명> [그림 1] 티타늄 도핑된 인화 몰리브덴의 수소 발생 반응 메커니즘 모식도 [그림 2] (a) 티타늄 도핑된 인화 몰리브덴의 구조 및 수소 발생점의 모식도 (b, c) 수소 발생 반응에 대한 활성과 15일간의 촉매 안정성 평가결과 [그림 3] (a) 티타늄 도핑된 인화 몰리브덴 촉매 합성 방법 (b) 합성된 촉매의 구조와 티타늄 도핑 사이트 분석결과
백금촉매 OUT, 값싸고 오래가는 수소 생산 촉매 개발
- 수소 생산 경제성 확보할 고효율·고내구성 전이금속계 수전해 촉매 개발 - 저가 인화몰리브덴에 티타늄 미량 도핑…전자구조 변화로 내구성 대폭 향상 수소전기차로 대표되는 수소경제 활성화의 핵심은 전기를 생산하기 위한 수소를 저렴한 가격에 생산하는 것이다. 수소를 생산하는 방법은 부생수소 포집, 화석연료 개질, 수전해 등이 있다. 그중 친환경적 방법인 ‘물의 전기분해’인 수전해 방식에서 수소발생반응을 촉진하는 역할을 하는 촉매는 수소경제의 효율과 가격 경쟁력을 결정하는 가장 중요한 요소이다. 하지만 수전해 장치에서는 수소발생반응 활성과 장기 내구성에서 어떤 물질과도 비교할 수 없을 만큼 좋은 성능을 보이는 고가의 백금(Pt) 촉매를 필수적으로 사용해야 해 다른 방법들만큼 가격경쟁력을 확보할 수 없었다. 수전해 장치는 물에 녹아 전류를 흐르게 해주는 전해질에 따라 다양한 종류가 있다. 이 가운데 고분자 전해질막(Proton exchange membrane, PEM) 기반 수전해 장치는 고가의 백금계 촉매가 아닌 전이금속 소재의 촉매에서도 수소발생반응이 활성이 높아 상용화 연구가 집중되고 있다. 하지만 활성을 끌어올리는 데 연구가 집중되는 사이 전기화학적 환경 속에서 쉽게 부식되는 전이금속 소재의 내구성을 높이는 연구는 상대적으로 등한시됐다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구단 유성종 박사팀이 백금을 사용하지 않고 수소 생산 효율을 향상시키고, 비백금촉매의 한계였던 내구성 문제를 극복하여 장기적 안정성을 확보한 전이금속 소재의 촉매를 개발했다고 밝혔다. KIST 유성종 박사팀은 저가의 전이금속인 인화 몰리브덴(MoP)에 스프레이 열분해(spray pyrolysis) 공정을 통해 소량의 티타늄을 주입하였다. 몰리브덴은 값이 싸고 비교적 다루기 쉬워 에너지 전환 및 저장장치의 촉매 재료로 사용되고 있지만, 산화에 취약하여 쉽게 부식되는 게 단점이었다. KIST 연구팀이 개발한 촉매는 합성 과정에서 각 재료의 전자구조가 완전히 재구성되며 수소발생반응의 활성도가 백금계 촉매와 동등한 수준을 보이는 것으로 확인됐다. 특히, 전자구조의 재구성에 따라 전이금속계 소재의 고질적인 한계로 지적되던 높은 부식성을 개선하여 기존 촉매 대비 내구성이 26배 향상되어 비백금계 촉매의 상용화 시기를 크게 앞당길 것으로 보인다. KIST 유성종 박사는 “이번 연구는 전이금속계 촉매 기반 수전해 장치의 최대 제약이었던 안정성을 향상한 것에 의의를 찾을 수 있다”며 “전이금속계 촉매의 수소생산 효율을 백금 촉매 수준으로 끌어올림과 동시에 안정성을 동시에 향상시킨 이번 연구가 친환경 수소에너지 생산 기술의 상용화를 한 발 더 앞당기는 데 기여하기를 바란다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 이번 연구는 에너지 및 나노 분야의 국제 학술지인 ‘Nano energy’ (IF: 16.602, JCR 분야 상위 4.299%) 최신호에 게재되었다. * (논문명) Electron-deficient titanium single-atom electrocatalyst for stable and efficient hydrogen production - (제 1저자) KIST 수소·연료전지연구단 장인준 박사후연구원 - (교신저자) KIST 수소·연료전지연구단 유성종 책임연구원 <그림설명> [그림 1] 티타늄 도핑된 인화 몰리브덴의 수소 발생 반응 메커니즘 모식도 [그림 2] (a) 티타늄 도핑된 인화 몰리브덴의 구조 및 수소 발생점의 모식도 (b, c) 수소 발생 반응에 대한 활성과 15일간의 촉매 안정성 평가결과 [그림 3] (a) 티타늄 도핑된 인화 몰리브덴 촉매 합성 방법 (b) 합성된 촉매의 구조와 티타늄 도핑 사이트 분석결과
백금촉매 OUT, 값싸고 오래가는 수소 생산 촉매 개발
- 수소 생산 경제성 확보할 고효율·고내구성 전이금속계 수전해 촉매 개발 - 저가 인화몰리브덴에 티타늄 미량 도핑…전자구조 변화로 내구성 대폭 향상 수소전기차로 대표되는 수소경제 활성화의 핵심은 전기를 생산하기 위한 수소를 저렴한 가격에 생산하는 것이다. 수소를 생산하는 방법은 부생수소 포집, 화석연료 개질, 수전해 등이 있다. 그중 친환경적 방법인 ‘물의 전기분해’인 수전해 방식에서 수소발생반응을 촉진하는 역할을 하는 촉매는 수소경제의 효율과 가격 경쟁력을 결정하는 가장 중요한 요소이다. 하지만 수전해 장치에서는 수소발생반응 활성과 장기 내구성에서 어떤 물질과도 비교할 수 없을 만큼 좋은 성능을 보이는 고가의 백금(Pt) 촉매를 필수적으로 사용해야 해 다른 방법들만큼 가격경쟁력을 확보할 수 없었다. 수전해 장치는 물에 녹아 전류를 흐르게 해주는 전해질에 따라 다양한 종류가 있다. 이 가운데 고분자 전해질막(Proton exchange membrane, PEM) 기반 수전해 장치는 고가의 백금계 촉매가 아닌 전이금속 소재의 촉매에서도 수소발생반응이 활성이 높아 상용화 연구가 집중되고 있다. 하지만 활성을 끌어올리는 데 연구가 집중되는 사이 전기화학적 환경 속에서 쉽게 부식되는 전이금속 소재의 내구성을 높이는 연구는 상대적으로 등한시됐다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구단 유성종 박사팀이 백금을 사용하지 않고 수소 생산 효율을 향상시키고, 비백금촉매의 한계였던 내구성 문제를 극복하여 장기적 안정성을 확보한 전이금속 소재의 촉매를 개발했다고 밝혔다. KIST 유성종 박사팀은 저가의 전이금속인 인화 몰리브덴(MoP)에 스프레이 열분해(spray pyrolysis) 공정을 통해 소량의 티타늄을 주입하였다. 몰리브덴은 값이 싸고 비교적 다루기 쉬워 에너지 전환 및 저장장치의 촉매 재료로 사용되고 있지만, 산화에 취약하여 쉽게 부식되는 게 단점이었다. KIST 연구팀이 개발한 촉매는 합성 과정에서 각 재료의 전자구조가 완전히 재구성되며 수소발생반응의 활성도가 백금계 촉매와 동등한 수준을 보이는 것으로 확인됐다. 특히, 전자구조의 재구성에 따라 전이금속계 소재의 고질적인 한계로 지적되던 높은 부식성을 개선하여 기존 촉매 대비 내구성이 26배 향상되어 비백금계 촉매의 상용화 시기를 크게 앞당길 것으로 보인다. KIST 유성종 박사는 “이번 연구는 전이금속계 촉매 기반 수전해 장치의 최대 제약이었던 안정성을 향상한 것에 의의를 찾을 수 있다”며 “전이금속계 촉매의 수소생산 효율을 백금 촉매 수준으로 끌어올림과 동시에 안정성을 동시에 향상시킨 이번 연구가 친환경 수소에너지 생산 기술의 상용화를 한 발 더 앞당기는 데 기여하기를 바란다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 이번 연구는 에너지 및 나노 분야의 국제 학술지인 ‘Nano energy’ (IF: 16.602, JCR 분야 상위 4.299%) 최신호에 게재되었다. * (논문명) Electron-deficient titanium single-atom electrocatalyst for stable and efficient hydrogen production - (제 1저자) KIST 수소·연료전지연구단 장인준 박사후연구원 - (교신저자) KIST 수소·연료전지연구단 유성종 책임연구원 <그림설명> [그림 1] 티타늄 도핑된 인화 몰리브덴의 수소 발생 반응 메커니즘 모식도 [그림 2] (a) 티타늄 도핑된 인화 몰리브덴의 구조 및 수소 발생점의 모식도 (b, c) 수소 발생 반응에 대한 활성과 15일간의 촉매 안정성 평가결과 [그림 3] (a) 티타늄 도핑된 인화 몰리브덴 촉매 합성 방법 (b) 합성된 촉매의 구조와 티타늄 도핑 사이트 분석결과
백금촉매 OUT, 값싸고 오래가는 수소 생산 촉매 개발
- 수소 생산 경제성 확보할 고효율·고내구성 전이금속계 수전해 촉매 개발 - 저가 인화몰리브덴에 티타늄 미량 도핑…전자구조 변화로 내구성 대폭 향상 수소전기차로 대표되는 수소경제 활성화의 핵심은 전기를 생산하기 위한 수소를 저렴한 가격에 생산하는 것이다. 수소를 생산하는 방법은 부생수소 포집, 화석연료 개질, 수전해 등이 있다. 그중 친환경적 방법인 ‘물의 전기분해’인 수전해 방식에서 수소발생반응을 촉진하는 역할을 하는 촉매는 수소경제의 효율과 가격 경쟁력을 결정하는 가장 중요한 요소이다. 하지만 수전해 장치에서는 수소발생반응 활성과 장기 내구성에서 어떤 물질과도 비교할 수 없을 만큼 좋은 성능을 보이는 고가의 백금(Pt) 촉매를 필수적으로 사용해야 해 다른 방법들만큼 가격경쟁력을 확보할 수 없었다. 수전해 장치는 물에 녹아 전류를 흐르게 해주는 전해질에 따라 다양한 종류가 있다. 이 가운데 고분자 전해질막(Proton exchange membrane, PEM) 기반 수전해 장치는 고가의 백금계 촉매가 아닌 전이금속 소재의 촉매에서도 수소발생반응이 활성이 높아 상용화 연구가 집중되고 있다. 하지만 활성을 끌어올리는 데 연구가 집중되는 사이 전기화학적 환경 속에서 쉽게 부식되는 전이금속 소재의 내구성을 높이는 연구는 상대적으로 등한시됐다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구단 유성종 박사팀이 백금을 사용하지 않고 수소 생산 효율을 향상시키고, 비백금촉매의 한계였던 내구성 문제를 극복하여 장기적 안정성을 확보한 전이금속 소재의 촉매를 개발했다고 밝혔다. KIST 유성종 박사팀은 저가의 전이금속인 인화 몰리브덴(MoP)에 스프레이 열분해(spray pyrolysis) 공정을 통해 소량의 티타늄을 주입하였다. 몰리브덴은 값이 싸고 비교적 다루기 쉬워 에너지 전환 및 저장장치의 촉매 재료로 사용되고 있지만, 산화에 취약하여 쉽게 부식되는 게 단점이었다. KIST 연구팀이 개발한 촉매는 합성 과정에서 각 재료의 전자구조가 완전히 재구성되며 수소발생반응의 활성도가 백금계 촉매와 동등한 수준을 보이는 것으로 확인됐다. 특히, 전자구조의 재구성에 따라 전이금속계 소재의 고질적인 한계로 지적되던 높은 부식성을 개선하여 기존 촉매 대비 내구성이 26배 향상되어 비백금계 촉매의 상용화 시기를 크게 앞당길 것으로 보인다. KIST 유성종 박사는 “이번 연구는 전이금속계 촉매 기반 수전해 장치의 최대 제약이었던 안정성을 향상한 것에 의의를 찾을 수 있다”며 “전이금속계 촉매의 수소생산 효율을 백금 촉매 수준으로 끌어올림과 동시에 안정성을 동시에 향상시킨 이번 연구가 친환경 수소에너지 생산 기술의 상용화를 한 발 더 앞당기는 데 기여하기를 바란다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 이번 연구는 에너지 및 나노 분야의 국제 학술지인 ‘Nano energy’ (IF: 16.602, JCR 분야 상위 4.299%) 최신호에 게재되었다. * (논문명) Electron-deficient titanium single-atom electrocatalyst for stable and efficient hydrogen production - (제 1저자) KIST 수소·연료전지연구단 장인준 박사후연구원 - (교신저자) KIST 수소·연료전지연구단 유성종 책임연구원 <그림설명> [그림 1] 티타늄 도핑된 인화 몰리브덴의 수소 발생 반응 메커니즘 모식도 [그림 2] (a) 티타늄 도핑된 인화 몰리브덴의 구조 및 수소 발생점의 모식도 (b, c) 수소 발생 반응에 대한 활성과 15일간의 촉매 안정성 평가결과 [그림 3] (a) 티타늄 도핑된 인화 몰리브덴 촉매 합성 방법 (b) 합성된 촉매의 구조와 티타늄 도핑 사이트 분석결과
백금촉매 OUT, 값싸고 오래가는 수소 생산 촉매 개발
- 수소 생산 경제성 확보할 고효율·고내구성 전이금속계 수전해 촉매 개발 - 저가 인화몰리브덴에 티타늄 미량 도핑…전자구조 변화로 내구성 대폭 향상 수소전기차로 대표되는 수소경제 활성화의 핵심은 전기를 생산하기 위한 수소를 저렴한 가격에 생산하는 것이다. 수소를 생산하는 방법은 부생수소 포집, 화석연료 개질, 수전해 등이 있다. 그중 친환경적 방법인 ‘물의 전기분해’인 수전해 방식에서 수소발생반응을 촉진하는 역할을 하는 촉매는 수소경제의 효율과 가격 경쟁력을 결정하는 가장 중요한 요소이다. 하지만 수전해 장치에서는 수소발생반응 활성과 장기 내구성에서 어떤 물질과도 비교할 수 없을 만큼 좋은 성능을 보이는 고가의 백금(Pt) 촉매를 필수적으로 사용해야 해 다른 방법들만큼 가격경쟁력을 확보할 수 없었다. 수전해 장치는 물에 녹아 전류를 흐르게 해주는 전해질에 따라 다양한 종류가 있다. 이 가운데 고분자 전해질막(Proton exchange membrane, PEM) 기반 수전해 장치는 고가의 백금계 촉매가 아닌 전이금속 소재의 촉매에서도 수소발생반응이 활성이 높아 상용화 연구가 집중되고 있다. 하지만 활성을 끌어올리는 데 연구가 집중되는 사이 전기화학적 환경 속에서 쉽게 부식되는 전이금속 소재의 내구성을 높이는 연구는 상대적으로 등한시됐다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구단 유성종 박사팀이 백금을 사용하지 않고 수소 생산 효율을 향상시키고, 비백금촉매의 한계였던 내구성 문제를 극복하여 장기적 안정성을 확보한 전이금속 소재의 촉매를 개발했다고 밝혔다. KIST 유성종 박사팀은 저가의 전이금속인 인화 몰리브덴(MoP)에 스프레이 열분해(spray pyrolysis) 공정을 통해 소량의 티타늄을 주입하였다. 몰리브덴은 값이 싸고 비교적 다루기 쉬워 에너지 전환 및 저장장치의 촉매 재료로 사용되고 있지만, 산화에 취약하여 쉽게 부식되는 게 단점이었다. KIST 연구팀이 개발한 촉매는 합성 과정에서 각 재료의 전자구조가 완전히 재구성되며 수소발생반응의 활성도가 백금계 촉매와 동등한 수준을 보이는 것으로 확인됐다. 특히, 전자구조의 재구성에 따라 전이금속계 소재의 고질적인 한계로 지적되던 높은 부식성을 개선하여 기존 촉매 대비 내구성이 26배 향상되어 비백금계 촉매의 상용화 시기를 크게 앞당길 것으로 보인다. KIST 유성종 박사는 “이번 연구는 전이금속계 촉매 기반 수전해 장치의 최대 제약이었던 안정성을 향상한 것에 의의를 찾을 수 있다”며 “전이금속계 촉매의 수소생산 효율을 백금 촉매 수준으로 끌어올림과 동시에 안정성을 동시에 향상시킨 이번 연구가 친환경 수소에너지 생산 기술의 상용화를 한 발 더 앞당기는 데 기여하기를 바란다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 이번 연구는 에너지 및 나노 분야의 국제 학술지인 ‘Nano energy’ (IF: 16.602, JCR 분야 상위 4.299%) 최신호에 게재되었다. * (논문명) Electron-deficient titanium single-atom electrocatalyst for stable and efficient hydrogen production - (제 1저자) KIST 수소·연료전지연구단 장인준 박사후연구원 - (교신저자) KIST 수소·연료전지연구단 유성종 책임연구원 <그림설명> [그림 1] 티타늄 도핑된 인화 몰리브덴의 수소 발생 반응 메커니즘 모식도 [그림 2] (a) 티타늄 도핑된 인화 몰리브덴의 구조 및 수소 발생점의 모식도 (b, c) 수소 발생 반응에 대한 활성과 15일간의 촉매 안정성 평가결과 [그림 3] (a) 티타늄 도핑된 인화 몰리브덴 촉매 합성 방법 (b) 합성된 촉매의 구조와 티타늄 도핑 사이트 분석결과
백금촉매 OUT, 값싸고 오래가는 수소 생산 촉매 개발
- 수소 생산 경제성 확보할 고효율·고내구성 전이금속계 수전해 촉매 개발 - 저가 인화몰리브덴에 티타늄 미량 도핑…전자구조 변화로 내구성 대폭 향상 수소전기차로 대표되는 수소경제 활성화의 핵심은 전기를 생산하기 위한 수소를 저렴한 가격에 생산하는 것이다. 수소를 생산하는 방법은 부생수소 포집, 화석연료 개질, 수전해 등이 있다. 그중 친환경적 방법인 ‘물의 전기분해’인 수전해 방식에서 수소발생반응을 촉진하는 역할을 하는 촉매는 수소경제의 효율과 가격 경쟁력을 결정하는 가장 중요한 요소이다. 하지만 수전해 장치에서는 수소발생반응 활성과 장기 내구성에서 어떤 물질과도 비교할 수 없을 만큼 좋은 성능을 보이는 고가의 백금(Pt) 촉매를 필수적으로 사용해야 해 다른 방법들만큼 가격경쟁력을 확보할 수 없었다. 수전해 장치는 물에 녹아 전류를 흐르게 해주는 전해질에 따라 다양한 종류가 있다. 이 가운데 고분자 전해질막(Proton exchange membrane, PEM) 기반 수전해 장치는 고가의 백금계 촉매가 아닌 전이금속 소재의 촉매에서도 수소발생반응이 활성이 높아 상용화 연구가 집중되고 있다. 하지만 활성을 끌어올리는 데 연구가 집중되는 사이 전기화학적 환경 속에서 쉽게 부식되는 전이금속 소재의 내구성을 높이는 연구는 상대적으로 등한시됐다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구단 유성종 박사팀이 백금을 사용하지 않고 수소 생산 효율을 향상시키고, 비백금촉매의 한계였던 내구성 문제를 극복하여 장기적 안정성을 확보한 전이금속 소재의 촉매를 개발했다고 밝혔다. KIST 유성종 박사팀은 저가의 전이금속인 인화 몰리브덴(MoP)에 스프레이 열분해(spray pyrolysis) 공정을 통해 소량의 티타늄을 주입하였다. 몰리브덴은 값이 싸고 비교적 다루기 쉬워 에너지 전환 및 저장장치의 촉매 재료로 사용되고 있지만, 산화에 취약하여 쉽게 부식되는 게 단점이었다. KIST 연구팀이 개발한 촉매는 합성 과정에서 각 재료의 전자구조가 완전히 재구성되며 수소발생반응의 활성도가 백금계 촉매와 동등한 수준을 보이는 것으로 확인됐다. 특히, 전자구조의 재구성에 따라 전이금속계 소재의 고질적인 한계로 지적되던 높은 부식성을 개선하여 기존 촉매 대비 내구성이 26배 향상되어 비백금계 촉매의 상용화 시기를 크게 앞당길 것으로 보인다. KIST 유성종 박사는 “이번 연구는 전이금속계 촉매 기반 수전해 장치의 최대 제약이었던 안정성을 향상한 것에 의의를 찾을 수 있다”며 “전이금속계 촉매의 수소생산 효율을 백금 촉매 수준으로 끌어올림과 동시에 안정성을 동시에 향상시킨 이번 연구가 친환경 수소에너지 생산 기술의 상용화를 한 발 더 앞당기는 데 기여하기를 바란다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 이번 연구는 에너지 및 나노 분야의 국제 학술지인 ‘Nano energy’ (IF: 16.602, JCR 분야 상위 4.299%) 최신호에 게재되었다. * (논문명) Electron-deficient titanium single-atom electrocatalyst for stable and efficient hydrogen production - (제 1저자) KIST 수소·연료전지연구단 장인준 박사후연구원 - (교신저자) KIST 수소·연료전지연구단 유성종 책임연구원 <그림설명> [그림 1] 티타늄 도핑된 인화 몰리브덴의 수소 발생 반응 메커니즘 모식도 [그림 2] (a) 티타늄 도핑된 인화 몰리브덴의 구조 및 수소 발생점의 모식도 (b, c) 수소 발생 반응에 대한 활성과 15일간의 촉매 안정성 평가결과 [그림 3] (a) 티타늄 도핑된 인화 몰리브덴 촉매 합성 방법 (b) 합성된 촉매의 구조와 티타늄 도핑 사이트 분석결과
백금촉매 OUT, 값싸고 오래가는 수소 생산 촉매 개발
- 수소 생산 경제성 확보할 고효율·고내구성 전이금속계 수전해 촉매 개발 - 저가 인화몰리브덴에 티타늄 미량 도핑…전자구조 변화로 내구성 대폭 향상 수소전기차로 대표되는 수소경제 활성화의 핵심은 전기를 생산하기 위한 수소를 저렴한 가격에 생산하는 것이다. 수소를 생산하는 방법은 부생수소 포집, 화석연료 개질, 수전해 등이 있다. 그중 친환경적 방법인 ‘물의 전기분해’인 수전해 방식에서 수소발생반응을 촉진하는 역할을 하는 촉매는 수소경제의 효율과 가격 경쟁력을 결정하는 가장 중요한 요소이다. 하지만 수전해 장치에서는 수소발생반응 활성과 장기 내구성에서 어떤 물질과도 비교할 수 없을 만큼 좋은 성능을 보이는 고가의 백금(Pt) 촉매를 필수적으로 사용해야 해 다른 방법들만큼 가격경쟁력을 확보할 수 없었다. 수전해 장치는 물에 녹아 전류를 흐르게 해주는 전해질에 따라 다양한 종류가 있다. 이 가운데 고분자 전해질막(Proton exchange membrane, PEM) 기반 수전해 장치는 고가의 백금계 촉매가 아닌 전이금속 소재의 촉매에서도 수소발생반응이 활성이 높아 상용화 연구가 집중되고 있다. 하지만 활성을 끌어올리는 데 연구가 집중되는 사이 전기화학적 환경 속에서 쉽게 부식되는 전이금속 소재의 내구성을 높이는 연구는 상대적으로 등한시됐다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구단 유성종 박사팀이 백금을 사용하지 않고 수소 생산 효율을 향상시키고, 비백금촉매의 한계였던 내구성 문제를 극복하여 장기적 안정성을 확보한 전이금속 소재의 촉매를 개발했다고 밝혔다. KIST 유성종 박사팀은 저가의 전이금속인 인화 몰리브덴(MoP)에 스프레이 열분해(spray pyrolysis) 공정을 통해 소량의 티타늄을 주입하였다. 몰리브덴은 값이 싸고 비교적 다루기 쉬워 에너지 전환 및 저장장치의 촉매 재료로 사용되고 있지만, 산화에 취약하여 쉽게 부식되는 게 단점이었다. KIST 연구팀이 개발한 촉매는 합성 과정에서 각 재료의 전자구조가 완전히 재구성되며 수소발생반응의 활성도가 백금계 촉매와 동등한 수준을 보이는 것으로 확인됐다. 특히, 전자구조의 재구성에 따라 전이금속계 소재의 고질적인 한계로 지적되던 높은 부식성을 개선하여 기존 촉매 대비 내구성이 26배 향상되어 비백금계 촉매의 상용화 시기를 크게 앞당길 것으로 보인다. KIST 유성종 박사는 “이번 연구는 전이금속계 촉매 기반 수전해 장치의 최대 제약이었던 안정성을 향상한 것에 의의를 찾을 수 있다”며 “전이금속계 촉매의 수소생산 효율을 백금 촉매 수준으로 끌어올림과 동시에 안정성을 동시에 향상시킨 이번 연구가 친환경 수소에너지 생산 기술의 상용화를 한 발 더 앞당기는 데 기여하기를 바란다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 이번 연구는 에너지 및 나노 분야의 국제 학술지인 ‘Nano energy’ (IF: 16.602, JCR 분야 상위 4.299%) 최신호에 게재되었다. * (논문명) Electron-deficient titanium single-atom electrocatalyst for stable and efficient hydrogen production - (제 1저자) KIST 수소·연료전지연구단 장인준 박사후연구원 - (교신저자) KIST 수소·연료전지연구단 유성종 책임연구원 <그림설명> [그림 1] 티타늄 도핑된 인화 몰리브덴의 수소 발생 반응 메커니즘 모식도 [그림 2] (a) 티타늄 도핑된 인화 몰리브덴의 구조 및 수소 발생점의 모식도 (b, c) 수소 발생 반응에 대한 활성과 15일간의 촉매 안정성 평가결과 [그림 3] (a) 티타늄 도핑된 인화 몰리브덴 촉매 합성 방법 (b) 합성된 촉매의 구조와 티타늄 도핑 사이트 분석결과